Формула u физика – Все главные формулы по физике — Физика — Теория, тесты, формулы и задачи

Содержание

ФОРМУЛЫ по физике

p=Fвнешt=mV

A=Fscos

A={S под граф. Fs(s)}

P=A/t=F­Vcpcos

=Aпол/Aзатр= Pпол/Pзатр

Ek=mV2/2

Ek=A

Eп=mgh

[Пружина] Eп=kx2/2

E=Ek+Eп=const

E=E2-E1=Aвнеш+Aтр

АБС.УПР.УДАР

m11-m2V2=-m1U1+mU

Ek1+Ek2[до]=Ek1+Ek2[после]

Если m1=m2, то V1=U2 V2=U1

АБС.НЕУПР.УДАР

m

1V­1-m2V2=(m1+m2)U[m1>m2]

[до] Ek1+Ek2=Ek1

[после] Ek2=0.5(m11-m2V2)2/(m1+m2)

Q= Ek1-Ek2

РАВН.ВРАЩЕНИЕ

an=V2/R=2R=(2/T)2R=(2)2R

ТЯГОТЕНИЕ

G=6.67e-11м3/кгс

G=9.81м/с2

F=Gm1m2/r2

[внутри З] g=g0r/R3

[сверху] g=g0R32/(R3+h)2

g0=GMпл/Rпл2

V1косм={g0R}

V2косм=2’V1

СТОЯЧИЕ МОМЕНТЫ

M=Fd

[в 1 точке] M=0

[к 1 телу] F=0

ВОДИЧКА

pатм=1e5Па

p=Fn/s

p=pатм+gh

pстенки=0.5pдна.ср

[пресс] F2=F1S2/S1

[сообщ. cос.] p1=p2

FA=жgVпогр.части

КОЛЕБАНИЯ

0=2

x=Acos(0t+0)

V=x|; a=V|

V0=A0; a0=A02

Ep=kx2/2

E=kA2/2=m02A2/2

МАЯТНИК

T=2/0=2{L/g}

[при движении] T=2{L/|g-a0|}

[если есть F] T=2{L/|g+F/m|}

ПРУЖИНКА

T=2/0=2{m/k}

ГАЗЫ

NA=6.02e23моль

-1

[мол. Объем; н.у.] V0=22.4e-3 м3/моль

[больцмана] k=1.38e-23Дж/К

[универ. газ. const] R=kNA=8.31Дж/мольК

m1мол=/NA

N=NA/m=NA

=m/

[конц.] n=N/V=NA/

[ср. скорость] Vкв={3kT/m1}={3RT/}

tноль=2730C=1K

p=nkT

p=nm1Vкв2/3=2n/3

[E поступ. движ. мол.] =3kT/2=m1Vкв2/2

(p1+p2…)V=(m1/1+m2/2…)RT

ТЕПЛОЁМК.ГАЗОВ

[t‘ёмкость] C=Q/T

[уд.t’ёмк

.] c=C/m

[мол.t’ёмк] C=C/=c

ЗАРЯДЫ

qe=-qp=1.6e-19Кл

me=9.11e-31кг

mp=1.67e-27кг

0=8.85e-12ф/м

k=(40)-1=9e9м/ф

F=kq1q2/r2

[пов. плотн. q] =q/t;Кл/м2

[напр.] E=F/q

[1заряд] E=kq/r2

[плоскость] E=0.5/0

[внутри сферы] E=0

[вне сферы] E=kq/r2

ПОТЕНЦИЯ

[1заряд] =kq/r

[внутри сферы] =kq/R

[вне сферы] =kq/r

U=1-2=A12/q

[А поля] A=qU

E=U/d

Fk=qE

КОНДЕНСАТОР

C=q/;ф

C=40R

E=/(0)

=U=Ed=qd/(0S)=d/(0)

[плоский] C=0S/d

[послед] C-1=;q=const;U=

[парал] C=;q=;U=const

[провод] W=0.5q=0.5C2=0.5q2/C

[-||-] W=0.5qU=0.5CU2=0.5q2/C

ЗАКОН ОМА

I=q/t

I=[S под I(t)]

