Арифметическая прогрессия | umath.ru
Определение арифметической прогрессии
Определение. Числовая последовательность, каждый член которой получается из предыдущего прибавлением одного и того же числа называется арифметической прогрессией. Число называется разностью арифметической прогрессии.То есть арифметическая прогрессия определяется рекуррентным соотношением
Например, последовательность нечётных натуральных чисел
является арифметической прогрессией, так как любой её член отличается от предыдущего на 2.
Общий член арифметической прогрессии задаётся формулой
Например, последовательность образует арифметическую прогрессию с разностью и первым членом Поэтому её общий член может быть задан соотношением
Пример 1. Найти одиннадцатый член арифметической прогрессии, если её первый член а разность
Решение. По формуле для общего члена арифметической прогрессии имеем
Теорема. Последовательность тогда и только тогда является арифметической прогрессией, когда каждый её член, начиная со второго, равен полусумме предыдущего и последующего членов:
Доказательство. По определению арифметической прогрессии для всех имеем
Отсюда
то есть
Сумма первых n членов арифметической прогрессии
В качестве примера найдём сумму всех натуральных чисел от 1 до 100, то есть вычислим сумму
Решение. Можно сидеть и долго складывать все числа по порядку. Но есть более простой способ. Запишем сумму этих чисел, а под ней — ту же сумму, но в обратной последовательности:
Теперь почленно сложим эти суммы:
Отсюда
По легенде, школьный учитель математики, надеясь надолго занять детей, предложил им сосчитать эту сумму. Среди тех детей был будущий великий математик Карл Гаусс. Юный Гаусс быстро заметил, что попарные суммы членов с противоположных концов равны: и т.д, и уже через несколько минут подошёл к учителю с ответом:
Этим же приёмом удобно воспользоваться и при вычислении суммы первых членов арифметической прогрессии, если заметить, что
Действительно,
Сумма первых n членов арифметической прогресиии
равна полусумме первого и n-ного её членов, умноженной на число членов, то есть
Доказательство. Запишем сумму сначала в прямом порядке, а затем — в обратном:
Сложим почленно эти два равенства и воспользуемся тем, что :
Отсюда находим
umath.ru
Арифметическая прогрессия. Сумма арифметической погрессии
Первую часть статьи об арифметической прогрессии смотрим здесь.
Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100.
Юный Гаусс (10 лет) мгновенно получил результат: 5050.
1+2+3+4+5+5+…+97+98+99+100=?
А как бы считали вы?
+ показать
Первое и последнее слагаемые суммы дают 101, также как и второе и предпоследнее слагаемые и т.д. Всего таких пар будет 50. Вот и все!
Вот по такому же принципу мы и будем считать сумму n-первых членов арифметической прогрессии.
Пример.
Найдем сумму двадцати первых членов арифметической прогрессии
-9, -6, -3, 0, 3, …
Решение:
Мы пока не знакомы с формулой суммы n-первых членов арифметической прогрессии, давайте будем следовать тому же принципу, что и при вычислении суммы натуральных чисел от 1 до 100.
Найдем по формуле n-го члена арифметической прогрессии:
, где – разность арифметической прогрессии.
Сумма чисел из ряда -9, -6, -3, 0, 3, …48 состоит из 10 одинаковых слагаемых, равных 39.
Значит, сумма указанных чисел окажется равной 390.
Ответ: 390.
Сумма n первых членов арифметической прогрессии
Сумма первых членов арифметической прогрессии может быть найдена по формулам
1)
2) ,
где — первый член прогрессии, — член с номером , — количество суммируемых членов.
(Вторая формула – результат подстановки формулы в первую формулу).
Примеры
Пример 1.
Арифметическая прогрессия задана формулой
Найдите сумму первых десяти членов прогрессии.
Решение: + показать
Пример 2.
Найдите сумму натуральных четных чисел, не превосходящих 40.
Решение: + показать Перед нами арифметическая прогрессия: 2; 4; 6; … 38; 40. Воспользуемся формулой : Ответ: 420.
Пример 3.
Сколько последовательных натуральных чисел, начиная с 1, нужно сложить, чтобы их сумма была равна 153?
Решение: + показать Шаг () равен 1; Обращаемся к формуле : Поскольку мы работаем с натуральными , то Ответ: 17.
Пример 4.
Арифметическая прогрессия задана формулой
Найдите сумму членов данной прогрессии с 5-го по 16 включительно.
Решение: + показать Найдем первые два члена прогрессии и разность прогрессии: Последовательность чисел арифметической прогрессии, начиная с 5-го (по 16), – также арифметическая прогрессия. Поэтому обозначим и т.д., будем считать сумму двенадцати первых членов арифметической прогрессии {} по формуле :
Ответ: 606.
