Примеры решения задач на тему «Случайные величины»
Примеры решения задач на тему «Случайные величины».
Задача 1. В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.
Решение. Возможные значения величины X: x1 = 0; x2 = 10 и x3 = 50. Так как «пустых» билетов – 89, то p1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p2 = 0,10 и для выигрыша 50 у.е. – p3 = 0,01. Таким образом:
X |
0 |
10 |
50 |
P |
0,89 |
0,10 |
0,01 |
Легко проконтролировать:.
Задача 2. Вероятность того, что покупатель ознакомился заранее с рекламой товара равна 0,6 (р=0,6). Осуществляется выборочный контроль качества рекламы путем опроса покупателей до первого, изучившего рекламу заранее. Составить ряд распределения количества опрошенных покупателей.
Решение. Согласно условию задачи р = 0,6. Откуда: q=1-p = 0,4. Подставив данные значения, получим: и построим ряд распределения:
Х |
1 |
2 |
… |
m |
… |
pi |
0,6 |
0,24 |
… |
|
… |
Задача 3. Компьютер состоит из трех независимо работающих элементов: системного блока, монитора и клавиатуры. При однократном резком повышении напряжения вероятность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить закон распределения числа отказавших элементов при скачке напряжения в сети.
Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что в n испытаниях событие А
появится ровно k раз:
X |
0 |
1 |
… |
… |
n |
|
P |
qn |
|
… |
|
… |
pn |
Вернёмся к задаче.
Возможные значения величины X (число отказов):
x0 =0 – ни один из элементов не отказал;
x1 =1 – отказ одного элемента;
x2 =2 – отказ двух элементов;
x3 =3 – отказ всех элементов.
Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим
, ,
, .
Контроль: .
Следовательно, искомый закон распределения:
X |
0 |
1 |
2 |
3 |
p |
0,729 |
0,243 |
0,027 |
0,001 |
Задача 4. Произведено 5000 патронов. Вероятность того, что один патрон бракованный . Какова вероятность того, что во всей партии будет ровно 3 бракованных патрона?
Решение. Применим распределение Пуассона: это распределение используется для определения вероятности того, что при очень большом
количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала, событие A наступит k раз: , где .
Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .
Задача 5. При стрельбе до первого попадания с вероятностью попадания p = 0,6 при выстреле надо найти вероятность того, что попадание произойдет при третьем выстреле.
Решение. Применим геометрическое распределение: пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.
При таких условиях вероятность того, что событие A произойдет на k-ом испытании, определяется по формуле: . Здесь p = 0,6; q = 1 – 0,6 = 0,4; k = 3. Следовательно, .
Задача 6. Пусть задан закон распределения случайной величины X:
X |
1 |
2 |
P |
0,2 |
0,8 |
Найти математическое ожидание.
Решение. .
Заметим, что вероятностный смысл математического ожидания – это среднее значение случайной величины.
Задача 7. Найти дисперсию случайной величины X со следующим законом распределения:
X |
2 |
3 |
5 |
P |
0,1 |
0,6 |
0,3 |
Решение. Здесь .
Закон распределения квадрата величины X2
:
X2 |
4 |
9 |
25 |
P |
0,1 |
0,6 |
0,3 |
.
Искомая дисперсия: .
Дисперсия характеризует меру отклонения (рассеяния) случайной величины от её математического ожидания.
Задача 8. Пусть случайная величина задается распределением:
X |
2м |
3м |
10м |
P |
|
0,4 |
0,5 |
Найти её числовые характеристики.
Решение: м, м2,
м2, м.
Про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м2, либо – ее математическое ожидание 6,4 м с отклонением м. Вторая формулировка, очевидно, нагляднее.
Задача 9. Случайная величина X задана функцией распределения: .
Найти вероятность того, что в результате испытания величина X примет значение, заключенное в интервале .
Решение. Вероятность того, что X примет значение из заданного интервала, равно приращению интегральной функции в этом интервале, т.е. . В нашем случае и , поэтому
.
Задача 10. Дискретная случайная величина X задана законом распределения:
X |
2 |
5 |
8 |
P |
0,6 |
0,1 |
0,3 |
Найти функцию распределения F(x) и построить ее график.
Решение. Так как функция распределения,
для , то
при ;
при ;
при ;
при ;
Соответствующий график:
Задача 11. Непрерывная случайная величина X задана дифференциальной функцией распределения: .
Найти вероятность попадания X в интервал
.
Решение. Заметим, что это частный случай показательного закона распределения.
Воспользуемся формулой: .
.
Задача 12. Найти числовые характеристики дискретной случайной величины X, заданной законом распределения:
X |
–5 |
2 |
3 |
4 |
p |
0,4 |
0,3 |
0,1 |
0,2 |
Решение. Математическое ожидание:
.
Запишем закон распределения X2:
X2 |
25 |
4 |
9 |
16 |
p |
0,4 |
0,3 |
0,1 |
0,2 |
Математическое ожидание:
.
Находим дисперсию:
, .
