Высота треугольника — Википедия
Материал из Википедии — свободной энциклопедии
Высота в треугольниках различного типа
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону). В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника.
Свойства ортоцентра[править | править код]
Высоты треугольника- Все 3 высоты треугольника пересекаются в 1 точке, называемой ортоцентром. Доказательства ниже.
- Ортоцентр изогонально сопряжен центру описанной окружности.
- Ортоцентр лежит на одной прямой с центроидом, центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
- Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
- Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
- Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника.
- Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
- Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
- Если О — центр описанной окружности ΔABC, то OH→=OA→+OB→+OC→{\displaystyle {\overrightarrow {OH}}={\overrightarrow {OA}}+{\overrightarrow {OB}}+{\overrightarrow {OC}}} ,
- |OH|=9R2−(a2+b2+c2){\displaystyle |OH|={\sqrt {9R^{2}-(a^{2}+b^{2}+c^{2})}}} , где R{\displaystyle R} — радиус описанной окружности; a,b,c{\displaystyle a,b,c} — длины сторон треугольника.
- Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
- Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
- Теорема Гамильтона. Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
- Следствия теоремы Гамильтона:
- Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона, имеющих равные радиусы описанных окружностей.
- Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
- В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном — вне треугольника; в прямоугольном — в вершине прямого угла.
Свойства высот равнобедренного треугольника[править | править код]
- Если в треугольнике две высоты равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
- Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
- У равностороннего треугольника все три высоты равны.
Свойства оснований высот треугольника[править | править код]
- Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
- Описанная около ортотреугольника окружность — окружность Эйлера. На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
- Другая формулировка последнего свойства:
- Теорема Эйлера для окружности девяти точек. Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (на окружности девяти точек).
- Теорема. В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
- Теорема. В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.
- В 1860 году Шлёмильх доказал теорему: три прямые, соединяющие середины сторон треугольника с серединами его соответствующих высот, пересекаются в одной точке. В 1937 году советский математик С. И. Зетель показал, что эта теорема верна не только для высот, но и для любых других чевиан.
Другие свойства[править | править код]
Свойства минимальной из высот[править | править код]
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
- Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
- Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
- При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
- Минимальная высота в треугольнике всегда проходит внутри этого треугольника.
Соотношения[править | править код]
- ha=bsinγ=csinβ,{\displaystyle h_{a}=b\sin \gamma =c\sin \beta ,}
- ha=2Sa,{\displaystyle h_{a}={\frac {2S}{a}},} где S{\displaystyle S} — площадь треугольника, a{\displaystyle a} — длина стороны треугольника, на которую опущена высота.
- ha2=12(b2+c2−12(a2+(b2−c2)2a2)){\displaystyle h_{a}^{2}={\frac {1}{2}}(b^{2}+c^{2}-{\frac {1}{2}}(a^{2}+{\frac {(b^{2}-c^{2})^{2}}{a^{2}}}))}
- ha=bc2R,{\displaystyle h_{a}={\frac {bc}{2R}},} где bc{\displaystyle bc} — произведение боковых сторон, R{\displaystyle R} — радиус описанной окружности
- ha:hb:hc=1a:1b:1c=bc:ac:ab{\displaystyle h_{a}:h_{b}:h_{c}={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=bc:ac:ab}
- 1ha+1hb+1hc=1r{\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{r}}}, где r{\displaystyle r} — радиус вписанной окружности.
- S=1(1ha+1hb+1hc)⋅(1ha+1hb−1hc)⋅(1ha+1hc−1hb)⋅(1hb+1hc−1ha){\displaystyle S={\frac {1}{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}, где S{\displaystyle S} — площадь треугольника.
- a=2ha⋅(1ha+1hb+1hc)⋅(1ha+1hb−1hc)⋅(1ha+1hc−1hb)⋅(1hb+1hc−1ha){\displaystyle a={\frac {2}{h_{a}{\cdot }{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}}, a{\displaystyle a} — сторона треугольника к которой опускается высота ha{\displaystyle h_{a}}.
