1 | Найти производную — d/dx | квадратный корень x | |
2 | Найти производную — d/dx | натуральный логарифм x | |
3 | Вычислить | интеграл натурального логарифма x по x | |
4 | Найти производную — d/dx | e^x | |
5 | Вычислить | интеграл e^(2x) относительно x | |
6 | Найти производную — d/dx | 1/x | |
7 | Найти производную — d/dx | x^2 | |
8 | Вычислить | интеграл e^(-x) относительно x | |
9 | Найти производную — d/dx | 1/(x^2) | |
10 | Найти производную — d/dx | sin(x)^2 | |
11 | Найти производную — d/dx | sec(x) | |
12 | Вычислить | интеграл e^x относительно x | |
13 | Вычислить | интеграл x^2 относительно x | |
14 | Вычислить | интеграл квадратного корня x по x | |
15 | Вычислить | натуральный логарифм 1 | |
16 | Вычислить | e^0 | |
17 | Вычислить | sin(0) | |
18 | Найти производную — d/dx | cos(x)^2 | |
19 | Вычислить | интеграл 1/x относительно x | |
20 | Вычислить | cos(0) | |
21 | Вычислить | интеграл sin(x)^2 относительно x | |
22 | Найти производную — d/dx | x^3 | |
23 | Найти производную — d/dx | sec(x)^2 | |
24 | Найти производную — d/dx | 1/(x^2) | |
25 | Вычислить | интеграл arcsin(x) относительно x | |
26 | Вычислить | интеграл cos(x)^2 относительно x | |
27 | Вычислить | интеграл sec(x)^2 относительно x | |
28 | Найти производную — d/dx | e^(x^2) | |
29 | Вычислить | интеграл в пределах от 0 до 1 кубического корня 1+7x по x | |
30 | Найти производную — d/dx | sin(2x) | |
31 | Вычислить | интеграл натурального логарифма x по x | |
32 | Найти производную — d/dx | tan(x)^2 | |
33 | Вычислить | интеграл e^(2x) относительно x | |
34 | Вычислить | интеграл 1/(x^2) относительно x | |
35 | Найти производную — d/dx | 2^x | |
36 | График | натуральный логарифм a | |
37 | Вычислить | e^1 | |
38 | Вычислить | интеграл 1/(x^2) относительно x | |
39 | Вычислить | натуральный логарифм 0 | |
40 | Найти производную — d/dx | cos(2x) | |
41 | Найти производную — d/dx | xe^x | |
42 | Вычислить | интеграл 1/x относительно x | |
43 | Вычислить | интеграл 2x относительно x | |
44 | Найти производную — d/dx | ( натуральный логарифм x)^2 | |
45 | Найти производную — d/dx | натуральный логарифм (x)^2 | |
46 | Найти производную — d/dx | 3x^2 | |
47 | Вычислить | натуральный логарифм 2 | |
48 | Вычислить | интеграл xe^(2x) относительно x | |
49 | Найти производную — d/dx | 2e^x | |
50 | Найти производную — d/dx | натуральный логарифм 2x | |
51 | Найти производную — d/dx | -sin(x) | |
52 | Вычислить | tan(0) | |
53 | Найти производную — d/dx | 4x^2-x+5 | |
54 | Найти производную — d/dx | y=16 корень четвертой степени 4x^4+4 | |
55 | Найти производную — d/dx | 2x^2 | |
56 | Вычислить | интеграл e^(3x) относительно x | |
57 | Вычислить | интеграл cos(2x) относительно x | |
58 | Вычислить | интеграл cos(x)^2 относительно x | |
59 | Найти производную — d/dx | 1/( квадратный корень x) | |
60 | Вычислить | интеграл e^(x^2) относительно x | |
61 | Вычислить | sec(0) | |
62 | Вычислить | e^infinity | |
63 | Вычислить | 2^4 | |
64 | Найти производную — d/dx | x/2 | |
65 | Вычислить | 4^3 | |
66 | Найти производную — d/dx | -cos(x) | |
67 | Найти производную — d/dx | sin(3x) | |
68 | Вычислить | натуральный логарифм 1/e | |
69 | Вычислить | интеграл x^2 относительно x | |
70 | Упростить | 1/( кубический корень от x^4) | |
71 | Найти производную — d/dx | 1/(x^3) | |
72 | Вычислить | интеграл e^x относительно x | |
73 | Вычислить | интеграл tan(x)^2 относительно x | |
