Если определитель равен нулю то система уравнений – как вычислить матрицу
Метод Крамера решения систем линейных уравнений
Формулы Крамера
Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.
Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных.
Метод Крамера . Применение для систем линейных уравнений
Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.
Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).
Определители
получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:
;
.
Формулы Крамера для нахождения неизвестных:
.
Найти значения и возможно только при условии, если
.
Этот вывод следует из следующей теоремы.
Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.
Пример 1. Решить систему линейных уравнений:
. (2)
Согласно теореме Крамера имеем:
Итак, решение системы (2):
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Три случая при решении систем линейных уравнений
Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:
Первый случай: система линейных уравнений имеет единственное решение
(система совместна и определённа)
Условия:
*
Второй случай: система линейных уравнений имеет бесчисленное множество решений
(система совместна и неопределённа)
Условия:
* ,
** ,
т.е. коэффициенты при неизвестных и свободные члены пропорциональны.
Третий случай: система линейных уравнений решений не имеет
(система несовместна)
Условия:
*
** .
Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой
Примеры решения систем линейных уравнений методом Крамера
Пусть дана система
.
На основании теоремы Крамера
………….
,
где
—
определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:
Пример 2. Решить систему линейных уравнений методом Крамера:
.
Решение. Находим определитель системы:
Следовательно, система является определённой. Для нахождения её решения вычисляем определители
По формулам Крамера находим:
Итак, (1; 0; -1) – единственное решение системы.
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.
Пример 3. Решить систему линейных уравнений методом Крамера:
.
Решение. Находим определитель системы:
Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных
По формулам Крамера находим:
Итак, решение системы — (2; -1; 1).
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
К началу страницы
Пройти тест по теме Системы линейных уравнений
Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.
Решение. Находим определитель системы:
Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных
Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.
Пример 5. Решить систему линейных уравнений методом Крамера:
Здесь a — некоторое вещественное число. Решение. Находим определитель системы:
Находим определители при неизвестных
По формулам Крамера находим:
,
.
Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.
Пример 6. Решить систему линейных уравнений методом Крамера:
Решение. Находим определитель системы:
Находим определители при неизвестных
По формулам Крамера находим:
,
,
.
И, наконец, система четырёх уравнений с четырьмя неизвестными.
Пример 7. Решить систему линейных уравнений методом Крамера:
.
Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:
Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных
Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.
По формулам Крамера находим:
,
,
,
.
Итак, решение системы — (1; 1; -1; -1).
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.
Нет времени вникать в решение? Можно заказать работу!
К началу страницы
Пройти тест по теме Системы линейных уравнений
Другое по теме «Системы уравнений и неравенств»
Калькулятор — решение систем уравнений онлайн
Программная реализация метода Крамера на C++
Решение систем линейных уравнений методом подстановки и методом сложения
Решение систем линейных уравнений методом Гаусса
Условие совместности системы линейных уравнений.
Теорема Кронекера-Капелли
Решение систем линейных уравнений матричным методом (обратной матрицы)
Системы линейных неравенств и выпуклые множества точек
Начало темы «Линейная алгебра»
Определители
Матрицы
Поделиться с друзьями
laservirta.ru
4.Свойства определителей. Определитель произведения матриц.
Ответ: СВОЙСТВО 1. Величина определителя не изменится, если все его строки заменить столбцами, причем каждую строку заменить столбцом с тем же номером, то есть.СВОЙСТВО 2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1. Например,
.СВОЙСТВО 3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.СВОЙСТВО 4. Умножение всех элементов одного столбца или одной строки определителя на любое число k равносильно умножению определителя на это число k. Например,
.СВОЙСТВО 5. Если все элементы некоторого столбца или некоторой строки равны нулю, то сам определитель равен нулю. Это свойство есть частный случае предыдущего (при k=0).СВОЙСТВО 6. Если соответствующие элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.СВОЙСТВО 7. Если каждый элемент n-го столбца или n-й строки определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один в n-м столбце или соответственно в n-й строке имеет первые из упомянутых слагаемых, а другой — вторые; элементы, стоящие на остальных местах, у вех трех определителей одни и те же. Например,
СВОЙСТВО 8. Если к элементам некоторого столбца (или некоторой строки) прибавить соответствующие элементы другого столбца (или другой строки), умноженные на любой общий множитель, то величина определителя при этом не изменится. Например,
.
Дальнейшие свойства определителей связаны с понятием алгебраического дополнения и минора. Минором некоторого элемента называется определитель, получаемый из данного путем вычеркиванием строки и столбца, на пересечении которых расположен этот элемент.Алгебраическое дополнение любого элемента определителя равняется минору этого элемента, взятому со своим знаком, если сумма номеров строки и столбца, на пересечении которых расположен элемент, есть число четное, и с обратным знаком, если это число нечетное.Алгебраическое дополнение элемента мы будем обозначать большой буквой того же наименования и тем же номером, что и буква, кторой обозначен сам элемент.СВОЙСТВО 9. Определитель
равен сумме произведений элементов какого-либо столбца (или строки) на их алгебраические дополнения.