[плотность] j=I/sпров=|qe|nV

I=U/R

R=элl/s

[послед] R=;I=const;U=

[парал] R-1=-1;I=;U=const

I=IAmax+Iш

IAmaxRA=IшRш

[расширь шкалу

A в n] Rш=RA/(n-1)

UVmaxRдоб=UдобRV

[расширь шкалу V в n] Rдоб=RV(n-1)

=Aст/q0

I=/(R+r)

[ток течет +]

ТОК И ТЕПЛО

A=qU=iUt

Q=A=I2Rt=U2t/r

P=A/t=IU=2R/(R+r)

[полная] P0=I2(R+r)

[полезная] Pп=I2R=IU=e2R/(R+r)2

=Pп/P0=R/(R+r)

[при R=r;=50%] Pп.max=2/(4r)

ВЫДЕЛЕНИЯ

F=9.65e4Кл.моль

m=kq=kIt

[n-вал.] k=/(Fn)

ПОЛЯ МАГНИТОВ

[-магн.прониц.среды]

[H-напр.магн.поля]

0=4e-7Гн/м

B=0H

|FA|=ILBsin(I^B)

|FЛ|=qVBsin(V^B)

[еслиVB,част.дв.по окр.] qVB=mV2/2; T=2R/V=2m/(qB)

[еслиV||B,поле не действ.]

Магн.поток

[N-колво витков] =NBSsin(B^S)

инд=-(2-1)/t=-|

Iинд=инд/R=||/(Rt)

q=It=||/R

=инд=BVLsin(V^B)

ДВИЖ.ПРОВОДНИКА

инд=-BVLsin(B^V)

сам=LI

[если L=const] сам=-/t=-LI/t

W=0.5I=0.5LI2=0.52/L

КОНТУР

Umax=qmax/C

[t=0] W=CUmax2/2=0.5qmax2/C

[t=T/4] W=LImax2/2

[t=T/2] q=qmax;U=Umax;I=0

T=2{LC}

=T-1

q=qmaxsin(t+0)

U=q/C=Umaxsin(t+0)

I=q|

[с-скор.света] =cT=c/

ПЕРЕМЕННЫЙ ТОК

=maxsin(t+0)

T=2/

[реактивные] XL=L;XC=(C)-1

[общее] Z={R2+(XL-XC)2}

Iэфф=I0/2

Uэфф=U0/2

ОПТИКА

c=3e8м/с

[Vсвета в вещ-ве] V=c/n

nпадsin(пад)=nпрелsin(прел)

[предел,луч скользит] sinпр=nпрел/nпад

[опт.сила,дптр] D=F-1

[d-предмлинза]

[-изобрлинза]

[F-фок.расст]

±d-1±-1=±F-1

[лин.увел]|/d|=A1B1/AB

Dобщ=

studfiles.net

Формулы по физике

Движение материальной точки в пространстве можно описать векторным уравнением r = r(t), где r– радиус – вектор, проведенный от начала координат до материальной точки, или с помощью проекций вектора r на координатные оси: rx= x, ry = y, rz = z, где x, y, z координаты материальной точки.
При этом записывают три скалярных уравнения:
x = x(t),
y = y(t),
z = z(t)
Δr= r2 – r1 – перемещение точки. Движение точки может происходить вдоль любой кривой, называемой траекторией. Длина траектории представляет собой путь и является скалярной величиной. Vcр. = Δs/Δt — средняя скорость. Производную радиуса-вектора по времени называют скоростью материальной точки: V V = Δr/Δt
Отношение изменения скорости ΔV = V2 — V1к промежутку времени Δt за который это изменение произошло, называется ускорением a= Δv/Δt
При равномерном прямолинейном движении скорость V= const. Если точка движется из начала координат, то r = s = vt
При равнопеременном движении ускорение а = const и скорость точки v = v0 + at
В случае движения в плоскости XY используют уравнения движения в проекциях на оси координат vx = v0x + axt,
vy = v0y + ayt
Уравнение координаты равномерного движения x = x0+vt
Равноускоренное движение a = v -v0/t
x = x0+v0t+at2/2
S=v0t+at2/2
S=v2-v02/2a
Движение точки по окружности v = s/t = 2πRN/t = 2πRn = 2πR/T
a =v2/R = 4π2n2R = 4π2R/T2
n = N/t; T = t/N = 1/n
Линейная скорость равномерного вращения v = s/t = φ/t R = ω R
где ω = φ/t — угловая скорость. Следовательно,
ω = 2πn = 2π/T
φ = ωt = 2πnt = 2πN = 2πt/T
2 закон Ньютона а =∑F/m