Задача 13. Непрерывная случайная величина задана на интервале плотностью распределения , а вне этого интервала . Найти ее числовые характеристики.
Решение. Математическое ожидание:
.
Дисперсия: .
Среднее квадратическое отклонение: .
Задача 14. Найти числовые характеристики случайной величины X, равномерно распределенной на интервале .
Решение. Для случайной величины, равномерно распределеной на интервале , плотность распределения: ,
поэтому: ; ; .
Задача 15. Математическое ожидание нормально распределенной случайной величины , а среднее квадратическое отклонение — . Найти вероятность того, что в результате испытания X примет значение из интервала и записать закон распределения.
Решение. Запишем вначале закон распределения. Общая формула имеет вид: .
Подставляя и , получим: .
Вероятность того, что X примет значение из интервала имеет вид:
, где – функция Лапласа.
Значения этой функции находятся с помощью таблицы.
В нашем случае: .
По таблице находим: , следовательно:
.
Error
Sorry, the requested file could not be found
More information about this error
Jump to… Jump to…Согласие на обработку персональных данных Учебно-тематический планАвторы и разработчики курсаИнформация для студентов и преподавателейВводная лекцияIntroductory lectureЛекция о системе обозначений Lecture on the notation systemВидеолекция (часть 1)Lecture (Part 1)Видеолекция 2. Операции над функциями. Свойства функции.Lecture 2. Operations on functions. The properties of the functionТеоретический материал Практическое занятие. Исследование свойств функций по определениюPractical lesson. Investigation of the properties of functions by definitionЗадачи для самостоятельной работыРешения задачТест 1.1.1(Часть 1). Числовые функцииQuiz 1.1.1 (part 1)Тест 1.1.1(Часть 2). Числовые функцииQuiz 1.1.1 (part 2)Видеолекция 1. Числовая последовательность Lecture 1. Numeric sequenceВидеолекция 2. Предел числовой последовательностиLecture 2. The limit of a numeric sequence.Practical lesson 1. Study of properties of a numerical sequence by conventionПрактическое занятие 1 (часть 2)Теоретический материалЗадачи для самостоятельной работыРешения задачТест 1.1.2. Числовые последовательностиВидеолекция 1. Предел функции в точкеLecture 1. The limit of a function at a pointВидеолекция (часть 2)Практическое занятие 1. Вычисление пределов, неопределенности.Practical lesson 1. Calculation of limits. UncertaintiesПрактическое занятие 2. Вычисление пределов. Замечательные пределы.Practical lesson 2. Calculation of limits. Remarkable limits.Задачи для самостоятельной работыРешения задачТест 1.1.3. Предел функции в точкеВидеолекция. Непрерывность функции в точкеLecture 1. Сontinuity of a function at a pointПрактическое занятие. Исследование функций на непрерывность. Классификации точек разрываPractical lesson. The study of function continuity and classification of discontinuity pointsЗадачи для самостоятельной работыРешения задачТест 1.1.4. Непрерывность функции в точкеВидеолекция (часть 1)Lecture 1. Differential calculus of functions of a single variableВидеолекция (часть 2)Lecture 2. Differentiation of a function given parametricallyПрактическое занятие 1. Правила дифференцированияПрактическое занятие 2. Логарифмическое дифференцирование. Дифференцирование функции, заданной параметрическиPractical lesson 1. Logarithmic differentiation. Differentiating a function defined parametricallyPractical lesson 2. Rules of differentiationЗадачи для самостоятельной работыРешения задачТаблица производныхТест 1.1.5 Производная функцииВидеолекция 1. Геометрический и физический смысл производнойLecture 1. Geometric and physical meaning of the derivativeВидеолекция 2. Дифференциал функцииLecture 2. Differential of a functionПрактическое занятие 1. Геометрический смысл производнойPractical lesson 1. The geometric meaning of the derivativeПрактическое занятие 2. Производные и дифференциалы высших порядковPractical lesson 2. Higher-order derivatives and differentialsЗадачи для самостоятельной работыРешения задачТест 1.1.6. Геометрический и физический смысл производнойQuiz 1.1.6. Geometric and physical sense of the derivativeВидеолекция 1. Основные теоремы дифференциального исчисления.Lecture 1. Basic theorems of differential calculusВидеолекция 2. Исследование функций на монотонность и выпуклостьLecture 2. The study of the monotonicity of the functionПрактическое занятие 1. Исследование свойств функций с помощью производнойPractical lesson 1. Studying the properties of functions using a derivativeПрактическое занятие 2. Правило ЛопиталяPractical lesson 2. L’Hospital’s ruleЗадачи для самостоятельной работы (Часть 1)Решения задач (Часть 1)Задачи для самостоятельной работы (Часть 2)Решения задач (Часть 2)Тест 1. 