74 | Вычислить | интеграл 1 относительно x | |
75 | Найти производную — d/dx | x^x | |
76 | Найти производную — d/dx | x натуральный логарифм x | |
77 | Вычислить | интеграл sin(x)^2 относительно x | |
78 | Найти производную — d/dx | x^4 | |
79 | Вычислить | предел (3x-5)/(x-3), если x стремится к 3 | |
80 | Вычислить | интеграл от x^2 натуральный логарифм x по x | |
81 | Найти производную — d/dx | f(x) = square root of x | |
82 | Найти производную — d/dx | x^2sin(x) | |
83 | Вычислить | интеграл sin(2x) относительно x | |
84 | Найти производную — d/dx | 3e^x | |
85 | Вычислить | интеграл xe^x относительно x | |
86 | Найти производную — d/dx | y=x^2 | |
87 | Найти производную — d/dx | квадратный корень x^2+1 | |
88 | Найти производную — d/dx | sin(x^2) | |
89 | Вычислить | интеграл e^(-2x) относительно x | |
90 | Вычислить | интеграл натурального логарифма квадратного корня x по x | |
91 | Вычислить | 2^5 | |
92 | Найти производную — d/dx | e^2 | |
93 | Найти производную — d/dx | x^2+1 | |
94 | Вычислить | интеграл sin(x) относительно x | |
95 | Вычислить | 2^3 | |
96 | Найти производную — d/dx | arcsin(x) | |
97 | Вычислить | предел (sin(x))/x, если x стремится к 0 | |
98 | Вычислить | e^2 | |
99 | Вычислить | интеграл e^(-x) относительно x | |
100 | Вычислить | интеграл 1/x относительно x |
www.mathway.com
Почему интеграл от dx равен x ?
Теорема. Если функция F1(x) b F2(x) — две первообразные от функции f(x) на отрезке [a;b], то разность между ними равна постоянному числу.
Доказательство.
F1`(x) = f(x) (1)F2`(x) = f(x), то F1`(x) — F2`(x) = Const.
φ(x) = F1 — F2φ`(x) = F1` — F2` = 0
Т.е. обозначим:F1 (x) — F2 (x) =φ(x) (2)Тогда на основании равенств (1) будет:F1`(x) — F2`(x) = f(x) — f(x) = 0 или φ`(x) = [F1 (x) — F2 (x)]` = 0 при любом значении x на отрезке[a;b]. Но из равенства φ`(x) = 0 следует, что φ(x) есть постоянная.Действительно, применим теорему Лагранжа к функции φ(x), которая, очевидно, непрерывна и дифференцируема на отрезке [a;b]. Какова ни была точка x на отрезке [a;b], мы имеем в силу теоремы Лагранжа.
(3)Таким образом, функция φ(x) в любой точке x отрезка [a;b] сохраняет значения φ(a), а это значит, что функция φ(x) является постоянной на отрезке [a;b]. Обозначая постоянную φ(a)через С, из равенств (2), (3) получаем: F1 (x) — F2 (x) = СОпределение. Если функция F (x) является первообразной для f (x), то выражение F (x) + С называется неопределённым интегралом от функции f (x) и обозначается символом ∫ f (x) dx.Таким образом, по определению,∫ f (x) dx = F (x) + С, если F (x) = f (x).При этом функцию f (x) называют подынтегральной функцией, f (x) dx — подынтегральным выражением, знак ∫ — знаком интеграла. Из этого определения следуют свойства:
1. Производная от неопределённого интеграла равна подынтегральной функции, т.е. если F`(x) = f (x), то и( ∫ f (x) dx )` = (F (x) + C)` = f (x)
(4)Последнее равенство нужно принимать в том смысле, что производная от любой первообразной равна подынтегральной функции.2. Дифференциал от неопределённого интеграла равен подынтегральному выражениюd ( ∫ f (x) dx ) = f (x) dx
(5)Это получается на основании формулы (4)3. Неопределённый интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная∫ dF (x) = F (x) + CС праведливость последнего равенства легко проверить дифференцированием (дифференциала от обоих частей равенства равны dFx))
или как в шутке, мелко и коротко, x — это тождественная функция (f(x)=x).