FΔt = mv — mv0 (2 закон через импульс силы FΔt)

Закон сохранения импульса   ∑ mivi= const
mv1+mv2=mv1’=+mv2′
Закон всемирного тяготения  F=Gm1m2/R2
G=6,67 10-11Нм2/кг2
g=GM/R2
gh=GM/(R+h)2
1 космическая скорость   v = √g0R
Закон Гука  Fупр= — kx
Сила трения  Fтр.= μN
Механическая работа  A = Fs cos α
Мощность  N = A/t
Энергия   Eк=mv2/2
Eп=mgh
E пружины
E=kx2/2
Теорема о кинетической энергии  A = mv2/2– mv0 2/2
Теорема о потенциальной энергии  A = — (Ep1 — Ep2 )
Закон сохранения энергии Ek + Ep = соnst
 Уравнение Менделеева—Клапейрона pV=μ/mRT (R=8,31Дж/моль •К)
 Закон Бойля-Мариотта
Т — const, pV = const
 Закон Гей-Люссака p= const, V/T= const
 Закон Шарля V= const, P/T= const
 Закон Дальтона P=P1+P2
1 закон термодинамики P0= 105Па;
T0 = 273 °K;
V0 = 22,4 л
Q=ΔU+A
Изменение внутренней энергии ΔU=3/2 μ/mRT
Уравнение теплового баланса
ΔQ=cm(t2-t1) ( Δt=ΔT)
Тепловая машина Карно
η=T1-T2/T1
КПД тепловой машины
η=Q1-Q2/Q1=Q1/A
Влажность воздуха
φ=p/pн
Процесс плавления
Q=λm
Процесс парообразования
Q=rm

