упростить cos(a-b)-cos(a+b)
Доброй ночи!
Вы обратились с очень интересным вопросом, на который, благодаря одной формуле, ответ просто не дать.
Давайте для начала рассмотрим, какие формулы вы должны использовать и как они называются, чтоб было легче понять, что к чему и как делается правильно.
Вот наше задание: упростить cos(a-b)-cos(a+b)
Косинус суммы и косинус разницы — это те формулы, которые мы будем с Вами использовать. Итак, нам надо разобраться, как каждая из них разбирается по отдельности, чтоб сложить полную картину того, как решается наше с Вами заданий.
Давайте приступим.
Первая — косинус суммы. Эта формула будет иметь такой вид:
Вторая — косинус разницы. Это будет выглядеть так:
Теперь приступим к решению:
Вот и всё — наш ответ!
Ответ:
Теперь Вы можете спокойно использовать получившуюся формулу при решении заданий
ru.solverbook.com
1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
Найти точное значение | tan(45 град. ) | ||
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
Упростить | квадратный корень x^2 | ||
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
www.mathway.com
кто-нибудь знает как выводятся формулы sin (a+b), cos (a+b), sin (a-b), cos (a-b) ПОМОГИТЕ СРОЧНО НУЖНО!
1.Cos (a-b)=cos a*cos b +sin a*sin b; 2.cos (a+b)=cos a*cos b- sin a*sin b; 3. sin(a-b)=sin a*sin b- sin b*cos a 4. sin (a+b)=sin a*cos b+sin b*cos a Докажем ф-лу (1): 1) проведем радиуо ОА, равный R, вокруг точки О на угол a и b (рис50). Получим радиус ОВ и радиус ОС. 2)Пусть В (х1;у1) С (х2;у2). 3) Введем векторы ОВ (х1;у1) , ОС (х2;у2) 4)По опр-ию скалярного произведения ОВ*ОС=х1*х2+у1*у2 (*) 5) по опр-ию синуса и косинуса х1=R*cos a, y1=R*sin a, x2=R* cos b, y2=R*sin b 6) заменяя в равенстве (*) х1,х2,у1,у2, получим ОВ*ОС=R^2*cos a*cos b+R^2*sin a*sin b (**). 7) По теореме о скалярном произведении векторов ОВ*ОС=|OB|*|OC|*cosÐ BOC=R^2 cosÐBOC, ÐBOC= a-b(см. рис. 50) или ÐBOC= 2 пи-(a-b) (см. рис. 51) cos(2 пи-(a-b))=cos(a-b) следовательно ОВ*ОС=R^2*cos (a-b) (***) 8) Из неравенств (**) и (***) получим: R^2*cos(a-b)=R^2* cos a*cos b+R^2*sin a*sin b. Разделив левую и правую части на R^2¹0 получим формулу (1) косинуса разности Cos (a-b)=cos a*cos b +sin a*sin b; С помощью этой формулы легко вывести формулу (2) косинуса суммы и (4) синуса суммы: Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)= cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a Докажем формулу (3) Применяя последнюю формулу имеем sin(a-b)=sin(a+(-b))=sin a*cos (-b)+sin(-b)*cos a=sin a*cos b-sin b*cos a. Значит sin(a-b)=sin a*cos b-sin b*cos a. При док-ве формул (1)-(4) были использованы следующие факты: 1) формулы приведения 2)ф-ция y=sin x-нечетная, ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где n ÎN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 ±a), sin(пи*n/2 ±a). Например cos(пи*n/2 -a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a. Аналогично выводятся следующие формулы: Sin (пи-а) =sin a Sin (пи+а) =-sin a Sin (3 пи/2-а) =-cos a и т. п. Из формул сложения следуют формулы двойного аргумента: Sin 2a=2sin a*cos a Cos 2a=cos^2 a-sin^2 a Вот только рисунка нет (
По-английски и с помощью геометрии, но вроде всё понятно : <a rel=»nofollow» href=»http://www.phy6.org/stargaze/Strig5.htm» target=»_blank» >sin (a+b) и cos (a+b)</a> Вот ещё, тоже суммы <a rel=»nofollow» href=»http://whyslopes.com/etc/CalculusAndBeyond/ch33a.html» target=»_blank» >суммы</a> И ещё тут (разницы) : <a rel=»nofollow» href=»http://staff.jccc.net/swilson/trig/anglesumidentities.htm» target=»_blank» >см. тут</a>
молодец [email protected] <a rel=»nofollow» href=»http://www.referats.net/online/referat.php?id=rkr-a-3510&show=6″ target=»_blank»>http://www.referats.net/online/referat.php?id=rkr-a-3510&show=6</a>
touch.otvet.mail.ru