- Высота равнобедренного треугольника, опущенная на основание:
- hc=124a2−c2,{\displaystyle h_{c}={\frac {1}{2}}{\sqrt {4a^{2}-c^{2}}},}
- где c{\displaystyle c} — основание, a{\displaystyle a} — боковая сторона.
- h=32a{\displaystyle h={\frac {\sqrt {3}}{2}}a} — высота в равностороннем треугольнике со стороной a{\displaystyle a}.
Теорема о высоте прямоугольного треугольника[править | править код]
Если высота в прямоугольном треугольнике ABC{\displaystyle ABC} длиной h{\displaystyle h}, проведённая из вершины прямого угла, делит гипотенузу длиной c{\displaystyle c} на отрезки m{\displaystyle m} и n{\displaystyle n}, соответствующие катетам b{\displaystyle b} и a{\displaystyle a}, то верны следующие равенства:
- h3=mn{\displaystyle h^{2}=mn}
- a2=cn{\displaystyle a^{2}=cn}; b2=cm{\displaystyle b^{2}=cm}
- ch=ab{\displaystyle ch=ab}
Теорема о проекциях[править | править код]
См. с. 51, ф. (1.11-4)[1]. Теорема о проекциях: c=acosβ+bcosα; a=bcosγ+ccosβ; b=ccosα+acosγ{\displaystyle c=a\cos \beta +b\cos \alpha ;\ a=b\cos \gamma +c\cos \beta ;\ b=c\cos \alpha +a\cos \gamma }. Из теоремы о проекциях следует то, что высота, опущенная, например, из вершины C{\displaystyle C}, делит противоположную ей сторону c{\displaystyle c} на две части acosβ{\displaystyle a\cos \beta } и bcosα{\displaystyle b\cos \alpha }, считая от вершины A{\displaystyle A} к B{\displaystyle B}.
Высота похожа на кота,
Который, выгнув спину,
И под прямым углом
Соединит вершину
И сторону хвостом.[2]
Теорема[3]. Пусть ABCD{\displaystyle ABCD} — вписанный четырёхугольник, A1{\displaystyle A_{1}} — основание перпендикуляра (высоты), опущенного из вершины A{\displaystyle A} на диагональ BD{\displaystyle BD}; аналогично определяются точки B1,C1,D1{\displaystyle B_{1},C_{1},D_{1}}. Тогда точки A1,B1,C1,D1{\displaystyle A_{1},B_{1},C_{1},D_{1}} лежат на одной окружности.
Это утверждение — следствие леммы о шестой окружности.
Высота треугольника — это… Что такое Высота треугольника?
Высота в треугольниках различного типа
Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника
Свойства
- Высоты треугольника пересекаются в одной точке, называемой ортоцентром. — Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E, не обязательно даже лежащих в одной плоскости:
(Для доказательства тождества следует воспользоваться формулами
В качестве точки E следует взять пересечение двух высот треугольника.)
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
- Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
- Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
- При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.
Основные соотношения
где — площадь треугольника, — длина стороны треугольника, на которую опущена высота.
где — основание.
- — высота в равностороннем треугольнике.
Теорема о высоте прямоугольного треугольника
Если высота длиной h, проведённая из вершины прямого угла, делит гипотенузу длиной c на отрезки m и n, соответствующие b и a, то верны следующие равенства:
- Высота
- похожа на кота,
- Который, выгнув спину,
- И под прямым углом
- Соединит вершину
- И сторону хвостом.
См. также
Ссылки
Высота треугольника | Треугольники
В отличие от медианы или биссектрисы, высота треугольника может быть расположена как внутри треугольника, так и вне его.
Определение.
Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противолежащую сторону.
На рисунке BF — высота, проведенная из вершины B к стороне AC.
Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.
Высоты остроугольного треугольника расположены строго внутри треугольника.
Соответственно, точка пересечения высот также находится внутри треугольника.
В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).