shalash.dp.ua

Все формулы по физике 11 класса

Формула расчета силы Ампера FA = B I L sinα Закон Ампера: сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником. FA – сила Ампера, [Н]
В – магнитная индукция, [Тл]
I – сила тока, [А]
L – длина проводника, [м]
Формула расчета силы Лоренца Fл= q B υ sinα Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле. Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы. Fл – сила Лоренца, [Н]
q – заряд, [Кл]
В – магнитная индукция, [Тл]
υ – скорость движения заряда, [м/с]
Формула радиуса движения частицы в магнитном поле r= mυ/qB r – радиус окружности, по которой движется частица в магнитном поле, [м]
m – масса частицы, [кг]
q – заряд, [Кл]
В – магнитная индукция, [Тл]
υ – скорость движения заряда, [м/с]
Формула для вычисления магнитного потока Ф = B S cosα Ф – магнитный поток, [Вб]
В – магнитная индукция, [Тл]
S – площадь контура, [м2]
Формула для вычисления величины заряда q = It Заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику. q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Закон Ома для участка цепи I = U/R Закон Ома — сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Формула для вычисления удельного сопротивления проводника R = ρ L/S
ρ = R S/L
Удельное сопротивление – величина, характеризующая электрические свойства вещества, из которого изготовлен проводник. ρ – удельное сопротивление вещества, [Ом·мм2/м]
R – сопротивление, [Ом]
S – площадь поперечного сечения проводника, [ммБ2]
L – длина проводника, [м]
Законы последовательного соединения проводников I = I1 = I2
U = U1 + U2
Rобщ = R1 + R2
Последовательным соединением называется соединение, когда элементы идут друг за другом. I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Законы параллельного соединения проводников U = U1 = U2
I = I1 + I2
1/Rобщ =1/R1 +1/R2
Параллельным соединением проводников называется такое соединение, при котором начала и концы проводников соединяются вместе. I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Формула для вычисления величины заряда. q = It Заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику. q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Формула для нахождения работы электрического тока. A = Uq
A = UIt
Работа – это величина, которая характеризует превращение энергии из одного вида в другой, т.е. показывает, как энергия электрического тока, будет превращаться в другие виды энергии – механическую, тепловую и т. д. Работа электрического поля – это произведение электрического напряжения на заряд, протекающий по проводнику. Работа, совершаемая для перемещения электрического заряда в электрическом поле. A – работа электрического тока, [Дж]
U – напряжение на концах участка, [В]
q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Формула электрической мощности P = A/t
P = UI
P = U2/R
Мощность – работа, выполненная в единицу времени. P – электрическая мощность, [Вт]
A – работа электрического тока, [Дж]
t – время, [c]
U – напряжение на концах участка, [В]
I – сила тока, [А]
R – сопротивление, [Ом]
Формула закона Джоуля-Ленца Q=I2Rt Закон Джоуля-Ленца при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику. Q – количество теплоты, [Дж]
I – сила тока, [А];
t – время, [с].
R – сопротивление, [Ом].
ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ
Закон отражения света Луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, при этом угол падения луча равен углу отражения луча.
Закон преломления sinα/sinγ = n2/n1 При увеличении угла падения увеличивается и угол преломления, то есть при угле падения, близком к 90°, преломлённый луч практически исчезает, а вся энергия падающего луча переходит в энергию отражённого. n – показатель преломления одного вещества относительно другого
Формула вычисления абсолютного показателя преломления вещества n = c/v Абсолютный показатель преломления вещества – величина, равная отношению скорости света в вакууме к скорости света в данной среде. n – абсолютный показатель преломления вещества
c – скорость света в вакууме, [м/с]
v – скорость света в данной среде, [м/с]
Закон Снеллиуса sinα/sinγ = v1/v2=n Закон Снеллиуса (закон преломления света): отношение синуса угла падения к синусу угла преломления есть величина постоянная.
Показатель преломления среды sinα/sinγ = n Отношение синуса угла падения к синусу угла преломления есть величина постоянная. n – показатель преломления среды
Преломляющий угол призмы δ = α(n – 1) δ – угол отклонения
α – угол падения
n – показатель преломления среды
Линейное увеличение оптической системы Г = H/h Г – линейное увеличение оптической системы
H – размер изображения, [м]
h – размер предмета, [м]
Формула оптической силы линзы D = 1/F Оптическая сила линзы – способность линзы преломлять лучи. D – оптическая сила линзы, [дптр]
F – фокусное расстояние линзы, [м]
Формула тонкой линзы 1/F = 1/d+1/f F – фокусное расстояние линзы, [м]
d – расстояние от предмета до линзы, [м]
f – расстояние от линзы до изображения, [м]
Максимальная результирующая интенсивность Δt = mT Δt – максимальная результирующая интенсивность
Т – период колебании, [с]
Минимальная результирующая интенсивность Δt = (2m + 1)T/2 Δt – минимальная результирующая интенсивность
Т – период колебании, [с]
Геометрическая разность хода интерферирующих волн Δ = mλ Δ – геометрическая разность хода интерферирующих волн
λ – длина волны, [м]
Условие интерференционного минимума Δ = (2m + 1)λ/2 λ – длина волны, [м]
Условие дифракционного минимума на щели Asinα = m λ A – ширина щели, [м]
λ – длина волны, [м]
Условие главных максимумов при дифракции dsinα = m λ d – период решетки
λ – длина волны, [м]
Энергия кванта излучения E = hϑ Е – энергия кванта излучения, [Дж]
ϑ – частота излучения
h – постоянная Планка
Закон смещения Вина λT = b b – постоянная Вина
λ – длина волны, [м]
Т – температура черного тела
Закон Стефана-Больцмана R = ϭT4 ϭ – постоянная Стефана-Больцмана
Т – абсолютная температура черного тела
R – интегральная светимость абсолютно черного тела
Уравнение Эйнштейна для фотоэффекта А – работа выхода, [Дж]
m – масса тела, [кг]
v – скорость движения тела, [м/с]
ϑ – частота излучения
h – постоянная Планка
ФИЗИКА ВЫСОКИХ ЭНЕРГИИ
Массовое число M = Z + N M – массовое число
Z – число протонов (электронов), зарядовое число
N – число нейтронов
Формула массы ядра МЯ = МА – Z me MЯ – масса ядра, [кг]
МА – масса изотопа , [кг]
me – масса электрона, [кг]
Формула дефекта масс ∆m = Zmp+ Nmn – MЯ Дефект масс – разность между суммой масс покоя нуклонов, составляющих ядро данного нуклида, и массой покоя атомного ядра этого нуклида. ∆m – дефект масс, [кг]
mp – масса протона, [кг]
mn – масса нейтрона, [кг]
Формула энергии связи Есвязи = ∆m c2 Энергия связи ядра – минимальная энергия, необходимая для того, чтобы разделить ядро на составляющие его нуклоны (протоны и нейтроны). Есвязи – энергия связи, [Дж]
m – масса, [кг]
с = 3·108м/с – скорость света
Закон радиоактивного распада N = N02 –t/T1/2 N0 – первоначальное количество ядер
N – конечное количество ядер
T – период полураспада, [c]
t – время, [c]
Доза поглощенного излучения D = E/m D – доза поглощенного излучения, [Гр]
E – энергия излучения, [Дж]
m – масса тела, [кг]
Эквивалентная доза поглощенного излучения H = Dk H – эквивалентная доза поглощенного излучения, [Зв]
D – доза поглощенного излучения, [Гр]
k – коэффициент качества