1.7 (часть 1). Исследование свойств функции с помощью производнойQuiz 1.1.7 (part 1)Тест 1.1.7 (Часть 2). Исследование свойств функции с помощью производнойQuiz 1.1.7 (part 2)Теоретический материал (Часть 1)Задачи для самостоятельной работы (Часть 1)Решения задач (Часть 1)Теоретический материал (Часть 2)Задачи для самостоятельной работы (Часть 2)Решения задач (Часть 2)Тест 1.1.8. Асимптоты графика функцииВидеолекция. Дифференциальное и интегральное исчислениеLecture. Differential and Integral CalculationЗадачи для самостоятельной работыРешения задачТаблица интеграловТест 1.2.1. Неопределенный интегралВидеолекция. Неопределенный интеграл: методы интегрирования.Lecture. Indefinite integral: methods of integration.Практическое занятие. Внесение функции под знак дифференциалаPractical lesson. Adding a function under the sign of the differentialЗадачи для самостоятельной работыРешения задачТест 1.2.2. Методы интегрированияВидеолекция 1. Интегрирование дробно-рациональных функций (часть1)Lecture 1. Integration of fractional-rational functions (part 1)Видеолекция 2. Интегрирование дробно-рациональных функций (часть 2)Lecture 2. Integration of fractionally rational functions (part 2)Практическое занятие 1. Интегрирование иррациональных выражений (часть 1)Practical lesson 1. Integration of irrational expressions (part 1)Практическое занятие 2. Интегрирование тригонометрических функцийPractical lesson 2. Integration of trigonometric functionsЗадачи для самостоятельного решенияРешения задачТест 1.2.3. Интегрирование рациональных дробей, тригонометрических и иррациональных функцийВидеолекция. Определенный интеграл: интеграл РиманаLecture. Definite integral: Riemann integral. Практическое занятие 1. Вычисление определенного интегралаPractical lesson 1. Calculating a certain integralЗадачи для самостоятельной работыРешения задачТест 1.2.4. Определенный интегралВидеолекция LectureЗадачи для самостоятельного решенияРешения задачТест 1.2.5 Приложения определенного интегралаВидеолекция. Несобственный интегралыLecture. Improper integralЗадачи для самостоятельного решенияРешения задачТест 1.2.6. Несобственные интегралыВидеолекция 1. Функции нескольких переменныхLecture 1. Functions of Multiple VariablesВидеолекция 2. Частные производныеLecture 2. Partial derivativesПрактическое занятие. Функция двух переменныхPractical lesson. Function of several variablesЗадачи для самостоятельной работыРешения задачТест 1.3.1. Функции нескольких переменных (основные понятия)Quiz 1.3.1Видеолекция Дифференцируемость функции двух переменныхLecture. Differentiable functions of two variablesПрактическое занятие 1. Производные и дифференциалы высших порядковПрактическое занятие 2. Понятие дифференциала первого и второго порядкаPractical lesson 2. The concept of the first- and second-order differentialЗадачи для самостоятельной работыРешения задач Тест 1.3.2. Дифференцирование функции нескольких переменныхQuiz 1.3.2Видеолекция 1. Дифференцирование сложной функции, заданной неявноLecture 1. Differentiation of a complex function and a function given implicitlyВидеолекция 2. Производная по направлению. ГрадиентLecture 2. The directional derivative and the gradientПрактическое занятие 1. Производная по направлению, градиентPractical lesson 1. The directional derivative, the gradientПрактическое занятие 2. Исследование свойств функций по определениюPractical lesson 2. Investigating function properties by defenition Практическое занятие 3. Дифференцирование сложной функции и дифференцирование функции, заданной неявноPractical lesson 3. Differentiation of a composite function and differentiation of implicitly defined functionЗадачи для самостоятельного решенияРешения задачТест 1.3.3. Частные производныеQuiz 1.3.3Видеолекция 1. Экстремум функции двух переменныхВидеолекция 2. Экстремумы функции в замкнутой областиЗадачи для самостоятельной работы (Часть 1)Решения задач (Часть 1)Задачи для самостоятельной работы (Часть 2)Решения задач (Часть 2)Тест 1.3.4. Экстремум функции двух переменныхQuiz 1.3.4Видеолекция 1. Двойной интеграл Lecture 1. Double integral Видеолекция 2. Вычисление двойного интегралаLecture 2. Calculation of the double integralПрактическое занятие 1. Вычисление двойного интегралаPractical lesson 1. Calculating a certain integralПрактическое занятие 2. Вычисление двойного интегралаPractical lesson 2. Calculating a certain integralЗадачи для самостоятельного решения (Часть 1)Решения задач (Часть 1)Задачи для самостоятельного решения (Часть 2)Решения задач (Часть 2)Тест 1.3.5. Двойной интегралQuiz 1.3.5Видеолекция. Криволинейные интегралыLecture. Curvilinear integralsПрактическое занятие. Вычисление криволинейные интегралов I и II родаPractical lesson. Calculating curvilinear integrals 1 and 2 kind Задачи для самостоятельного решенияРешения задачТест 1.3.6. Криволинейные интегралыАттестация по модулю 1Итоговое тестирование по курсу (2-1)Видеолекция 1. Система линейных уравнений: основные понятияПрактическое занятие 1. Системы линейных уравненийPractical lesson (part 1). Systems of linear equationsТеоретический материал (лекция 