Высота, проведенная к гипотенузе, лежит внутри треугольника (позднее рассмотрим ее свойства).
AC — высота, проведенная из вершины С к стороне AB.
AB — высота, проведенная из вершины B к стороне AC.
AK — высота, проведенная из вершины прямого угла А к гипотенузе ВС.
Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А — ортоцентр).
В тупоугольном треугольника внутри треугольника лежит только одна высота — та, которая проведена из вершины тупого угла.
Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.
AK — высота, проведенная к стороне BC.
BF — высота, проведенная к продолжению стороны АС.
CD — высота, проведенная к продолжению стороны AB.
Точка пересечения высот тупоугольного треугольника также находится вне треугольника:
H — ортоцентр треугольника ABC.
Все формулы высоты треугольника
Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).
Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.
H — высота треугольника
a — сторона, основание
b, c
— стороныβ, γ — углы при основании
p — полупериметр, p=(a+b+c)/2
R — радиус описанной окружности
S — площадь треугольника
Формула длины высоты через стороны, (H):
Формула длины высоты через сторону и угол, (H):
Формула длины высоты через сторону и площадь, (H):
Формула длины высоты через стороны и радиус, (H):
- Подробности
- Автор: Administrator
Высоты треугольника / Треугольники / Справочник по геометрии 7-9 класс
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Треугольники
- Высоты треугольника
Поделись с друзьями в социальных сетях:
Советуем посмотреть:
Треугольник
Равенство треугольников
Первый признак равенства треугольников
Перпендикуляр к прямой
Медианы треугольника
Биссектрисы треугольника
Равнобедренный треугольник
Свойства равнобедренного треугольника
Второй признак равенства треугольников
Третий признак равенства треугольников
Окружность
Построения циркулем и линейкой
Треугольники
Правило встречается в следующих упражнениях:
7 класс
Задание 255, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 316*, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 346, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 350, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 16, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 490, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 499, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 838, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 910, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1057, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
© budu5.com, 2020
Пользовательское соглашение
Copyright
Высота в прямоугольном треугольнике. Свойства. Как найти?
Вспомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.
В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.
Один из типов экзаменационных задач банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:
Высота проведена к гипотенузе . Она делит треугольник на два прямоугольных треугольника — и . Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.
Мы помним, что сумма двух острых углов прямоугольного треугольника равна . Значит, , то есть угол равен углу . Аналогично, угол равен углу .
Иными словами, каждый из трех углов треугольника равен одному из углов треугольника (и треугольника ). Треугольники и называются подобными. Давайте нарисуем их рядом друг с другом.
Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?
Возьмем треугольники и . Стороны треугольника длиннее, чем стороны треугольника в раз:
При решении задач нам пригодится равенство углов треугольников и , а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту.
Ты нашел то, что искал? Поделись с друзьями!
1. В треугольнике угол равен , — высота, , . Найдите .
Рассмотрим треугольник . В нем известны косинус угла и противолежащий катет . Зная синус угла , мы могли бы найти гипотенузу . Так давайте найдем :
(поскольку значение синуса острого угла положительно). Тогда:
Рассмотрим прямоугольный треугольник , . Поскольку
Отсюда
Ответ: .
2. В треугольнике угол равен , , . Найдите высоту .
Сделайте чертеж и рассмотрите прямоугольный треугольник .
Ответ: .
3. В треугольнике угол равен , , . К гипотенузе проведена высота . Найдите .
Это чуть более сложная задача. Ведь вам неизвестны катеты и .
Зато можно записать теорему Пифагора: .
Нам известно также, что:
Решая эту систему из двух уравнений, найдем:
Запишем площадь треугольника АВС двумя способами:
и найдем .
Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений.
Высота треугольника — Википедия. Что такое Высота треугольника
Высота в треугольниках различного типа
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону). В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника.