Определитель. Это многочлен, комбинирующий элементы квадратной матрицы таким образом, что его значение сохраняется при транспонировании и линейных комбинациях строк или столбцов.То есть, определитель характеризует содержание матрицы. В частности, если в матрице есть линейно-зависимые строки или столбцы, — определитель равен нулю.Определитель играет ключевую роль в решении в общем виде систем линейных уравнений, на его основе вводятся базовые понятия.В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца.Определитель матрицы А обозначается как: det(A), |А| или Δ(A).
5.Вырожденная матрица. Обратная матрица, её свойства, вычисление, теорема существования.
Ответ: Вы́рожденной, особой (сингулярной) матрицей называется квадратная матрица А , если её определитель (Δ) равен нулю. В противном случае матрица А называется невырожденной.
Рассмотрим проблему определения операции, обратной умножению матриц.
Пусть — квадратная матрица порядка. Матрица, удовлетворяющая вместе с заданной матрицейравенствам:
называется обратной. Матрицу называютобратимой, если для нее существует обратная, в противном случае — необратимой.
Из определения следует, что если обратная матрица существует, то она квадратная того же порядка, что и. Однако не для всякой квадратной матрицы существует обратная. Если определитель матрицыравен нулю, то для нее не существует обратной. В самом деле, применяя теорему об определителе произведения матриц для единичной матрицыполучаем противоречие
так как определитель единичной матрицы равен 1. Оказывается, что отличие от нуля определителя квадратной матрицы является единственным условием существования обратной матрицы. Напомним, что квадратную матрицу, определитель которой равен нулю, называют вырожденной {особой), в противном случае — невырожденной {неособой).
Теорема 4.1 о существовании и единственности обратной матрицы. Квадратная матрица , определитель которой отличен от нуля, имеет обратную матрицу и притом только одну:
где — матрица, транспонированная для матрицы, составленной из алгебраических дополнений элементов матрицы.
Матрица называетсяприсоединенной матрицей по отношению к матрице .
В самом деле, матрица существует при условии. Надо показать, что она обратная к, т.е. удовлетворяет двум условиям:
Докажем первое равенство. Согласно п.4 замечаний 2.3, из свойств определителя следует, что . Поэтому
что и требовалось показать. Аналогично доказывается второе равенство. Следовательно, при условии матрицаимеет обратную
Единственность обратной матрицы докажем от противного. Пусть кроме матрицы существует еще одна обратная матрицатакая, что. Умножая обе части этого равенства слева на матрицу, получаем. Отсюда, что противоречит предположению. Следовательно, обратная матрица единственная.
Замечания 4.1
1. Из определения следует, что матрицы иперестановочны.
2. Матрица, обратная к невырожденной диагональной, является тоже диагональной:
3. Матрица, обратная к невырожденной нижней (верхней) треугольной, является нижней (верхней) треугольной.
4. Элементарные матрицы имеют обратные, которые также являются элементарными (см. п.1 замечаний 1.11).
Свойства обратной матрицы
Операция обращения матрицы обладает следующими свойствами:
если имеют смысл операции, указанные в равенствах 1-4.
Докажем свойство 2: если произведение невырожденных квадратных матриц одного и того же порядка имеет обратную матрицу, то.
Действительно, определитель произведения матриц не равен нулю, так как
, где
Следовательно, обратная матрица существует и единственна. Покажем по определению, что матрицаявляется обратной по отношению к матрице. Действительно:
Из единственности обратной матрицы следует равенство . Второе свойство доказано. Аналогично доказываются и остальные свойства.
Замечания 4.2
1. Для комплексной матрицы справедливо равенство, аналогичное свойству 3:
, где — операция сопряжения матриц.
2. Операция обращения матриц позволяет определить целую отрицательную степень матрицы. Для невырожденной матрицы и любого натурального числаопределим.
6.системы линейных уравнений. Коэффициенты при неизвестных , свободных членах. Решение системы линейных уравнений. Совместность системы линейных уравнений. Система линейных однородных уравнений и её особенности.
Ответ: Системой линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида
где числа aij называются коэффициентами системы, числа bi— свободными членами. Подлежат нахождению числа xn.
Такую систему удобно записывать в компактной матричной форме
AX=B
Здесь А — матрица коэффициентов системы, называемая основной матрицей;
—вектор-столбец из неизвестных xj.
—вектор-столбец из свободных членов bi.
Произведение матриц А*Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).
Расширенной матрицей системы называется матрица A системы, дополненная столбцом свободных членов
Решением системы называется n значений неизвестных х1=c1, x2=c2, …, xn=cn, при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записатьв виде матрицы-столбца
Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.
Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.
Решить систему — это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.
Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.
Эквивалентные системы получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.
Система линейных уравнений называется однородной, если все свободные члены равны нулю:
Однородная система всегда совместна, так как x1=x2=x3=…=xn=0 является решением системы. Это решение называется нулевым или тривиальным.
4.2. Решение систем линейных уравнений.
Теорема Кронекера-Капелли
Пусть дана произвольная система n линейных уравнений с n неизвестными
Исчерпывающий ответ на вопрос о совместности этой системы дает теоремаКронекера-Капелли.
Теорема 4.1. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы.
Примем ее без доказательства.
Правила практического разыскания всех решений совместной системы линейных уравнений вытекают из следующих теорем.
Теорема 4.2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.
Теорема 4.3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.
Правило решения произвольной системы линейных уравнений
1. Найти ранги основной и расширенной матриц системы. Если r(A)≠r(A), то система несовместна.