1)Задачи для самостоятельной работы 1Решения задач 1Видеолекция 2. Решение систем линейных уравнений методом ГауссаПрактическое занятие 2. Решение систем линейных уравнений методом гауссаPractical lesson (part 2). The system of linear equationsТеоретический материал (лекция 2)Задачи для самостоятельной работы 2Решения задач 2Видеолекция 3. Исследование систем линейных уравненийLecture 3. A system of linear equationsPractical lesson (part 3). The system of linear equationsПрактическое занятие 3. Исследование систем линейных уравненийТеоретический материал (лекция 3)Задачи для самостоятельной работы 3Решения задач 3Тест 2.1.1. Системы линейных уравненийСправочник (часть 1)Справочник (часть 2)Справочник (часть 3)Видеолекция 1. Векторное пространствоLecture 1. Vector spaceВидеолекция 2. линейная зависимость векторов. Базис векторного пространстваLecture 2. Linear dependence of vectors and the concept of the basis of the vector systemПрактическое занятие 1. Арифметическое векторное пространствоPractical lesson 1. Arithmetic vector spaceПрактическое занятие 2. Линейная зависимость векторов. Базис векторного пространстваPractical lesson 2. Linear dependence of vectors and the concept of the basis of the vector systemТеоретический материал (лекция 1)Задачи для самостоятельной работы 1Решения задач 1Теоретический материал (лекция 2)Задачи для самостоятельной работы 2Решения задач 2Тест 2.1.2. Арифметическое n-мерное векторное пространствоСправочник (часть 1)Справочник (часть 2)Видеолекция 1. Исследование систем линейных уравненийLecture 1. Study systems of linear equationsВидеолекция 2. Однородная система линейных уравненийLecture 2. Homogeneous system of equationsПрактическое занятие 1. Фундаментальная система решений однородной системы линейных уравненийPractical lesson 1. Fundamental system of solutionsПрактическое занятие 2Practical lesson 2Теоретический материал (лекция 1)Теоретический материал (лекция 2)Задачи для самостоятельной работыРешения задачТест 2.1.3. Исследование систем линейных уравненийСправочникВидеолекция 1. Матрицы и определителиLecture 1. Matrix determinantВидеолекция 2. Операции над матрицамиLecture 2. Operations on matricesВидеолекция 3. Обратная матрицаLecture 3. Inverse matrixПрактическое занятие 1. Операции над матрицамиPractical lesson 1. The operations on matrices Практическое занятие 2. Вычисление определителейТеоретический материал (лекция 1)Задачи для самостоятельной работы 1Решения задач 1Теоретический материал (лекция 2)Задачи для самостоятельной работы 2Решения задач 2Теоретический материал (лекция 3)Тест 2.1.4. МатрицыQuiz 2.1.4. MatricesСправочник (часть 1)Справочник (часть 2)Справочник (часть 3)Видеолекция 1. Прямоугольная декартова система координатLecture 1. Rectangular Cartesian coordinate systemТеоретический материалПрактическое занятие. Решение задач в координатахPractical lesson. Solution of problems in coordinatesЗадачи для самостоятельной работыРешения задачТест 2.2.1. Декартова система координатСправочникВидеолекция 1. Скалярное произведение векторовLecture 1. Scalar product of vectorsТеоретический материал (Часть 1)Видеолекция 2. Векторное и смешанное произведения векторовLecture 2. Vector and mixed products of vectorsПрактическое занятие 1. Скалярное произведение векторовPractical lesson 1. Scalar product of vectorsПрактическое занятие 2. Применение произведений векторов при решении задачPractical lesson 2. vector and mixed product of vectors to solve themТеоретический материал (Часть 2)Задачи для самостоятельной работы 1Решения задач 1Тест 2.2.2.(часть 1). Скалярное произведение векторов. Длина вектора. Векторное произведение векторов. Смешанное произведение векторовЗадачи для самостоятельной работы 2Решения задач 2Тест 2.2.2. (часть2). Скалярное произведение векторов. Длина вектора. Векторное произведение векторов. Смешанное произведение векторовСправочник (Часть 1)Справочник (Часть 2)Видеолекция. Уравнения прямой на плоскости и в пространствеLecture. Equation of a straight line on a plane and in spaceТеоретический материалПрактическое занятие 1. Уравнения прямой на плоскостиPractical lesson 1. Related to the equation of a straight line on a planeЗадачи для самостоятельной работы 1Решение задач 1Практическое занятие 2. Взаимное расположение прямыхPractical lesson 2. The relative position of straight lines.Задачи для самостоятельной работы 2Решение задач 2Тест 2.2.3. Уравнения прямойСправочникВидеолекция. Уравнение плоскости. Взаимное расположение прямой и плоскостиТеоретический материалПрактическое занятие. Уравнение плоскости. Взаимное расположение прямой и плоскости Practical lesson. Equation of a plane Задачи для самостоятельной работы 1Решение задач 1Задачи для самостоятельной работы 2Практическое занятие 2. Взаимное расположение плоскостейPractical lesson 2. Relative position of planesРешение задач 2Тест 2.2.4. Уравнения плоскостиСправочникВидеолекция 1. ЭллипсLecture 1. EllipseТеоретический материал Часть 1Практическое занятие 1. ЭллипсPractical lesson 1. EllipseЗадачи для самостоятельной работы 1Решение задач 1Видеолекция 2. Гипербола и параболаLecture 2. Hyperbola and parabolaТеоретический материал (Часть 2)Практическое занятие 2. Гипербола и параболаЗадачи для самостоятельной работы 2Решение задач 2Тест 2. 