zakon-oma.ru

Основные формулы по физике — Физика — Теория, тесты, формулы и задачи

Знание формул по физике является основой для успешной подготовки и сдачи различных экзаменов, в том числе и ЦТ или ЕГЭ по физике. Формулы по физике, которые надежно хранятся в памяти ученика — это основной инструмент, которым он должен оперировать при решении физических задач. На этой странице сайта представлены основные формулы по школьной физике в двух частях. В первой части Вы найдете самые важные физические формулы, а во второй — дополнительный набор полезных формул по физике.

 

Оглавление:

 

Основные формулы по школьной физике (Часть I)

К оглавлению…

 

Основные формулы по школьной физике (Часть II)

К оглавлению…

 

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

 

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (адрес электронной почты и ссылки в социальных сетях здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

educon.by

ОСНОВНЫЕ ФОРМУЛЫ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ ВУЗОВ.. Физические основы механики.

3.3. ЯВЛЕНИЯ ПЕРЕНОСА В ГАЗАХ

ЯВЛЕНИЯ ПЕРЕНОСА В ГАЗАХ Средняя длина свободного пробега молекулы n, где d эффективное сечение молекулы, d эффективный диаметр молекулы, n концентрация молекул Среднее число соударений, испытываемое молекулой

Подробнее

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный минерально-сырьевой университет

Подробнее

Лектор Алешкевич В. А. Январь 2013

студентыфизики Лектор Алешкевич В. А. Январь 2013 Неизвестный Студент физфака Билет 1 1. Предмет механики. Пространство и время в механике Ньютона. Система координат и тело отсчета. Часы. Система отсчета.

Подробнее

Вопросы к экзамену по физике МЕХАНИКА

Вопросы к экзамену по физике МЕХАНИКА Поступательное движение 1. Кинематика поступательного движения. Материальная точка, система материальных точек. Системы отсчета. Векторный и координатный способы описания

Подробнее

Тема 5. Механические колебания и волны.

Тема 5. Механические колебания и волны. 5.1. Гармонические колебания и их характеристики Колебания процессы, отличающиеся той или иной степенью повторяемости. В зависимости от физической природы повторяющегося

Подробнее

ГП Содержание дисциплины

ГП Содержание дисциплины 1. Статика 1. Основные понятия и аксиомы статики. Эквивалентные преобразования систем сил. Момент силы относительно точки и оси. 2. Система сходящихся сил. Сложение двух параллельных

Подробнее

Физика колебаний и волн.

Физика колебаний и волн Гармонический осциллятор Определение и характеристики гармонического колебания Векторные диаграммы Комплексная форма гармонических колебаний 3 Примеры гармонических осцилляторов:

Подробнее

Основные положения термодинамики

Основные положения термодинамики (по учебнику А.В.Грачева и др. Физика: 10 класс) Термодинамической системой называют совокупность очень большого числа частиц (сравнимого с числом Авогадро N A 6 10 3 (моль)

Подробнее

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5)

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5) ЛЕКЦИЯ 4, (раздел 1) (лек 7 «КЛФ, ч1») Кинематика вращательного движения 1 Поступательное и вращательное движение В предыдущих лекциях мы познакомились с механикой материальной