2. Если r(A)=r(A)=r, система совместна. Найти какой-либо базисный минор порядка r(напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). Взять r уравнений, из коэффициентов которых составлен базисный минор (остальные уравнения отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют главными и оставляют слева, а остальные n-r неизвестных называют свободными и переносят в правые части уравнений.
3. Найти выражения главных неизвестных через свободные. Получено общее решение системы.
4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образом можно найти частные решения исходной системы уравнений.
Пример 4.1.
4.3 Решение невырожденных линейных систем. Формулы Крамера
Пусть дана система n линейных уравнений с n неизвестными
(4.1)
или в матричной форме А*Х=В.
Основная матрица А такой системы квадратная. Определитель этой матрицы
называется определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной.
Найдем решение данной системы уравнений в случае
Умножив обе части уравнения А*Х=В слева на матрицу A-1, получим
A-1*A*X=A-1*B Поскольку. A-1*A=E и Е*Х=Х , то
X=A-1*B (4.1)
Отыскание решения системы по формуле (4.1) называют матричным способомрешения системы.
Матричное равенство (4.1) запишем в виде
то есть
Отсюда следует, что
Но есть разложение определителя
по элементам первого столбца. Определитель получается из определителя путем замены первого столбца коэффициентов столбцом из свободных членов. Итак,
Аналогично:
,
где 2 получен из путем замены второго столбца коэффициентов столбцом из свободных членов:
,…,
Формулы
называются формулами Крамера.
Итак, невырожденная система n линейных уравнений с n неизвестными имеет единственное решение, которое может быть найдено матричным способом (4.1) либо по формулам Крамера (4.2).
Пример 4.3.
4.4 Решение систем линейных уравнений методом Гаусса
Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в последовательном исключении неизвестных.
Пусть дана система уравнений
Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.
Приведенная ниже система имеет ступенчатый вид
где
Коэффициенты aii называются главными элементами системы.
На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.
Опишем метод Гаусса подробнее.
Прямой ход.
Будем считать, что элемент (если a11=0 , то первым в системе запишем уравнение, в котором коэффициент при х1 отличен от нуля).
Преобразуем систему (4.3), исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалентную систему
Здесь — новые значения коэффициентов и правых частей, которые получаются после первого шага.
Аналогичным образом, считая главным элементом , исключим неизвестное х2из всех уравнений системы, кроме первого я второго, и так далее. Продолжаем этот процесс, пока это возможно.
Если в процессе приведения системы (4.3) к ступенчатому виду появятся нулевые уравнения, т. е. равенства вида 0=0, их отбрасывают Если же появится уравнение вида то это свидетельствует о несовместности системы.
Второй этап (обратный ход) заключается в решении ступенчатой системы. Ступенчатая система уравнений, вообще говоря, имеет бесчисленное множество решений, В последнем уравнении этой системы выражаем первое неизвестное xkчерез остальные неизвестные (xk+1,…,xn). Затем подставляем значение xk в предпоследнее уравнение системы и выражаем xk-1 через (xk+1,…,xn). , затем находим xk-2,…,x1.. Придавая свободным неизвестным (xk+1,…,xn). произвольные значения, получим бесчисленное множество решений системы.
Замечания:
1. Если ступенчатая система оказывается треугольной, т. е. k=n, то исходная система имеет единственное решение. Из последнего уравнения находим xn из предпоследнего уравнения xn-1, далее поднимаясь по системе вверх, найдем все остальные неизвестные (xn-1,…,x1).
2. На практике удобнее работать не с системой (4.3), а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a111).
Пример 4.4.
Решить систему методом Гаусса:
Решение: В результате элементарных преобразований над расширенной матрицейсистемы
исходная система свелась к ступенчатой:
Поэтому общее решение системы: x2=5x4-13x3-3;x1=5x4-8x3-1 Если положить, например, x3=0,x4=0, то найдем одно из частных решений этой системы x1=-1,x2=-3,x3=0,x4=0.
Пример 4.5.
Решить систему методом Гаусса:
Решение: Произведем элементарные преобразования над строчками расширенной матрицы системы:
Полученная матрица соответствует системе
Осуществляя обратный ход, находим x3=1, x2=1,x1=1.
4.5 Системы линейных однородных уравнений
Пусть дана система линейных однородных уравнений
Очевидно, что однородная система всегда совместна , она имеет нулевое (тривиальное) решение x1=x2=x3=…=xn=0.
При каких условиях однородная система имеет и ненулевые решения?
Теорема 4.4. Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа n неизвестных, т. е. r<n.
Необходимость.
Так как ранг не может превосходить размера матрицы, то, очевидно, r<=n. Пусть r=n. Тогда один из минеров размера nхn отличен от нуля. Поэтому соответствующаясистема линейных уравнений имеет единственное решение:
Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r<n.
Достаточность:
Пусть r<n. Тогда однородная система, будучи совместной, является неопределенной. Значит, она имеет бесчисленное множество решений, т. е. имеет и ненулевые решения. Пусть дана однородная система n линейных уравнений с n неизвестными
Теорема 4.5. Для того, чтобы однородная система n линейных уравнений с n неизвестными имела ненулевые решения, необходимо и достаточно, чтобы ее определитель был равен нулю, т. е. =0.