Оцени ответ
Почему интеграл от dx равен x?
Теорема. Если функция F1 (x) b F2 (x) — две первообразные от функции f (x) на отрезке [a;b], то разность между ними равна постоянному числу.Доказательство.
F1′ (x) = f (x) (1) F2′ (x) = f (x) , то F1′ (x) — F2′ (x) = Const.
φ (x) = F1 — F2 φ’ (x) = F1′ — F2′ = 0
Т. е. обозначим: F1 (x) — F2 (x) = φ (x) (2) Тогда на основании равенств (1) будет: F1′ (x) — F2′ (x) = f (x) — f (x) = 0 или φ’ (x) = [F1 (x) — F2 (x) ]’ = 0 при любом значении x на отрезке[a;b]. Но из равенства φ’ (x) = 0 следует, что φ (x) есть постоянная. Действительно, применим теорему Лагранжа к функции φ (x) , которая, очевидно, непрерывна и дифференцируема на отрезке [a;b]. Какова ни была точка x на отрезке [a;b], мы имеем в силу теоремы Лагранжа.
φ (x) — φ (a) = φ’ (x) (x-a) , где a
(3) Таким образом, функция φ (x) в любой точке x отрезка [a;b] сохраняет значения φ (a) , а это значит, что функция φ (x) является постоянной на отрезке [a;b]. Обозначая постоянную φ (a) через С, из равенств (2) , (3) получаем: F1 (x) — F2 (x) = С Определение. Если функция F (x) является первообразной для f (x) , то выражение F (x) + С называется неопределённым интегралом от функции f (x) и обозначается символом ∫ f (x) dx. Таким образом, по определению, ∫ f (x) dx = F (x) + С, если F (x) = f (x) . При этом функцию f (x) называют подынтегральной функцией, f (x) dx — подынтегральным выражением, знак ∫ — знаком интеграла. Из этого определения следуют свойства:
1. Производная от неопределённого интеграла равна подынтегральной функции, т. е. если F’ (x) = f (x) , то и (∫ f (x) dx) ‘ = (F (x) + C) ‘ = f (x)
(4) Последнее равенство нужно принимать в том смысле, что производная от любой первообразной равна подынтегральной функции.2. Дифференциал от неопределённого интеграла равен подынтегральному выражению d (∫ f (x) dx) = f (x) dx
(5) Это получается на основании формулы (4) 3. Неопределённый интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная ∫ dF (x) = F (x) + C С праведливость последнего равенства легко проверить дифференцированием (дифференциала от обоих частей равенства равны dFx))
или как в шутке, мелко и коротко, x — это тождественная функция (f (x) = x) .
urokam.net
как решить интеграл (2-x)dx только объясните обязательно!!!!Главное объясните это важнее чем просто решить
короч ответ 2х — х в кв адрате деленное на 2 + с. короч если в скобках такое уравнение 2-х, то интеграл разделяется на 2 интеграла: 2dx и хdx. интеграл от 2 dx равен 2х, а от хdx равен х в кв адрате деленное на 2, и обязательно если это неопределенный интеграл следует поставить + с, с-это некоторое пост число
сначала ответ напишу 2x — x^2/2 + const потом решение допишу <img src=»//otvet.imgsmail.ru/download/f3e61651a78a96dbe8a361c6b63a1fd1_i-158.jpg» > для решения интеграла разбил подинтегральное выражение на разность интеграл разности равен разности интегралов потом вынес множитель потом табличные первообразные первообразная (от 1) = x + const первообразная (от x) = (x^2)/2 + const и все …
может найти первообразную от 2-х ?
Интеграл разности равен разности интегралов. Ну а дальше каждый из них табличный. Или сделай замену 2-x = t тогда dt = -dx и приходим к интегралу -tdt а это опять табличный
touch.otvet.mail.ru