2.5. Кривые второго порядкаСправочник (Часть 1)Справочник (Часть 2)Аттестация по модулю 2Анкета обратной связиИтоговое тестирование по курсу (1-2)Итоговое тестирование по курсу (2)Видеолекция 1. Основные понятия теории вероятностей Lecture 1. Basic concepts of probability theoryВидеолекция 2. Вероятность случайного событияLecture 2. Probability of a random eventПрактическое занятие 1. Классическая вероятностьPractical lesson 1. Classical probabilityЗадачи для самостоятельной работы (часть 1)Решения задач (часть 1)Практическое занятие 2. Операции над событиями. Practical lesson (part 2). Algebra of events. Properties of probabilitiesЗадачи для самостоятельно работы (часть 2)Решения задач (часть 2)Теоретический материалТест 3.1.1. Классическая вероятностьВидеолекция 1. Условная вероятностьLecture 1. Conditional probabilityПрактическое занятие 1. Условная вероятность. Формула полной вероятности. Формула БайесаPractical lesson 1. Conditional probability. The formula of total probability, Bayes ‘ formulaЗадачи для самостоятельной работы. Условная вероятностьРешения задач. Условная вероятностьВидеолекция 2. Повторные независимые опыты и формула БернуллиLecture 2. Repeated Independent Experiments and the Bernoulli FormulПрактическое занятие 2. Схема БернуллиPractical lesson 2. Bernoulli’s formulaЗадачи для самостоятельной работы. Схема БернуллиРешения задач. Схема БернуллиТеоретический материалТест 3.1.2. Условная вероятностьВидеолекция 1. Дискретные лучайные величиныLecture 1. Discrete random variablesВидеолекция 2. Числовые характеристики дискретных случайных величинПрактическое занятие. Дискретные случайные величиныPractical lesson. Discrete random variablesЗадачи для самостоятельного решенияРешения задачЛабораторная работа. Законы распределения дискретных случайных величинLaboratory work 1. Distribution Laws of Discrete Random VariablesЛабораторная работаРешения задач (лабораторная работа)Тест 3.2.1. Дискретные случайные величиныВидеолекция 1. Непрерывные случайные величиныВидеолекция 2. Частные случаи распределений случайных величинLecture 2. Special cases of distributions of random variablesПрактическое занятие. Непрерывные случайные величиныPractical lesson. Continuous random variableЗадачи для самостоятельного решенияРешения задачЛабораторная работа (видео). Законы распределения непрерывных случайных величинLaboratory work (video). Distribution Laws of Continuous Random VariablesЛабораторная работаРешения задач (лабораторная работа)Теоретический материалТест 3.2.2. Непрерывные случайные величиныТеоретический материалТест 3.3.1. Законы больших чиселВидеолекция 1. Система случайных величин (часть 1)Видеолекция 2. Система случайных величин (часть 2)Lecture 2. Systems of random variables (part 2)Практическое занятие. Система случайных величинЗадачи для самостоятельной работыРешения задачЛабораторная работаРешение задачи (лабораторная работа)Теоретический материалТест 3.4.1. Совместный закон распределенияВидеолекция 1. Характеристическая функция случайной величиныLecture 1. Characteristic function of a random variableВидеолекция 2. Свойства характеристической функции случайной величиныLecture 2. Properties of characteristic functions random variable Практическое занятие 1. Вычисление характеристической функции случайной величиныPractical lesson 1. Calculation of Characteristic Functions Практическое занятие 2. Проверка устойчивости для стандартных распределенийPractical lesson 2. Testing the robustness for standard distributions.Задачи для самостоятельного решения (часть 1)Задачи для самостоятельного решения (часть 2)Решения задач (часть 1)Решения задач (часть 2)Тест 3.4.2. (данное тестирование по теме 1)Видеолекция. Основные понятия математической статистикиLecture. The basic concepts of mathematical statisticsЛабораторная работа (видео). Основные понятия математической статистикиLaboratory work (video). Basic concepts of mathematical statisticsТеоретический материалЛабораторная работа. Основные понятия математической статистикиРешения задач (лабораторная работа)Тест 3.5.1. Основные понятия математической статистикиQuiz 3. 5.1.