Если система имеет ненулевые решения, то =0. Ибо при 0 система имеет только единственное, нулевое решение. Если же =0, то ранг r основной матрицы системы меньше числа неизвестных, т.е. r<n. И, значит, система имеет бесконечное множество (ненулевых) решений.
Пример 4.6.
Решить систему
Положив x3=0,получаем одно частное решение: x1=0, x2=0, x3=0. Положив x3=1, получаем второе частное решение: x1=2, x2=3, x3=1 и т д.
studfiles.net
Определители и системы линейных уравнений
1.1. Системы двух линейных уравнений и определители второго порядка
Рассмотрим систему двух линейных уравнений с двумя неизвестными:
Коэффициенты при неизвестных и имеют два индекса: первый указывает номер уравнения, второй – номер переменной.
Главным определителем системы называется таблица, составленная из коэффициентов при неизвестных и заключенная в прямые скобки: |
Вспомогательным определителем называют определитель, полученный из главного определителя заменой одного из столбцов на столбец свободных членов: |
Главнаядиагональ определителя – это диагональ, направленная из левого верхнего угла в правый нижний угол. Вторая диагональ называетсяпобочной. |
Определитель второго порядка равен разности между произведением элементов главной диагонали и произведением элементов побочной диагонали: |
Правило Крамера: Решение системы находят путем деления вспомогательных определителей на главный определитель системы
,
Замечание 1.Использование правила Крамера возможно, если определитель системы не равен нулю.
Замечание 2.Формулы Крамера обобщаются и на системы большего порядка.
Пример 1. Решить систему: .
Решение.
; ;
;
Проверка:
Вывод: Система решена верно: .
1.2. Системы трех линейных уравнений и определители третьего порядка
Рассмотрим систему трех линейных уравнений с тремя неизвестными:
Определитель, составленный из коэффициентов при неизвестных, называется определителем системы или главным определителем:
.
Если то система имеет единственное решение, которое определяется по формулам Крамера:
где
где определители – называются вспомогательными и получаются из определителя путем замены его первого, второго или третьего столбца столбцом свободных членов системы.
Пример 2.Решить систему .
Сформируем главный и вспомогательные определители:
Осталось рассмотреть правила вычисления определителей третьего порядка. Их три: правило дописывания столбцов, правило Саррюса, правило разложения.
а) Правило дописывания первых двух столбцов к основному определителю:
.
Вычисление проводятся следующим образом: со своим знаком идут произведения элементов главной диагонали и по параллелям к ней, с обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней.
б) Правило Саррюса:
Со своим знаком берут произведения элементов главной диагонали и по параллелям к ней, причем недостающий третий элемент берут из противоположного угла. С обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней, третий элемент берут из противоположного угла.
в) Правило разложения по элементам строки или столбца:
Определитель равен сумме произведений элементов какой-нибудь строки (столбца) на их соответствующие алгебраические дополнения. |
Если , тогда .
Алгебраическое дополнение– это определитель более низкого порядка, получаемый путем вычеркивания соответствующей строки и столбца и учитывающий знак , где– номер строки,– номер столбца.
Например,
, , и т.д.
Вычислим по этому правилу вспомогательные определители и , раскрывая их по элементам первой строки.
Вычислив все определители, по правилу Крамера найдем переменные:
Проверка:
Вывод: система решена верно: .
Основные свойства определителей
Необходимо помнить, что определитель – это число, найденное по некоторым правилам. Его вычисление может быть упрощено, если пользоваться основными свойствами, справедливыми для определителей любого порядка.
Свойство 1.Значение определителя не изменится от замены всех его строк соответствующими по номеру столбцами и наоборот.
Операция замены строк столбцами называется транспонированием. Из этого свойства вытекает, что всякое утверждение, справедливое для строк определителя, будет справедливым и для его столбцов.
Свойство 2.Если в определителе поменять местами две строки (столбца), то знак определителя поменяется на противоположный.
Свойство 3.Если все элементы какой-нибудь строки определителя равны 0, то определитель равен 0.
Свойство 4.Если элементы строки определителя умножить (разделить) на какое-нибудь число , то и значение определителя увеличится (уменьшится) в раз.
Если элементы какой-нибудь строки, имеют общий множитель, то его можно вынести за знак определителя.
Свойство 5. Если определитель имеет две одинаковые или пропорциональные строки, то такой определитель равен 0.
Свойство 6. Если элементы какой-нибудь строки определителя представляют собой сумму двух слагаемых, то определитель равен сумме двух определителей.
Свойство 7. Значение определителя не изменится, если к элементам какой-нибудь строки добавить элементы другой строки, умноженной на одно и то же число.
В этом определителе вначале ко второй строке прибавили третью, умноженную на 2, затем из третьего столбца вычли второй, после чего вторую строку прибавили к первой и третьей, в результате получили много нулей и упростили подсчет.
Элементарными преобразованиями определителя называются упрощения его благодаря использованию указанных свойств.
Пример 1.Вычислить определитель
Непосредственный подсчет по одному из рассмотренных выше правил приводит к громоздким вычислениям. Поэтому целесообразно воспользоваться свойствами:
а) из І строки вычтем вторую, умноженную на 2;
б) из ІІ строки вычтем третью, умноженную на 3.