Пример 5.
Найдите сумму двузначных натуральных чисел, не кратных 4.
Решение: + показать Двузначные числа: 10; 11; 12; 13; … 97; 98; 99. Если вычеркнуть в ряду числа, кратные 4, то оставшиеся числа не будут собою образовывать арифметическую прогрессию, а значит, их сумму мы не сможем посчитать по указанным выше формулам. Мы поступим так: 1) вычислим сумму всех двузначных чисел; 2) вычислим сумму всех двузначных чисел , кратных 4, то есть 12+16+…+96; 3) из суммы вычтем сумму ; Итак, Как узнать количество двузначных чисел, кратных 4? Обозначим порядковый номер числа 96 в ряду 12, 16, … 96 за . Сам ряд, конечно же, образует арифметическую прогрессию (). Найдем . Тогда Итак, Ответ: 3717.
Вы можете пойти тест по теме «Сумма арифметической прогрессии».
egemaximum.ru
Арифметическая прогрессия на примерах
Арифметической прогрессией называют последовательность чисел (членов прогрессии )
в которой каждый последующий член отличается от предыдущего на сталое слагаемое, которое еще называют шагом или разницей прогрессии.
Таким образом, задавая шаг прогрессии и ее первый член можно найти любой ее элемент по формуле
1) Каждый член арифметической прогрессии, начиная со второго номера является средним арифметическим от предыдущего и следующего члена прогрессии
Обратное утверждение также верно. Если среднее арифметическое соседних нечетных (четных) членов прогрессии равно члену, который стоит между ними, то данная последовательность чисел является арифметической прогрессией . По этим утверждением очень просто проверить любую последовательность.
Также по свойству арифметической прогрессии, приведенную выше формулу можно обобщить до следующей
В этом легко убедиться, если расписать слагаемые справа от знака равенства
Ее часто применяют на практике для упрощения вычислений в задачах.
2) Сумма n первых членов арифметической прогрессии вычисляется по формуле
Запомните хорошо формулу суммы арифметической прогрессии, она незаменима при вычислениях и довольно часто встречается в простых жизненных ситуациях.
3) Если нужно найти не всю сумму, а часть последовательности начиная с k-го ее члена, то в Вам пригодится следующая формула суммы
4) Практический интерес представляет отыскание суммы n членов арифметической прогрессии начиная с k-го номера . Для этого используйте формулу
На этом теоретический материал заканчивается и переходим к решению распространенных на практике задач.
Пример 1. Найти сороковой член арифметической прогрессии 4;7;…
Решение:
Согласно условию имеем
Определим шаг прогрессии
По известной формуле находим сороковой член прогрессии
Пример2. Арифметическая прогрессия задана третьим и седьмым ее членом . Найти первый член прогрессии и сумму десяти.
Решение:
Распишем заданные элементы прогрессии по формулам
От второго уравнения вычтем первое, в результате найдем шаг прогрессии
Найденное значение подставляем в любое из уравнений для отыскания первого члена арифметической прогрессии
Вычисляем сумму первых десяти членов прогрессии
Не применяя сложных вычислений ми нашли все искомые величины.
Пример 3. Арифметическую прогрессию задано знаменателем и одним из ее членов . Найти первый член прогрессии, сумму 50 ее членов начиная с 50 и сумму 100 первых.
Решение:
Запишем формулу сотого элемента прогрессии
и найдем первый
На основе первого находим 50 член прогрессии
Находим сумму части прогрессии
и сумму первых 100
Сумма прогрессии равна 250.
Пример 4.
Найти число членов арифметической прогрессии, если:
а3-а1=8, а2+а4=14, Sn=111.
Решение:
Запишем уравнения через первый член и шаг прогрессии и определим их
Полученные значения подставляем в формулу суммы для определения количества членов в сумме
Выполняем упрощения
и решаем квадратное уравнение
Из найденных двух значений условии задачи подходит только число 8 . Таким образом сумма первых восьми членов прогрессии составляет 111.
Пример 5.
Решить уравнение
1+3+5+…+х=307.
Решение: Данное уравнение является суммой арифметической прогрессии. Выпишем первый ее член и найдем разницу прогрессии
Найденные величины подставим в формулу суммы прогрессии для отыскания числа слагаемых
Как и в предыдущем задании, выполним упрощения и решим квадратное уравнение
Выбираем более логичное из двух значений . Имеем, что сумма 18 членов прогрессии с заданными величинами а1=1, d=2 равна Sn=307.