Видеолекция. Статистические оценки параметров генеральной совокупности. Lecture. Statistical estimates of general population parametersЛабораторная работа 1 (видео). Статистические оценки параметров генеральной совокупностиLaboratory work 1 (video). Statistical estimators of the parameters of the populationЛабораторная работа 1. Статистические оценки параметров генеральной совокупностиРешения задач 1Лабораторная работа 2 (видео). Минимальный или оптимальный объем выборочной совокупностиLaboratory work 2(video). Minimum or optimal sample sizeЛабораторная работа 2. Минимальный или оптимальный объем выборочной совокупностиРешения задач 2Теоретический материалТест 3.5.2. Статистические оценкиQuiz 3.5.2Видеолекция. Зависимость между величинами. Виды зависимостейLecture. Dependence between quantities. Types of dependenciesТеоретический материал 1Лабораторная работа 1 (видео, часть 1). Парный корреляционный анализLaboratory work 1 (video, part 1). Pair correlation analysisЛабораторная работа 1. Парный корреляционный анализЛабораторная работа 1 (видео, часть 2). Множественный корреляционный анализРешение задач 1Лабораторная работа 2 (видео, часть 2). Парный регрессионный анализLaboratory work 2 (video, part 2). Paired Regression AnalysisЛабораторная работа 2. Парный регрессионный анализРешения задач 2Теоретический материал 2Тест 3.5.3. Зависимость между величинамиQuiz 3.5.3Лекция. Статистические гипотезы Теоретический материалЛабораторная работа (видео). Статистический критерий хи-квадратLaboratory work. The Chi-Square StatisticЛабораторная работа 1. Критерий хи-квадратРешения задач (Критерий хи-квадрат)Лабораторная работа 2. Критерий ПирсонаЛабораторная работа (расчетная таблица)Решения задач (Критерий Пирсона)Тест 3.6.1. Проверка статистических гипотез: основные понятияQuiz 3.6.1Видеолекция. Проверка статистических гипотезLecture. Testing statistical hypothesesЛабораторная работа 1 (видео). Сравнение средних выборочных совокупностей при известных дисперсиях генеральных совокупностейLaboratory work 1. Comparison of Sampled Population Means with Known Population VariancesЛабораторная работа 1. Сравнение средних выборочных совокупностей при известных дисперсиях генеральных совокупностейРешения задач (лабораторная работа 1)Лабораторная работа 2 (часть 1). Сравнение средних независимых выборочных совокупностей при неизвестных дисперсиях генеральных совокупностейLaboratory work 2 (part 1). Comparison of means of independent sample populations with unknown variances of general populationsЛабораторная работа 2 (часть 2). Сравнение средних зависимых выборочных совокупностей при неизвестных дисперсиях генеральных совокупностейLaboratory work 2 (part 2). Comparison of mean dependent sample populations with unknown variances of general populationsЛабораторная работа 2. Проверка статистических гипотез о сравнении средних выборочных совокупностей, если не известны дисперсии генеральных совокупностейРешения задач (лабораторная работа 2)Теоретический материалТест 3.6.2. Проверка гипотезQuiz 3.6.2Аттестация по модулю 3Итоговое тестирование по курсу 1-2-3Итоговое тестирование по курсу для математических специальностейИтоговое тестирование по курсу (3)
Определение, типы, использование и пример
Что такое случайная величина?
Случайная переменная — это переменная, значение которой неизвестно, или функция, которая присваивает значения каждому результату эксперимента. Случайные переменные часто обозначаются буквами и могут быть классифицированы как дискретные, то есть переменные, имеющие определенные значения, или непрерывные, то есть переменные, которые могут принимать любые значения в непрерывном диапазоне.
Случайные переменные часто используются в эконометрическом или регрессионном анализе для определения статистических взаимосвязей между собой.
Ключевые выводы
- Случайная величина — это переменная, значение которой неизвестно, или функция, которая присваивает значения каждому результату эксперимента.
- Случайная величина может быть либо дискретной (имеющей определенные значения), либо непрерывной (любое значение в непрерывном диапазоне).
- Использование случайных величин наиболее распространено в теории вероятностей и статистике, где они используются для количественной оценки результатов случайных событий.
- Аналитики риска используют случайные величины для оценки вероятности наступления неблагоприятного события.
Что такое случайная величина?
Понимание случайной величины
В теории вероятности и статистике случайные величины используются для количественной оценки результатов случайного события и, следовательно, могут принимать множество значений. Случайные переменные должны быть измеримыми и обычно представляют собой действительные числа. Например, буква X может обозначать сумму чисел, выпавших после броска трех игральных костей. В этом случае X может быть 3 (1 + 1 + 1), 18 (6 + 6 + 6) или где-то между 3 и 18, поскольку наибольшее число на кубике — 6, а наименьшее — 1.
Случайная величина отличается от алгебраической переменной. Переменная в алгебраическом уравнении — это неизвестная величина, которую можно вычислить. Уравнение 10 + x = 13 показывает, что мы можем рассчитать конкретное значение для x, равное 3. С другой стороны, случайная величина имеет набор значений, и любое из этих значений может быть результирующим результатом, как показано в примере. кости выше.