В результате получаем:
Разложим этот определитель по элементам первого столбца, содержащего лишь один ненулевой элемент.
.
Системы и определители высших порядков
Систему линейных уравнений с неизвестными можно записать в таком виде:
Для этого случая также можно составить главный и вспомогательные определители, а неизвестные определять по правилу Крамера. Проблема состоит в том, что определители более высокого порядка могут быть вычислены только путем понижения порядка и сведения их к определителям третьего порядка. Это может быть осуществлено способом прямого разложения по элементам строк или столбцов, а также с помощью предварительных элементарных преобразований и дальнейшего разложения.
Пример 4. Вычислить определитель четвертого порядка
Решение найдем двумя способами:
а) путем прямого разложения по элементам первой строки:
б) путем предварительных преобразований и дальнейшего разложения
| а) из І строки вычтем ІІІ |
|
б) ІІ строку прибавим к ІV |
а) из IV строки вынесем 2 |
|
б) сложим III и IV столбцы | |
в) умножим на 2 III столбец и прибавим ко II |
Пример 5.Вычислить определитель пятого порядка, получая нули в третьей строке с помощью четвертого столбца
| из первой строки вычтем вторую, из третьей вычтем вторую, из четвертой вычтем вторую, умноженную на 2. |
из второго столбца вычтем третий:
из второй строки вычтем третью:
Пример 6.Решить систему:
Решение.Составим определитель системы и, применив свойства определителей, вычислим его:
(из первой строки вычтем третью, а затем в полученном определителе третьего порядка из третьего столбца вычитаем первый, умноженный на 2). Определитель , следовательно, формулы Крамера применимы.
Вычислим остальные определители:
Четвертый столбец умножили на 2 и вычли из остальных
Четвертый столбец вычли из первого, а затем, умножив на 2, вычли из второго и третьего столбцов.
.
Здесь выполнили те же преобразования, что и для .
.
При нахождении первый столбец умножили на 2 и вычли из остальных.
По правилу Крамера имеем:
.
После подстановки в уравнения найденных значений убеждаемся в правильности решения системы.
2. МАТРИЦЫ и ИХ ИСПОЛЬЗОВАНИЕ
В РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ
studfiles.net
Метод Крамера решения систем линейных уравнений
Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.
Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.
Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).
Определители
получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:
;
.
Формулы Крамера для нахождения неизвестных:
.
Найти значения и возможно только при условии, если
.
Этот вывод следует из следующей теоремы.
Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.
Пример 1. Решить систему линейных уравнений:
. (2)
Согласно теореме Крамера имеем:
Итак, решение системы (2):
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:
Первый случай: система линейных уравнений имеет единственное решение
(система совместна и определённа)
Условия:
*
Второй случай: система линейных уравнений имеет бесчисленное множество решений
(система совместна и неопределённа)
Условия:
* ,
** ,
т.е. коэффициенты при неизвестных и свободные члены пропорциональны.
Третий случай: система линейных уравнений решений не имеет
(система несовместна)
Условия:
*
** .
Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.
Пусть дана система
.
На основании теоремы Крамера
………….
,
где
—
определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:
Пример 2. Решить систему линейных уравнений методом Крамера:
.
Решение. Находим определитель системы:
Следовательно, система является определённой. Для нахождения её решения вычисляем определители
По формулам Крамера находим:
Итак, (1; 0; -1) – единственное решение системы.
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.
Пример 3. Решить систему линейных уравнений методом Крамера:
.
Решение. Находим определитель системы:
Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных
По формулам Крамера находим:
Итак, решение системы — (2; -1; 1).
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.
Пример 6. Решить систему линейных уравнений методом Крамера:
Решение. Находим определитель системы:
Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных
Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.
Пример 7. Решить систему линейных уравнений методом Крамера:
Здесь a — некоторое вещественное число. Решение. Находим определитель системы:
Находим определители при неизвестных
По формулам Крамера находим:
,
.
Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.
Пример 8. Решить систему линейных уравнений методом Крамера:
Решение. Находим определитель системы:
Находим определители при неизвестных
По формулам Крамера находим:
,
,
.
И, наконец, система четырёх уравнений с четырьмя неизвестными.
Пример 9. Решить систему линейных уравнений методом Крамера:
.
Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:
Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных
Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.
По формулам Крамера находим:
,
,
,
.
Итак, решение системы — (1; 1; -1; -1).
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.
Другое по теме «Системы уравнений и неравенств»
Начало темы «Линейная алгебра»
Поделиться с друзьями
function-x.ru
Системы линейных уравнений (Лекция №14)
Системой m линейных уравнений с n неизвестными называется система вида
где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.
Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.
Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.
Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.
Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:
- Система может иметь единственное решение.
- Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
- И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.
Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.
Рассмотрим способы нахождения решений системы.
МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ
Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:
Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов
Найдем произведение
т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде
или короче A∙X=B.
Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.
Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A: . Поскольку A-1A = E и E∙X = X, то получаем решение матричного уравнения в виде X = A-1B.
Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.
Примеры. Решить системы уравнений.
Найдем матрицу обратную матрице A.
,
Таким образом, x = 3, y = – 1.
Итак, х1=4,х2=3,х3=5.