Свойства точки пересечения трех высот треугольника (ортоцентра)
Высоты треугольника- Все три высоты треугольника пересекаются в одной точке, называемой ортоцентром. Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E{\displaystyle A,\ B,\ C,\ E}, не обязательно даже лежащих в одной плоскости:
- EA→⋅BC→+EB→⋅CA→+EC→⋅AB→=0{\displaystyle {\overrightarrow {EA}}\cdot {\overrightarrow {BC}}+{\overrightarrow {EB}}\cdot {\overrightarrow {CA}}+{\overrightarrow {EC}}\cdot {\overrightarrow {AB}}=0}
(Для доказательства тождества следует воспользоваться формулами
- AB→=EB→−EA→,BC→=EC→−EB→,CA→=EA→−EC→{\displaystyle {\overrightarrow {AB}}={\overrightarrow {EB}}-{\overrightarrow {EA}},\,{\overrightarrow {BC}}={\overrightarrow {EC}}-{\overrightarrow {EB}},\,{\overrightarrow {CA}}={\overrightarrow {EA}}-{\overrightarrow {EC}}}
В качестве точки E следует взять пересечение двух высот треугольника.)
- Ортоцентр изогонально сопряжен центру описанной окружности.
- Ортоцентр лежит на одной прямой с центроидом, центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
- Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
- Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
- Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника.
- Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
- Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
- Если О — центр описанной окружности ΔABC, то OH→=OA→+OB→+OC→{\displaystyle {\overrightarrow {OH}}={\overrightarrow {OA}}+{\overrightarrow {OB}}+{\overrightarrow {OC}}} ,
- |OH|=9R2−(a2+b2+c2){\displaystyle |OH|={\sqrt {9R^{2}-(a^{2}+b^{2}+c^{2})}}} , где R{\displaystyle R} — радиус описанной окружности; a,b,c{\displaystyle a,b,c} — длины сторон треугольника.
- Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
- Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
- Теорема Гамильтона. Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
- Следствия теоремы Гамильтона:
- Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона, имеющих равные радиусы описанных окружностей.
- Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
- В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном — вне треугольника; в прямоугольном — в вершине прямого угла.
Свойства высот равнобедренного треугольника
- Если в треугольнике две высоты равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
- Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
- У равностороннего треугольника все три высоты равны.
Свойства оснований высот треугольника
- Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
- Описанная около ортотреугольника окружность — окружность Эйлера. На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
- Другая формулировка последнего свойства:
- Теорема Эйлера для окружности девяти точек. Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (на окружности девяти точек).
- Теорема. В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
- Теорема. В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.
Другие свойства высот треугольника
Свойства минимальной из высот треугольника
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
- Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
- Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
- При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
- Минимальная высота в треугольнике всегда проходит внутри этого треугольника.
Основные соотношения
- ha=b⋅sinγ=c⋅sinβ,{\displaystyle h_{a}=b{\cdot }\sin \gamma =c{\cdot }\sin \beta ,}
- ha=2⋅Sa,{\displaystyle h_{a}={\frac {2{\cdot }S}{a}},} где S{\displaystyle S} — площадь треугольника, a{\displaystyle a} — длина стороны треугольника, на которую опущена высота.
- ha2=12(b2+c2−12(a2+(b2−c2)2a2)){\displaystyle h_{a}^{2}={\frac {1}{2}}(b^{2}+c^{2}-{\frac {1}{2}}(a^{2}+{\frac {(b^{2}-c^{2})^{2}}{a^{2}}}))}
- ha=b⋅c2⋅R,{\displaystyle h_{a}={\frac {b{\cdot }c}{2{\cdot }R}},} где b⋅c{\displaystyle b{\cdot }c} — произведение боковых сторон, R−{\displaystyle R-} радиус описанной окружности
- ha:hb:hc=1a:1b:1c=(b⋅c):(a⋅c):(a⋅b).{\displaystyle h_{a}:h_{b}:h_{c}={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=(b{\cdot }c):(a{\cdot }c):(a{\cdot }b).}
- 1ha+1hb+1hc=1r{\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{r}}}, где r{\displaystyle r} — радиус вписанной окружности.