В корпоративном мире случайные переменные могут быть присвоены таким свойствам, как средняя цена актива за определенный период времени, окупаемость инвестиций через определенное количество лет, предполагаемая скорость оборота в компании в течение следующих шести месяцев, и т. д. Аналитики риска назначают случайные переменные моделям риска, когда хотят оценить вероятность возникновения неблагоприятного события. Эти переменные представлены с использованием таких инструментов, как таблицы анализа сценариев и чувствительности, которые менеджеры по управлению рисками используют для принятия решений, касающихся снижения рисков.
Типы случайных величин
Случайная величина имеет распределение вероятностей, которое представляет вероятность появления любого из возможных значений. Предположим, что случайная величина Z — это число на верхней грани игральной кости при однократном броске. Таким образом, возможные значения для Z будут 1, 2, 3, 4, 5 и 6. Вероятность каждого из этих значений равна 1/6, поскольку все они с одинаковой вероятностью будут значением Z.
Например, вероятность выпадения 3 или P (Z = 3) при бросании кости равна 1/6, так же как и вероятность выпадения 4, 2 или любого другого числа на всех шести гранях кости. умереть. Обратите внимание, что сумма всех вероятностей равна 1.
Случайная величина может быть как дискретной, так и непрерывной.
Дискретные случайные величины
Дискретные случайные величины принимают счетное число различных значений. Рассмотрим эксперимент, в котором монету подбрасывают три раза. Если X представляет собой количество раз, когда монета выпадает орлом, то X является дискретной случайной величиной, которая может принимать только значения 0, 1, 2 или 3 (от отсутствия орла в трех последовательных бросках монеты до всех орлов). Никакое другое значение для X невозможно.
Непрерывные случайные величины
Непрерывные случайные величины могут представлять любое значение в пределах заданного диапазона или интервала и могут принимать бесконечное число возможных значений. Примером непрерывной случайной величины может быть эксперимент, включающий измерение количества осадков в городе за год или среднего роста случайной группы из 25 человек.
Опираясь на последнее, если Y представляет собой случайную величину для среднего роста случайной группы из 25 человек, вы обнаружите, что результирующий результат является непрерывной величиной, поскольку рост может быть 5 футов, или 5,01 фута, или 5,0001 фута. бесконечное число возможных значений высоты.
Пример случайной величины
Типичным примером случайной величины является результат подбрасывания монеты. Рассмотрим распределение вероятностей, при котором исходы случайного события не равновероятны. Если случайная величина Y — это количество выпавших орлов при подбрасывании двух монет, то Y может быть равно 0, 1 или 2. Это означает, что при подбрасывании двух монет у нас может не быть орла, может быть один орел или оба орла.
Однако две монеты приземляются четырьмя разными способами: TT, HT, TH и HH. Следовательно, P(Y=0) = 1/4, поскольку у нас есть один шанс не выпасть орла (т. е. две решки [TT] при подбрасывании монеты). Точно так же вероятность выпадения двух орлов (HH) также равна 1/4. Обратите внимание, что получение одной головы с вероятностью может произойти дважды: в HT и TH. В этом случае P (Y=1) = 2/4 = 1/2.
Какие бывают два вида случайных величин?
Случайные величины можно разделить на дискретные и непрерывные. Дискретная случайная величина — это тип случайной величины, которая имеет счетное число различных значений, таких как орел или решка, игральные карты или стороны игральной кости. Непрерывная случайная величина может отражать бесконечное число потенциальных значений, таких как среднее количество осадков в регионе.
Что такое смешанная случайная величина?
Смешанная случайная величина объединяет элементы как дискретных, так и непрерывных случайных величин.
Как определить случайную величину?
Случайная величина — это величина, значение которой априори неизвестно, или же ей присваивается случайное значение на основе какого-либо процесса генерации данных или математической функции.
Почему важны случайные величины?
Случайные величины создают распределения вероятностей на основе экспериментов, наблюдений или какого-либо другого процесса генерации данных. Таким образом, случайные переменные позволяют нам понять мир вокруг нас на основе выборки данных, зная вероятность того, что конкретное значение произойдет в реальном мире или в какой-то момент в будущем.
Итог
Случайные величины, будь то дискретные или непрерывные, являются ключевым понятием в статистике и экспериментировании. Поскольку они случайны с неизвестными точными значениями, они позволяют нам понять распределение вероятностей этих значений или относительную вероятность определенных событий. В результате аналитики могут проверять гипотезы и делать выводы о природном и социальном мире вокруг нас.
1.4 – Кумулятивная функция распределения
Предыдущий: 1.3 – Дискретная функция плотности вероятности
Далее: 1.5 – Некоторые общие дискретные распределения
Учитывая функцию плотности вероятности, мы определяем кумулятивную функцию распределения (CDF) следующим образом.
Кумулятивная функция распределения дискретной случайной величины |
---|
Кумулятивная функция распределения (CDF) случайной величины X обозначается как F ( x ) и определяется как F ( x ) = Pr( х ≤ x ). Используя наше тождество для вероятности непересекающихся событий, если X является дискретной случайной величиной, мы можем написать где x n — максимально возможное значение X , меньшее или равное x . |
Другими словами, кумулятивная функция распределения для случайной величины размером x дает вероятность того, что случайная величина x меньше или равно этому числу x . Обратите внимание, что в формуле для CDF дискретных случайных величин мы всегда имеем , где N число возможных исходов X .