- Решите матричное уравнение: XA+B=C, где
Выразим искомую матрицу X из заданного уравнения.
Найдем матрицу А-1.
Проверка:
- Решите матричное уравнение AX+B=C, где
Из уравнения получаем .
Следовательно,
ПРАВИЛО КРАМЕРА
Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:
Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,
называется определителем системы.
Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов
Тогда можно доказать следующий результат.
Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём
Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:
Сложим эти уравнения:
Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца
.
Далее рассмотрим коэффициенты при x2:
Аналогично можно показать, что и .
Наконец несложно заметить, что
Таким образом, получаем равенство: .
Следовательно, .
Аналогично выводятся равенства и , откуда и следует утверждение теоремы.
Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.
Примеры. Решить систему уравнений
Итак, х=1, у=2, z=3.
- Решите систему уравнений
при различных значениях параметра p:
Система имеет единственное решение, если Δ ≠ 0.
. Поэтому .
- При
- При p = 30 получаем систему уравнений которая не имеет решений.
- При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y, yÎR.
МЕТОД ГАУССА
Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.
Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:
.
Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:
Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:
Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.
При использовании метода Гаусса уравнения при необходимости можно менять местами.
Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:
и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.
К элементарным преобразованиям матрицы относятся следующие преобразования:
- перестановка строк или столбцов;
- умножение строки на число, отличное от нуля;
- прибавление к одной строке другие строки.
Примеры: Решить системы уравнений методом Гаусса.
Вернувшись к системе уравнений, будем иметь
Выпишем расширенную матрицу системы и сведем ее к треугольному виду.
Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.
Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.
Вернемся к системе уравнений.
Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.
Таким образом, система имеет бесконечное множество решений.
toehelp.ru
Метод Крамера . Применение для систем линейных уравнений
Задана система N линейных алгебраических уравнений (СЛАУ) с неизвестными, коэффициентами при которых являются элементы матрицы , а свободными членами — числа
Первый индекс возле коэффициентов указывает в каком уравнении находится коэффициент, а второй — при котором из неизвестным он находится.
Если определитель матрицы не равен нулю
то система линейных алгебраических уравнений имеет единственное решение.
Решением системы линейных алгебраических уравнений называется такая упорядоченная совокупность чисел , которая при превращает каждое из уравнений системы в правильную равенство.
Если правые части всех уравнений системы равны нулю, то систему уравнений называют однородной. В случае, когда некоторые из них отличны от нуля – неоднородной
Если система линейных алгебраических уравнений имеет хоть одно решение, то она называется совместной, в противном случае — несовместимой.
Если решение системы единственное, то система линейных уравнений называется определенной. В случае, когда решение совместной системы не единственный, систему уравнений называют неопределенной.
Две системы линейных уравнений называются эквивалентными (или равносильными), если все решения одной системы является решениями второй, и наоборот. Эквивалентны (или равносильны) системы получаем с помощью эквивалентных преобразований.
Эквивалентные преобразования СЛАУ
1) перестановка местами уравнений;
2) умножение (или деление) уравнений на отличное от нуля число;
3) добавление к некоторого уравнения другого уравнения, умноженного на произвольное, отличное от нуля число.
Решение СЛАУ можно найти разными способами.
МЕТОД КРАМЕРА
ТЕОРЕМА КРАМЕРА. Если определитель системы линейных алгебраических уравнений с неизвестными отличен от нуля то эта система имеет единственное решение, которое находится по формулам Крамера:
— определители, образованные с заменой -го столбца, столбцом из свободных членов.
Если , а хотя бы один из отличен от нуля, то СЛАУ решений не имеет. Если же , то СЛАУ имеет множество решений. Рассмотрим примеры с применением метода Крамера.
—————————————————————
Задача 1.
Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Крамера
Решение.
Найдем определитель матрицы коэффициентов при неизвестных
Так как , то заданная система уравнений совместная и имеет единственное решение. Вычислим определители:
По формулам Крамера находим неизвестные
Итак единственное решение системы.
Задача 2.
Дана система четырех линейных алгебраических уравнений. Решить систему методом Крамера.
Решение.
Найдем определитель матрицы коэффициентов при неизвестных. Для этого разложим его по первой строке.
Найдем составляющие определителя:
Подставим найденные значения в определитель
Детерминант , следовательно система уравнений совместная и имеет единственное решение. Вычислим определители по формулам Крамера:
Разложим каждый из определителей по столбцу в котором есть больше нулей.
По формулам Крамера находим
Решение системы
Данный пример можно решить математическим калькулятором YukhymCALC . Фрагмент программы и результаты вычислений наведены ниже.