На этом знакомство с арифметической прогрессией только начинается. В книгах вы найдете много подобных задач, методика решений которых не была рассмотрена . Приведенного материала должно хватить Вам с головой, чтобы разобраться и решить задачи самостоятельно. Если же нет то обращайтесь и мы Вам поможем с вычислениями.
Похожие материалы:
yukhym.com
Арифметическая прогрессия | Формулы с примерами
Определение
Арифметическая прогрессия — это числовая последовательность (an), в которой для любого натурального n
d — разность арифметической прогрессии (заданное число).
ПримерДано | Арифметическая прогрессия | |
1. | a1 = 2; d = 3 | 2; 5; 8; 11; 14; 17; … |
2. | a1 = 11; d = -4,8 | 11; 6,2; 1,4; -3,4; -8,2; … |
Если d > 0, то прогрессия возрастающая.
Если d , то прогрессия убывающая.
Формула общего (n-го) члена арифметической прогрессии: Формулы
Формулы суммы Sn n первых членов арифметической прогрессии.
Где: S1 = a1; Sn = a1 + a2 + … + an.
Пример решенияa1 = 3,9; d = -1,1. Найти a80 и сумму S100.
a80 = a1 + 79d = — 83.
S100 = 2a1 + 99d2 • 100 = -5055.
СвойствоХарактеристическое свойство.
formula-xyz.ru
Арифметическая прогрессия, формулы и примеры
Основные формулы арифметической прогрессии
Число называется разностью арифметической прогрессии. Любой член арифметической прогрессии можно найти по формуле:
Сумму первых членов арифметической прогрессии можно посчитать, используя формулы:
или
Количество членов арифметической прогрессии вычисляется по формуле:
Примеры решения задач
Понравился сайт? Расскажи друзьям! | |||
ru.solverbook.com
все формулы арифметической прогрессии | математика-повторение
Записи с меткой «все формулы арифметической прогрессии»
Числовую последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же для данной последовательности числом, называют арифметической прогрессией. Число, которое каждый раз прибавляют к предыдущему числу, называется
Так, числовая последовательность а1; а2; а3; а4; а5; … аn будет являться арифметической прогрессией, если а2 = а1 + d;
а3 = а2 + d;
a4 = a3 + d;
a5 = a4 + d;
………….
an = an-1 + d
Говорят, что дана арифметическая прогрессия с общим членом аn. Записывают: дана арифметическая прогрессия {an}.
Арифметическая прогрессия считается определенной, если известны ее первый член a1 и разность d.
Примеры арифметической прогрессии
Пример 1. 1; 3; 5; 7; 9;… Здесь а1 = 1; d = 2.
Пример 2. 8; 5; 2; -1; -4; -7; -10;… Здесь а1 = 8; d =-3.
Пример 3. -16; -12; -8; -4;… Здесь а1 = -16; d = 4.
Заметим, что каждый член прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов.
В 1 примере второй член 3 =(1+5):2 ; т.е. а2 = (а1+а3):2; третий член 5 =(3+7):2;
т. е. а3 = (а2+а4):2.
Значит, справедлива формула:
Но, на самом деле, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому не только соседних с ним членов, но и
Обратимся примеру 2. Число -1 является четвертым членом арифметической прогрессии и одинаково отстоит от первого и седьмого членов (а1 = 8, а7 = -10).
По формуле (**) имеем:
Выведем формулу n- го члена арифметической прогрессии.
Итак, второй член арифметической прогрессии мы получим, если к первому прибавим разность d; третий член получим, если ко второму прибавим разность d или к первому члену прибавим две разности d; четвертый член получим, если к третьему прибавим разность d или к первому прибавим три разности d и так далее.
Вы уже догадались: а2 = а1 + d;
a3
= a2 + d = a1 + 2d;a4 = a3 + d = a1 + 3d;
…………………….
an = an-1 + d = a1 + (n-1) d.
Полученную формулу an = a1 + (n-1)d (***)
называют формулой n-го члена арифметической прогрессии.
Теперь поговорим о том, как найти сумму первых n членов арифметической прогрессии. Обозначим эту сумму через Sn.
От перестановки мест слагаемых значение суммы не изменится, поэтому ее можно записать двумя способами.
Sn = a1 + a2 + a3 + a4 + … + an-3 + an-2 + an-1+ an и
Sn = an + an-1 + an-2 + an-3 + ……+ a4 + a3 + a2 + a1
Сложим почленно эти два равенства:
2Sn = (a1 + an) + (a2 + an-1) + (a3 + an-2) + (a4 + an-3) + …
Значения в скобках равны между собой, так как являются суммами равноотстоящих членов ряда, значит, можно записать: 2Sn = n· (a1 + an).
Получаем формулу суммы первых n членов арифметической прогрессии.
(****)
Если заменим аn значением а1 + (n-1) d по формуле (***), то получим еще одну формулу для суммы первых n членов арифметической прогрессии.
(*****)
www.mathematics-repetition.com
Внеклассный урок — Арифметическая прогрессия
Арифметическая прогрессия
Прогрессия – это определенная последовательность чисел.
Последовательность обозначается так: (an)
Числа, образующие последовательность, называют членами последовательности.
Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена (a1, a2, a3 и т.д.- читается так: «а первое», «а второе», «а третье» и т.д.).
Последовательность может быть бесконечной или конечной.
Понятие арифметической прогрессии.
Арифметическая прогрессия – это такая последовательность чисел, которая получается в результате сложения каждого последующего члена с одним и тем же числом. |
Пример:
Возьмем последовательность чисел 3; 10; 17; 24; 31.
Здесь каждое последующее число на 7 больше предыдущего. То есть последовательность получилась в результате прибавления одного и того же числа 7 к каждому последующему члену. Это и есть арифметическая прогрессия:
3+7=10
10+7=17
17+7=24
24+7=31
Формула арифметической прогрессии.
Любая арифметическая прогрессия может быть задана формулой: an = kn + b, где k и b – некоторые числа. И наоборот: если последовательность задана подобной формулой, то эта последовательность точно является арифметической прогрессией. |
Пример: формула an = 8n – 2 является формулой арифметической прогрессии, так как она задана формулой типа an = kn + b. В ней k = 8, b = –2.
Разность арифметической прогрессии.
Разность арифметической прогрессии – это разность между последующим и предыдущим членами прогрессии. Ее обычно обозначают буквой d. |
Пример:
Вернемся к нашей прогрессии 3; 10; 17; 24; 31. В ней разность между второй и первой, третьей и второй и т.д. членами равна 7. Число 7 и является разностью данной арифметической прогрессии.
Свойства арифметической прогрессии.
1) Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. 2) Верно и обратное утверждение: если в последовательности чисел каждый член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов, то эта последовательность является арифметической прогрессией. |
В нашем примере второй член равен средней арифметической первого и третьего членов:
3 + 17
——— = 10.
2
Точно так же третий член равен средней арифметической второго и четвертого членов и т.д.
Как найти определенный член арифметической прогрессии.
Чтобы найти n-й член арифметической прогрессии, следует применить формулу: an = a1 + d(n – 1) |
Пример:
Возьмем некую арифметическую прогрессию, в которой первый член равен 3, а разность арифметической прогрессии составляет 4. Надо найти 45-й член этой прогрессии.
Дано:
b1 = 3
d = 4
n = 45
———
b45 — ?
Решение.
Применим формулу bn = b1 + d(n – 1):
b45 = 3 + 4(45 – 1) = 3 + 4 · 44 = 3 + 176 = 179.
Ответ: 45-й член заданной арифметической прогрессии – число 179.
Как найти сумму первых n членов арифметической прогрессии.
Сумму любого количества первых членов арифметической прогрессии можно найти
(a1 + an) n Если заданы первый член и разность арифметической прогрессии, то удобно пользоваться другой формулой:
2a1 + d(n – 1) |
Пример 1: Найдем сумму первых ста членов арифметической прогрессии 1+2+3+4+5 и т.д.+100.
Дано:
a1 = 1
n = 100
an = 100
————
S100 — ?
Решение:
(1 + 100) · 100 101 · 100
S100 = ——————— = ————— = 5050
2 2
Ответ: Сумма первых ста членов заданной арифметической прогрессии равна 5050.
Пример 2: Найдем сумму первых двадцати членов арифметической прогрессии, в которой первый член равен 5, разность арифметической прогрессии составляет 3.
Дано:
a1 = 5
d = 3
————
S20 — ?
Решение:
1) Найдем сначала двадцатый член по уже известной нам формуле an = a1 + d(n – 1):
a20 = 5 + 3 (20 – 1) = 5 + 3 · 19 = 62.
2) Теперь уже легко решить нашу задачу.
По формуле 1:
(5 + 62) · 20
S20 = ——————— = 670
2
По формуле 2:
2 · 5 + 3 · (20 – 1)
S20 = ————————— · 20 = 670
2
Ответ: Сумма первых двадцати членов заданной арифметической прогрессии равна 670.
raal100.narod.ru