Подробнее

Раздел 4. Колебания 1

Раздел 4. Колебания 1 Тема 1. Колебания без затухания. П.1. Периодический процесс. Гармонические колебания. Характеристики гармонических колебаний. П.2. Скорость и ускорение при гармонических колебаниях

Подробнее

ДИНАМИКА. Описание движения твердого тела

Л5 ДИНАМИКА Описание движения твердого тела 1 Прямолинейное движение Прямолинейным движением твердого тела будем называть такое движение системы материальных точек при котором скорости прямолинейного движения

Подробнее

Закон сохранения энергии

Закон сохранения энергии Работа и кинетическая энергия Работа силы Определения Работа силы F на малом перемещении r определяется как скалярное произведение векторов силы и перемещения: A F r Расписывая

Подробнее

КРАТКИЙ КУРС ФИЗИКИ Часть I

Министерство образования и науки Российской Федерации Рубцовский индустриальный институт (филиал) ФГБОУ ВПО «Алтайский государственный технический университет им. И.И. Ползунова» В.В. Борисовский КРАТКИЙ

Подробнее

ТЕПЛОЕМКОСТЬ ИДЕАЛЬНОГО ГАЗА

Тихомиров Ю.В. СБОРНИК контрольных вопросов и заданий с ответами для виртуального физпрактикума 4_0. ТЕПЛОЕМКОСТЬ ИДЕАЛЬНОГО ГАЗА Москва — 2011 1 ЗАДАНИЕ 1 Опишите модель «идеальный газ». ИДЕАЛЬНЫМ ГАЗОМ

Подробнее

Руководство к решению задач по физике

Т. И. Трофимова Руководство к решению задач по физике Учебное пособие для бакалавров 3е издание, исправленное и дополненное Допущено Министерством образования и науки Российской Федерации в качестве учебного

Подробнее

Распределения Больцмана и Максвелла

Министерство общего и профессионального образования Российской Федерации Ростовский государственный университет Методические указания по курсу общей физики Распределения Больцмана и Максвелла Ростов-на-Дону

Подробнее

Программа дисциплины

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное учреждение высшего профессионального образования «Казанский (Приволжский) федеральный университет» Институт

Подробнее

Theory Russian (Tajikistan)

Q1-1 Две задачи по механике (10 баллов) Прежде, чем приступить к решению задачи, прочитайте инструкцию. Часть A. Спрятанный диск (3,5 балла) Расмотрим твердый деревянный цилиндр радиуса r 1 и толщиной

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине «Прикладная механика» Направление подготовки бакалавров 00500.6 Лазерная техника и лазерные технологии 1. Перечень компетенций с указанием этапов (уровней) их формирования.

Подробнее

1.3. Работа и механическая энергия.

13 Работа и механическая энергия 131 Энергия как универсальная мера различных форм движения и взаимодействия 132 Работа Кинетическая энергия 133 Поле центральных сил 134 Консервативные и неконсервативные

Подробнее

ε =, (6.2) I M = r, (6.3)

Методические указания к выполнению лабораторной работы 1.4 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАЯТНИКА МАКСВЕЛЛА * * Аникин А.И. Механика: методические указания к выполнению лабораторных работ по физике. Архангельск:

Подробнее

docplayer.ru

Молекулярная физика — Основные формулы

1. Основы молекулярно-кинетической теории. Газовые законы
1.1 Количество вещества

m — масса;

μ — молярная масса вещества;

N — число молекул;

NA = 6,02·1023 моль-1 — число Авогадро

1.2 Основное уравнение молекулярно-кинетической теории идеального газа

p — давление идеального газа;

m — масса одной молекулы;

n = N/V — концентрация молекул;

V — объем газа;

N — число молекул;

— среднее значение квадрата скорости молекул.

1.3 Средняя квадратичная скорость молекул идеального газа

k = 1,38·10-23 Дж/К — постоянная Больцмана;

R = kNA = 8,31 Дж/(моль·К) — универсальная газовая постоянная;

T = t+273 — абсолютная температура;

t — температура по шкале Цельсия.

1.4 Средняя кинетическая энергия молекулы одноатомного газа

1.5 Давление идеального газа

n — концентрация молекул;

k — постоянная Больцмана;

T — абсолютная температура.