——————————
МЕТОД К Р А М Е Р А
|1,1,1,1|
D=|5,-3,2,-8|
|3,5,1,4|
|4,2,3,1|
D=1*(-3*1*1+2*4*2+(-8)*5*3-((-8)*1*2+2*5*1+(-3)*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))+1*(5*5*1+(-3)*4*4+(-8)*3*2-((-8)*5*4+(-3)*3*1+5*4*2))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(-3+16-120+16-10+36)-1*(5+32-72+32-6-60)+1*(25-48-48+160+9-40)-1*(75-12+12-40+27-10)=1*(-65)-1*(-69)+1*58-1*52=-65+69+58-52=10
|0,1,1,1|
Dx1=|1,-3,2,-8|
|0,5,1,4|
|3,2,3,1|
Dx1=-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(1*5*1+(-3)*4*3+(-8)*0*2-((-8)*5*3+(-3)*0*1+1*4*2))-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))= -1*(1+24+0+24+0-12)+1*(5-36+0+120+0-8)-1*(15-9+0-30+0-2)= -1*(37)+1*81-1*(-26)=-37+81+26=70
|1,0,1,1|
Dx2=|5,1,2,-8|
|3,0,1,4|
|4,3,3,1|
Dx2=1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(1+24+0+24+0-12)+1*(0+16-72+0-3-60)-1*(0+4+18+0-9-15)= 1*37+1*(-119)-1*(-2)=37-119+2=-80
|1,1,0,1|
Dx3=|5,-3,1,-8|
|3,5,0,4|
|4,2,3,1|
Dx3=1*(-3*0*1+1*4*2+(-8)*5*3-((-8)*0*2+1*5*1+(-3)*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))= 1*(0+8-120+0-5+36)-1*(0+16-72+0-3-60)-1*(75+0+6-20+27+0)= 1*(-81)-1*(-119)-1*88=-81+119-88=-50
|1,1,1,0|
Dx4=|5,-3,2,1|
|3,5,1,0|
|4,2,3,3|
Dx4=1*(-3*1*3+2*0*2+1*5*3-(1*1*2+2*5*3+(-3)*0*3))-1*(5*1*3+2*0*4+1*3*3-(1*1*4+2*3*3+5*0*3))+1*(5*5*3+(-3)*0*4+1*3*2-(1*5*4+(-3)*3*3+5*0*2))= 1*(-9+0+15-2-30+0)-1*(15+0+9-4-18+0)+1*(75+0+6-20+27+0)= 1*(-26)-1*(2)+1*88=-26-2+88=60
x1=Dx1/D=70,0000/10,0000=7,0000
x2=Dx2/D=-80,0000/10,0000=-8,0000
x3=Dx3/D=-50,0000/10,0000=-5,0000
x4=Dx4/D=60,0000/10,0000=6,0000
Посмотреть материалы:
{jcomments on}
yukhym.com
Решение систем линейных уравнений
Каталин Дэвид
Системы линейных уравнений имеют следующий общий вид:
$ \begin{cases} a_{1,1}\cdot x_{1} + a_{1,2}\cdot x_{2} + a_{1,3}\cdot x_{3} + \cdots a_{1,n} \cdot x_{n} =b_{1} \\ a_{2,1}\cdot x_{1} + a_{2,2}\cdot x_{2}+ a_{2,3}\cdot x_{3} + \cdots + a_{2,n}\cdot x_{n} = b_{2} \\ a_{3,1}\cdot x_{1} + a_{3,2}\cdot x_{2}+a_{3,3}\cdot x_{3}+ \cdots + a_{3,n}\cdot x_{n}=b_{3} \\ \cdots\\ a_{m,1}\cdot x_{1}+ a_{m,2}\cdot x_{2}+a_{m,3}\cdot x_{3}+\cdots + a_{m,n}\cdot x_{n} =b_{n} \end{cases}$
$ A= \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & . & . & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & . & . & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & . & . & a_{3,n} \\ \cdots \\ a_{m,1} & a_{m,2} & a_{m,3} & . & . & a_{m,n} \end{pmatrix}$ — матрица системы, а $b_{1}, b_{2},b_{3} \cdots b_{n}$ — свободные члены системы.
Если все свободные члены равны 0, то система однородна.
Матрица системы — квадратная (m=n)
Надо вычислить определитель матрицы системы.
$\Delta = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} & . & . & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & . & . & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & . & . & a_{3,n} \\ \cdots \\ a_{n,1} & a_{n,2} & a_{n,3} & . & . & a_{n,n} \end{vmatrix}$
Определитель матрицы системы не равен 0
Система называется невырожденной системой с единственным решением. Чтобы найти решение системы, используем метод Крамера.
Вычислим $ \Delta_{x_{1}}$ — определитель матрицы, полученной заменой столбца с коэффициентами соответствующей переменной $x_{1}$ столбцом свободных членов.
$\Delta_{x_{1}}= \begin{vmatrix} b_{1} & a_{1,2} & a_{1,3} & . & . & a_{1,n} \\ b_{2} & a_{2,2} & a_{2,3} & . & . & a_{2,n} \\ b_{3} & a_{3,2} & a_{3,3} & . & . & a_{3,n} \\ \cdots \\ b_{n} & a_{n,2} & a_{n,3} & . & . & a_{n,n} \end{vmatrix}$
Получаем $ x_{1} = \dfrac{\Delta_{x_{1}}}{\Delta}$
Вычислим $ \Delta_{x_{2}}$ — определитель матрицы, полученной заменой столбца с коэффициентами соответствующей переменной $x_{2}$ столбцом свободных членов.
$\Delta_{x_{2}}= \begin{vmatrix} a_{1,1} & b_{1} & a_{1,3} & . & . & a_{1,n} \\ a_{2,1} & b_{2} & a_{2,3} & . & . & a_{2,n} \\ a_{3,1} & b_{3} & a_{3,3} & . & . & a_{3,n} \\ \cdots \\ a_{n,1} & b_{n} & a_{n,3} & . & . & a_{n,n} \end{vmatrix}$
Получаем $ x_{2} = \dfrac{\Delta_{x_{2}}}{\Delta}$
Вычислим $ \Delta_{x_{3}}$ — определитель матрицы, полученной заменой столбца с коэффициентами соответствующей переменной $x_{3}$ столбцом свободных членов.