Обратите также внимание, что CDF дискретной случайной величины останется постоянной на любом интервале вида . То есть, .
Следующие свойства являются прямым следствием нашего определения случайной величины и вероятности, связанной с событием.
Свойства CDF |
---|
Напомним, что функция f ( x ) называется неубывающей , если f ( x 1 ) ≤ f ( x 2 ) всякий раз, когда х 1 < х 2 .
Пример: Бросание одной игральной кости
Если X — это случайная величина, которую мы связали ранее с броском правильного шестигранного кубика, то мы можем легко записать CDF X .
Мы уже подсчитали, что PDF X определяется как Pr ( X = k ) = 1/6 для k = 1,2,…,6. CDF можно вычислить путем последовательного суммирования этих вероятностей; резюмируем следующим образом:
- Pr( X ≤ 1) = 1/6
- Пр( Х ≤ 2) = 2/6
- Pr( X ≤ 3) = 3/6
- Pr( X ≤ 4) = 4/6
- Pr( X ≤ 5) = 5/6
- Pr( X ≤ 6) = 6/6 = 1
Обратите внимание, что Pr( X ≤ x ) = 0 для любых x < 1, поскольку X не может принимать значения меньше 1. Также обратите внимание, что Pr( X ≤ x 90 094 ) = 1 для любых x > 6. Наконец, заметим, что вероятности Pr( X ≤ x ) постоянны на любом интервале формы [ k , k + 1) по мере необходимости.
Пример: Бросание двух игральных костей
Предположим, что у нас есть две правильные шестигранные кости, одна желтая и одна красная, как показано на рисунке ниже.
Мы бросаем оба кубика одновременно и складываем два числа, указанные на верхних гранях.
Пусть X будет дискретной случайной величиной, связанной с этой суммой.
- Сколько возможных исходов? То есть, сколько различных значений может быть X допустим?
- Как распространяется X ? То есть, что такое PDF X ?
- Какова вероятность того, что X меньше или равно 6?
- Что такое CDF X ?
Решение
Часть 1)
Каждый кубик может принимать 6 возможных значений. Два кубика бросают независимо (т. е. значение одного из кубиков не влияет на значение другого кубика), поэтому мы видим, что = существует 6 ✕ 6 = 36 различных исходов при одном броске двух кубиков. Обратите внимание, что все 36 исходов различимы, поскольку два кубика разного цвета. Таким образом, мы можем различать бросок, который дает 4 на желтом кубике и 5 на красном кубике, и бросок, который дает 5 на желтом кубике и 4 на красном кубике.
Однако нас интересует количество возможных исходов для суммы значений на двух игральных костях, т. е. количество различных значений для случайной величины X . Наименьшая сумма может быть равна 1 + 1 = 2, а наибольшая — 6 + 6 = 12. Ясно, что X также может принимать любое значение между этими двумя крайними значениями; таким образом, мы заключаем, что возможные значения для X равны 2,3,…,12.
Часть 2)
Построить распределение вероятностей для X , сначала рассмотрим вероятность того, что сумма игральных костей равна 2. Это может произойти только одним способом: обе кости должны выбросить 1. Существует 36 различных бросков игральных костей, поэтому вероятность того, что сумма равна равно 2 это 1/36.
Аналогичным образом можно вычислить другие возможные значения случайной величины X и соответствующие им вероятности. Некоторые из них перечислены в таблице ниже.
Результат (желтый, красный) | Сумма = Желтый + Красный | Вероятность |
---|---|---|
(1,1) | 2 | 1/36 |
(1,2), (2,1) | 3 | 2/36 |
(1,3), (2,2), (3,1) | 4 | 3/36 |
(1,4), (2,3), (3,2), (4,1) | 5 | 4/36 |
(1,5), (2,4), (3,4), (4,2), (5,1) | 6 | 5/36 |
. . . | . . . | . . . |
(6,6) | 12 | 1/36 |
Функция плотности вероятности X показана на следующем графике.
Альтернативно, если мы позволим P K = PR ( x = K ), вероятность того, что случайная сумма x равна K , тогда PDF может быть дано одиночным формула:
Часть 3)
Вероятность того, что сумма меньше или равна 6, может быть записана как Pr( X ≤ 6), что равно F (6), значение кумулятивного функция распределения при x = 6. Используя наше тождество для вероятностей непересекающихся событий, мы вычисляем
Часть 4)
Чтобы найти CDF X вообще, нам нужно дать таблицу, график или формулу для Pr( X ≤ 6) для любого данного к . Используя нашу таблицу для PDF X , мы можем легко построить соответствующую таблицу CDF:
х = к | F ( k ) = Pr( X ≤ k ) |
---|---|
2 | 1/36 |
3 | 3/36 |
4 | 6/36 |
5 | 36. |