1.6 Закон Бойля-Мариотта

p — давление;

V — объем газа.

1.7 Закон Шарля

p0 — давление газа при 0 °С;

α = 1/273 °C-1 — температурный коэффициент давления.

1.8 Закон Гей-Люссака

V0 — объем газа при 0 °С.

1.9 Уравнение Менделеева-Клапейрона

1.10 Объединенный закон газового состояния (уравнение Клапейрона)

1.11 Закон Дальтона

pi — парциальное давление i-й компоненты смеси газов.

2. Основы термодинамики
2.1 Внутренняя энергия идеального одноатомного газа

ν — количество вещества;

R = 8,31 Дж/(моль·К) — универсальная газовая постоянная;

T — абсолютная температура.

2.2 Элементарная работа, совершаемая газом,

при изменении объема на бесконечно малую величину dV

p — давление газа.

При изменении объема от V1 до V2

2.3 Первый закон термодинамики

ΔQ — количество подведенной теплоты;

ΔA — работа, совершаемая веществом;

ΔU — изменение внутренней энергии вещества.

2.4 Теплоемкость идеального газа

ΔQ — количество переданной системе теплоты на участке процесса;

ΔT — изменение температуры на этом участке процесса.

fizikazadachi.ru

формулы физика

Средняя скорость движения

Уравнение скорости при ПРмД

Перемещение при ПРмД

Уравнение ПРмД

Сложение скоростей

Сложение перемещений

Определение ускорения

Средняя скорость при ПРуД

Уравнение скорости при ПРуД

Перемещение при ПРуД

Уравнение координаты при ПРуД

Путь за одну n-ю секунду при ПРуД

Движение по окружности

Связь между периодом и частотой

Угловая скорость по определению

Связь между угловой скоростью и частотой и периодом

Ускорение при движении по окружности (центростремительное)

Связь между линейной и угловой скоростями

Связь между ускорением и периодом

Динамика

Первый закон Ньютона

Второй закон Ньютона

Третий закон Ньютона

Закон Гука

Сила трения скольжения

Сила трения покоя

Сила трения скольжения на наклонной плоскости

Сила трения покоя на наклонной плоскости

Закон всемирного тяготения

Сила тяжести на поверхности Земли и на высоте Н

Ускорение свободного падения на поверхности Земли и на высоте Н

Первая космическая скорость

Скорость ИСЗ на высоте Н

Период обращения ИСЗ

Работа и мощность. Импульс, энергия. Законы сохранения

Импульс тела (по определению)

Cвязь между импульсом силы и изменением импульса тела

Закон сохранения импульса тел

Механическая работа (по опр.)

A = Fs cosα

Кинетическая энергия

Потенциальная энергия тела, поднятого над Землей

Ep = mgh

Потенциальная энергия упруго деформированного тела

Закон сохранения энергии в отсутствие трения

Ек1 + Ер1 = Ек2 + Ер2

Закон сохранения энергии при наличии трения

Ек1 + Ер1 = Ек2 + Ер2 +

Работа силы трения

Атр = — Fтрs

Мощность (по определению)

Мощность тела при равномерном движении (или мгновенная)

КПД

Статика

Первое условие равновесия

Вращающий момент силы

Второе условие равновесия

МКТ идеального газа

Количество вещества в молях

Число молекул в массе m

Молярная масса (масса моля)

Масса вещества

Масса одной молекулы

Плотность вещества

Связь между средней квадратичной скоростью и температурой

Связь между температурой Цельсия t и Кельвина T

T = t + 273

Связь между средней кинетической энергией и температурой

Концентрация молекул

Основное уравнение МКТ идеального газа

Давление (по определению)

Связь между давлением газа и средней кинетической энергией

Связь между давлением газа и T

Уравнение состояния идеального газа Менделеева-Клапейрона

Объединенный газовый закон Клапейрона

Закон Бойля-Мариотта (изотермич.)