$\Delta_{x_{3}}= \begin{vmatrix} a_{1,1} & a_{1,2} & b_{1} & . & . & a_{1,n} \\ a_{2,1} & a_{2,2} & b_{2} & . & . & a_{2,n} \\ a_{3,1} & a_{3,2} & b_{3} & . & . & a_{3,n} \\ \cdots \\ a_{n,1} & a_{n,2} & a_{n} & . & . & a_{n,n} \end{vmatrix}$
Получаем $ x_{3} = \dfrac{\Delta_{x_{3}}}{\Delta}$
Продолжаем делать это с остальными переменными, и в конце-концов записываем решение системы.
$x_{n}=\dfrac{\Delta_{x_{n}}}{\Delta}$
Пример 53
$\begin{cases} 2\cdot x + 3\cdot y -5\cdot z = \color{red}{-7}\\ -3 \cdot x + 2\cdot y + z = \color{red}{-9}\\ 4\cdot x — y + 2\cdot z = \color{red}{17} \end{cases}$
Матрица системы:
$ \begin{pmatrix} 2 & 3 & -5\\ -3 & 2 & 1\\ 4 & -1 & 2 \end{pmatrix}$
Вычисляем определитель матрицы и получаем $\Delta = 8 -15 + 12 +40 +2 + 18 = 65$
Вычисляем $ \Delta_{x}= \begin{vmatrix} \color{red}{-7} & 3 & -5\\ \color{red}{-9} & 2 & 1\\ \color{red}{17} & -1 & 2 \end{vmatrix}= -28 — 45 + 51 + 170 — 7 +54 = 195$
Вычисляем $ \Delta_{y}= \begin{vmatrix} 2 & \color{red}{-7} & -5\\ -3 & \color{red}{-9} & 1\\ 4 & \color{red}{17} & 2 \end{vmatrix}=-36 + 255 -28 -180 -34 -42 = -65$
Вычисляем $ \Delta_{z}= \begin{vmatrix} 2 & 3 &\color{red}{-7}\\ -3 & 2 & \color{red}{-9}\\ 4 & -1 & \color{red}{17} \end{vmatrix}= 68 -21 -108 + 56 -18 + 153 =130$
Решение системы:
$x = \dfrac{\Delta_{x}}{\Delta} =\dfrac{195}{65} = 3$
$y = \dfrac{\Delta_{y}}{\Delta} = -\dfrac{65}{65}= -1$
$z = \dfrac{\Delta_{z}}{\Delta} =\dfrac{130}{65}= 2$
$S=\{3;-1;2\}$
Пример 54
$\begin{cases} 4\cdot x + 5\cdot y -2\cdot z = \color{red}{3}\\ -2 \cdot x + 3\cdot y — z = \color{red}{-3}\\ -1\cdot x — 2\cdot y + 3\cdot z = \color{red}{-5} \end{cases}$
Матрица системы: $ \begin{pmatrix} 4 & 5 & -2\\ -2 & 3 & -1\\ -1 & -2 & 3 \end{pmatrix}$
Вычисляем определитель матрицы и получаем $\Delta = 36 -8 + 5 -6 -8 + 30 = 49$
Вычисляем $ \Delta_{x}= \begin{vmatrix} \color{red}{3} & 5 & -2\\ \color{red}{-3} & 3 &1\\ \color{red}{-5} & -2 & 3 \end{vmatrix}= 27 — 12 + 25 — 30 — 6 + 45 = 49$
Вычисляем $ \Delta_{y}= \begin{vmatrix} 4 & \color{red}{3} & -2\\ -2 & \color{red}{-3} & -1\\ -1 & \color{red}{-5} & 3 \end{vmatrix}=-36 -20+ 3 +6 -20 + 18 = -49$
Вычисляем $ \Delta_{z}= \begin{vmatrix} 4 & 5 & \color{red}{3}\\ -2 & 3 & \color{red}{-3}\\ -1& -2 & \color{red}{-5} \end{vmatrix}= -60 + 12 + 15 + 9 — 24 -50 = — 98$
Решение системы:
$x = \dfrac{\Delta_{x}}{\Delta} =\dfrac{49}{49} = 1$
$y = \dfrac{\Delta_{y}}{\Delta} = -\dfrac{-49}{49}= -1$
$z = \dfrac{\Delta_{z}}{\Delta} =\dfrac{-98}{4}= -2$
$S=\{1;-1;-2\}$
Если система однородна, то ее решение есть {0;0;0}, потому что в матрицах, определителями которых являются $\Delta_{x}$,$\Delta_{y}$ и $\Delta_{z}$, есть столбцы из одних нулей, следовательно, эти определители равны 0.
Пример 55
$\begin{cases} 2\cdot x + 3\cdot y -5\cdot z = \color{red}{0}\\ -3 \cdot x + 2\cdot y + z = \color{red}{0}\\ 4\cdot x — y + 2\cd
www.math10.com