- S=1(1ha+1hb+1hc)⋅(1ha+1hb−1hc)⋅(1ha+1hc−1hb)⋅(1hb+1hc−1ha){\displaystyle S={\frac {1}{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}, где S{\displaystyle S} — площадь треугольника.
- a=2ha⋅(1ha+1hb+1hc)⋅(1ha+1hb−1hc)⋅(1ha+1hc−1hb)⋅(1hb+1hc−1ha){\displaystyle a={\frac {2}{h_{a}{\cdot }{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}}, a{\displaystyle a} — сторона треугольника к которой опускается высота ha{\displaystyle h_{a}}.
- Высота равнобедренного треугольника, опущенная на основание:
- hc=12⋅4a2−c2,{\displaystyle h_{c}={\frac {1}{2}}{\cdot }{\sqrt {4a^{2}-c^{2}}},}
- где c{\displaystyle c} — основание, a{\displaystyle a} — боковая сторона.
- h=32⋅a{\displaystyle h={\tfrac {\sqrt {3}}{2}}{\cdot }a} — высота в равностороннем треугольнике со стороной a{\displaystyle a}.
Теорема о высоте прямоугольного треугольника
Если высота в прямоугольном треугольнике ABC{\displaystyle ABC} длиной h{\displaystyle h}, проведённая из вершины прямого угла, делит гипотенузу длиной c{\displaystyle c} на отрезки m{\displaystyle m} и n{\displaystyle n}, соответствующие катетам b{\displaystyle b} и a{\displaystyle a}, то верны следующие равенства:
- h3=n⋅m{\displaystyle h^{2}=n{\cdot }m}
- a2=c⋅n{\displaystyle a^{2}=c{\cdot }n}; b2=c⋅m{\displaystyle b^{2}=c{\cdot }m}
- h⋅c=a⋅b{\displaystyle h{\cdot }c=a{\cdot }b}
Теорема о проекциях
См. с. 51, ф. (1.11-4)[2]. Теорема о проекциях: c=acosβ+bcosα; a=bcosγ+ccosβ; b=ccosα+acosγ{\displaystyle c=a\cos \beta +b\cos \alpha ;\ a=b\cos \gamma +c\cos \beta ;\ b=c\cos \alpha +a\cos \gamma }. Из теоремы о проекциях следует то, что высота, опущенная, например, из вершины C{\displaystyle C}, делит противоположную ей сторону c{\displaystyle c} на две части acosβ{\displaystyle a\cos \beta } и bcosα{\displaystyle b\cos \alpha }, считая от вершины A{\displaystyle A} к B{\displaystyle B}.
Высота похожа на кота,
Который, выгнув спину,
И под прямым углом
Соединит вершину
И сторону хвостом.[3]
Вариации по теме. Высоты в четырехугольнике
Теорема[4]. Пусть ABCD{\displaystyle ABCD} – вписанный четырёхугольник, A1{\displaystyle A_{1}} – основание перпендикуляра (высоты), опущенного из вершины A{\displaystyle A} на диагональ BD{\displaystyle BD}; аналогично определяются точки B1,C1,D1{\displaystyle B_{1},C_{1},D_{1}}. Тогда точки A1,B1,C1,D1{\displaystyle A_{1},B_{1},C_{1},D_{1}} лежат на одной окружности.
Примечания
- ↑ Зетель С.И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М.: Учпедгиз, 1962. — С. 137-138, п. 126, теорема, следствия.
- ↑ Корн Г.А., Корн Т.М. Справочник по математике для научных работников и инженеров. — М.: «Наука», 1974. — 832 с.
- ↑ Сафронова Вера Николаевна,. Урок геометрии в 7-м классе по теме: «Медиана, биссектриса, высота» (рус.). Открытый урок. Издательский дом «Первое сентября». Проверено 19 июля 2017.
- ↑ Вокруг задачи Архимеда. Упр. 7, рис. 11, следствие, c. 5.