Закон Гей-Люсака (изобарный)

Закон Шарля (изохорный)

Термодинамика

Внутренняя энергия одноатомного идеального газа

Работа газа при изобарном процессе

Первый закон термодинамики

A

Cвязь работы внешних сил над газом А и работой газа А′

Теплота изохорного процесса

Теплота изобарного процесса

A

Адиабатный процесс Q = 0

AA

КПД тепловых двигателей

()

КПД идеального теплового двигателя Карно

Количество теплоты при нагревании (охлаждении)

Количество теплоты при плавлении + (отвердевании -) при tпл

Количество теплоты при парообразовании + (конденсации -) при tкип

Количество теплоты при сгорании топлива

Уравнение теплового баланса

Абсолютная влажность воздуха

Относительная влажность воздуха

Способы изменения относительной влажности

Гидростатика

Вес тела погруженного в жидкость

Архимедова сила

Гидростатическое давление

Свойство сообщающихся сосудов

Гидравлический пресс – выигрыш в силе

Условие плавания тел

Электростатика

Электрический заряд

Закон сохранения суммы зарядов

Закон Кулона

Напряженность электрического поля (определение)

Напряженность поля, созданного точечным зарядом

Напряженность поля, созданного заряженным шаром

Принцип суперпозиции полей

Работа электрического поля по перемещению заряда

Потенциальная энергия однородного поля

Потенциал электрического поля (определение)

Потенциал однородного поля

Потенциал поля, созданного точечным зарядом

Электроемкость конденсатора

Электроемкость плоского конденсатора

Энергия заряженного конденсатора

Последовательное соединение конденсаторов

Параллельное соединение конденсаторов

Постоянный электрический ток

Сила тока (определение)

Зависимость силы тока от скорости движения зар. частиц

Закон Ома для участка цепи

Зависимость сопротивления проводника от его свойств

Зависимость уд. сопротивления проводника от температуры

Последовательное соединение проводников

Параллельное соединение проводников

ЭДС источника тока (определение)

Закон Ома для полной цепи

Ток короткого замыкания

Работа электрического тока

Мощность электрического тока

Закон Джоуля-Ленца

Закон электролиза Фарадея

F = 9,6∙104 Кл/моль

Магнетизм

Сила Ампера

Вращающий момент, действующий на рамку с током в магнитном поле

Сила Лоренца

Радиус окружности при движении заряженной частицы в магнитном поле

Период обращения заряженной частицы в магнитном поле

Магнитный поток

Индуктивность катушки

Энергия магнитного поля катушки с током

Электромагнетизм

ЭДС индукции на концах проводника при движении в магнитном поле

Закон электромагнитной индукции

ЭДС самоиндукции

Амплитудное значение ЭДС индукции переменного тока

Зависимость u(t) и i(t) в цепи переменного тока с активным сопротивлением

Средняя мощность в цепи переменного тока с активным сопротивлением

Емкостное сопротивление

Зависимость u(t) и i(t) в цепи с конденсатором

Индуктивное сопротивление

Зависимость u(t) и i(t) в цепи с катушкой индуктивности

Действующее значение силы тока и напряжения в цепи переменного тока

Полное сопротивление цепи переменного тока

Условие резонанса

Коэффициент трансформации трансформатора

Работа трансформатора с нагрузкой

КПД трансформатора

Свободные электромагнитные колебания

Уравнение колебаний заряда q(t)

Уравнение колебаний напряжения u(t) на конденсаторе

Уравнение колебаний силы тока i(t) на катушке

Закон сохранения энергии при свободных электрических колебаниях

Циклическая частота колебательного контура

Формула Томпсона

Механические колебания

Уравнение гармонических колебаний x(t)

;

Уравнение колебаний скорости

Уравнение колебаний ускорения

Циклическая частота

Циклическая частота колебаний груза на пружине собственная

Собственная круговая частота математического маятника

Период колебаний груза на пружине

Период колебаний математического мятника

Период колебаний маятника при движении с ускорениием вверх

Период колебаний маятника при движении с ускорением вниз

Признак гармонических колебаний

Закон сохранения энергии в колебательной системе

Геометрическая оптика

Закон отражения света

Закон преломления света

Полное внутреннее отражение

переход в воздух

Абсолютный показатель преломления света

Оптическая сила линзы

Увеличение, даваемое линзой

Формула тонкой собирающей линзы

Формула тонкой рассеивающей линзы

Оптическая сила системы линз

Волновая оптика

Длина волны

Условие интерференционного усиления волн (максимума)

Условие интерференционного ослабления волн (минимума)

Условие дифракционного максимума

Наибольший порядок спектра

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *