найти медиану даны координаты вершин треугольника
Как найти медиану если даны координаты вершин треугольника?
Чтобы найти медиану треугольника по координатам его вершин, применим формулы координат середины отрезка и формулу расстояния между точками.
Рассмотрим нахождение медианы на конкретном примере.
Дано: ΔABC,
A(-11;12), B(3;8), C(-1;6),
AF — медиана.
Найти: AF
Решение:
1) Так как AF — медиана треугольника ABC, то F — середина BC.
По формулам координат середины отрезка:
Итак, F(1;7).
2) По формуле расстояния между точками
Ответ: 13.
Декартовы координаты на плоскостиwww.treugolniki.ru
Найти сторону треугольника через медиану и стороны
Найти сторону треугольника через медиану и стороны — задача, обратная нахождению медианы через стороны.
Решается она аналогично, то есть с помощью дополнительного построения и применения свойства диагоналей параллелограмма.
Задача
Стороны треугольника равны 6 см и 8 см. Медиана, проведенная к его третьей стороне, равна √46 см. Найти неизвестную сторону треугольника.
Дано: ∆ ABC,
AB=8 см,
BC=6 см,
BO — медиана, BO=√46 см.
Найти: AC.
Решение:
1) На луче BO отложим отрезок OD,
OD=BO.
2) Соединим точку D с точками A и C.
3) AO=CO (так как BO — медиана по условию), OD=BO (по построению).
Так как диагонали четырехугольника ABCD в точке пересечения делятся пополам, то ABCD — параллелограмм (по признаку).
4) По свойству диагоналей параллелограмма,
Ответ: 4 см.
Если ввести обозначения BC=a, AB=c, AC=b, BO=mb, то получим формулу для нахождения стороны треугольника через медиану и две другие стороны:
www.treugolniki.ru
Как найти сторону треугольника, если известна его медиана и сторона
Автор КакПросто!
Информации о медиане и одной из сторон треугольника достаточно для нахождения его другой стороны, если он равносторонний или равнобедренный. В остальных случаях для этого необходимо знать угол между медианой и высотой.

Статьи по теме:
Инструкция
Наиболее простой случай возникает, когда в условии задачи дан равнобедренный треугольник с некоторой стороной a. Две боковые стороны такого треугольника равны, а все медианы пересекаются в одной точке. Кроме того, медиана в равнобедренном треугольнике, проведенная к основанию, является и высотой, и биссектрисой. Соответственно, в треугольнике ABC возникнет треугольник BHC, и по теореме Пифагора можно будет вычислить HC — половину стороны AC:HC=√[(CB)^2-(BH)^2]Следовательно, AC=2√[(CB)^2-(BH)^2]В равнобедренном треугольнике угол α=γ, как это показано на рисунке. Если в условии задачи приведено значение длины медианы равнобедренного треугольника, проведенной к его боковой стороне, решайте задачу несколько иным способом. Во-первых, медиана не перпендикулярна к боковой стороне фигуры, а во-вторых, формула зависимости между медианой и тремя сторонами выглядит следующим образом:ma=√2(c^2+b^2)-a^2По этой формуле найдите ту сторону, которую медиана делит пополам.Если треугольник является неправильным, то информации о медиане и стороне недостаточно. Необходимо знать также угол между медианой и стороной. Чтобы решить задачу, вначале найдите по теореме косинусов половину стороны треугольника:c^2=a^2+b^2-2ab*cosγ, где c — сторона, которую нужно найти.Если получается так, что используя теорему косинусов, можно найти лишь только половину стороны, то тогда вычисляемое значение умножается на два. Например, дана медиана и прилежащая к ней сторона, между которыми находится угол. Противоположная углу сторона делится медианой пополам. Вычислив половину стороны по теореме косинусов, получим:BC = 2c, где c — 1/2 стороны BC
Решение прямоугольных треугольников является таким же, как и у любого неправильного треугольника, если нам не известны его углы, а дан лишь только угол между медианой и стороной. Узнав вторую сторону, уже можно найти и третью по теореме Пифагора. Такие задачи помогают искать помимо сторон и другие параметры треугольников. К ним относятся, например, площадь и периметр, которые вычисляются по заданным сторонам и углам.
Видео по теме
Совет полезен?
Статьи по теме:
Не получили ответ на свой вопрос?
Спросите нашего эксперта:
www.kakprosto.ru
Как найти медиану равнобедренного треугольника
Автор КакПросто!
Треугольник называется равнобедренным, если у него есть две равных стороны. Они называются боковыми. Третья сторона называется основанием равнобедренного треугольника. Такой треугольник обладает рядом специфических свойств. Медианы, проведенные к боковым сторонам, равны. Таким образом в равнобедренном треугольнике две разные медианы, одна проведена к основанию треугольника, вторая — к боковой стороне.

Статьи по теме:
Инструкция
Пусть дан треугольник ABC, являющийся равнобедренным. Известны длины его боковой стороны и основания. Надо найти медиану, опущенную на основание этого треугольника. В равнобедренном треугольнике эта медиана является одновременно медианой, биссектрисой и высотой. Благодаря этому свойству, найти медиану к основанию треугольника очень просто. Воспользуйтесь теоремой Пифагора для прямоугольного треугольника ABD: AB² = BD² + AD², где BD — искомая медиана, AB — боковая сторона (для удобства пусть она равна a), а AD — половина основания (для удобства возьмите основание равным b). Тогда BD² = a² — b²/4. Найдите корень из этого выражения и получите длину медианы. Чуть более сложно обстоят дела с медианой, проведенной к боковой стороне. Для начала изобразите обе таких медианы на рисунке. Эти медианы равны. Обозначьте боковую сторону буквой a, а основание — b. Обозначьте равные углы при основании α. Каждая из медиан делит боковую сторону на две равные части a/2. Обозначьте длину искомой медианы x.По теореме косинусов можно выразить любую сторону треугольника через две другие и косинус угла между ними. Запишем теорему косинусов для треугольника AEC: AE² = AC² + CE² — 2AC·CE·cos∠ACE. Или, что то же, (3x)² = (a/2)² + b² — 2·ab/2·cosα = a²/4 + b² — ab·cosα. По условиям задачи стороны известны, а вот угол при основании нет, поэтому вычисления продолжаются.
Теперь примените теорему косинусов к треугольнику ABC, чтобы найти угол при основании: AB² = AC² + BC² — 2AC·BC·cos∠ACB. Другими словами, a² = a² + b² — 2ab·cosα. Тогда cosα = b/(2a). Подставьте это выражение в предыдущее: x² = a²/4 + b² — ab·cosα = a²/4 + b² — ab·b/(2a) = a²/4 + b² — b²/2 = (a²+2b²)/4. Вычислив корень правой части выражения, вы найдете медиану, проведенную к боковой стороне.
Источники:
- Равнобедренные и равносторонние треугольники
- Медианы, биссектрисы и высоты треугольника
Совет полезен?
Статьи по теме:
Не получили ответ на свой вопрос?
Спросите нашего эксперта:
www.kakprosto.ru
Формулы для треугольника, как найти сторону, биссектрису, медиану, высоту, угол
Формулы для треугольника, как найти сторону, биссектрису, медиану, высоту, угол…
Найти длину биссектрисы в треугольнике
L — биссектриса, отрезок |OB|, который делит угол ABC пополам
a, b — стороны треугольника
с — сторона на которую опущена биссектриса
d, e — отрезки полученные делением биссектрисы
γ — угол ABC, разделенный биссектрисой пополам
p — полупериметр,
Длина биссектрисы через две стороны и угол, (L):
Длина биссектрисы через полупериметр и стороны, (L):
Длина биссектрисы через три стороны, (L):
Длина биссектрисы через стороны и отрезки d, e, (L):
Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.
Биссектриса прямоугольного треугольника
1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:
L — биссектриса, отрезок ME , исходящий из прямого угла (90 град)
a, b — катеты прямоугольного треугольника
с — гипотенуза
α — угол прилежащий к гипотенузе
Формула длины биссектрисы через катеты, ( L):
Формула длины биссектрисы через гипотенузу и угол, ( L):
2. Найти по формулам длину биссектрисы из острого угла на катет:
L — биссектриса, отрезок ME , исходящий из острого угла
a, b — катеты прямоугольного треугольника
с — гипотенуза
α, β — углы прилежащие к гипотенузе
Формулы длины биссектрисы через катет и угол, (L):
Формула длины биссектрисы через катет и гипотенузу, (L):
Длина биссектрисы равнобедренного треугольника
Формулы для вычисления высоты, биссектрисы и медианы.
В равнобедренном треугольнике: высота, биссектриса и медиана, исходящие из угла образованного равными сторонами, один и тот же отрезок.
L — высота=биссектриса=медиана
a — одинаковые стороны треугольника
b — основание
α — равные углы при основании
β — угол вершины
Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):
Формула высоты, биссектрисы и медианы, через стороны, (L):
Найти медиану=биссектрису=высоту равностороннего треугольника
Формула для вычисления высоты= биссектрисы= медианы.
В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.
L — высота=биссектриса=медиана
a — стороны треугольника
Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):
Найти длину медианы треугольника по формулам
Медиана — отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам. Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.
M — медиана, отрезок |AO|
c — сторона на которую ложится медиана
a , b — стороны треугольника
γ — угол CAB
Формула длины медианы через три стороны, (M):
Формула длины медианы через две стороны и угол между ними, (M):
Длина медианы прямоугольного треугольника
Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c, пополам. Медиана в прямоугольном треугольнике (M), равна, радиусу описанной окружности (R).
M — медиана
R — радиус описанной окружности
O — центр описанной окружности
с — гипотенуза
a, b — катеты
α — острый угол CAB
Медиана равна радиусу и половине гипотенузы, (M):
Формула длины через катеты, (M):
Формула длины через катет и острый угол, (M):
Найти длину высоты треугольника
Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом). Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.
H — высота треугольника
a — сторона, основание
b. c — стороны
β, γ — углы при основании
p — полупериметр, p=(a+b+c)/2
R — радиус описанной окружности
S — площадь треугольника
Формула длины высоты через стороны, (H):
Формула длины высоты через сторону и угол, (H):
Формула длины высоты через сторону и площадь, (H):
Формула длины высоты через стороны и радиус, (
Формулы высоты прямого угла в прямоугольном треугольнике
В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.
H — высота из прямого угла
a, b — катеты
с — гипотенуза
c1 , c2 — отрезки полученные от деления гипотенузы, высотой
α, β — углы при гипотенузе
Формула длины высоты через стороны, (H):
Формула длины высоты через гипотенузу и острые углы, (H):
Формула длины высоты через катет и угол, (H):
Формула длины высоты через составные отрезки гипотенузы , (H):
Как найти неизвестную сторону треугольника
Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.
a, b, c — стороны произвольного треугольника
α, β, γ — противоположные углы
Формула длины через две стороны и угол (по теореме косинусов), (a):
*Внимательно, при подстановке в формулу, для тупого угла ( α>90),сosα, принимает отрицательное значение
Формула длины через сторону и два угла (по теореме синусов), (a):
Формулы сторон равнобедренного треугольника
Вычислить длину неизвестной стороны через любые стороны и углы
b — сторона (основание)
a — равные стороны
α — углы при основании
β
Формулы длины стороны (основания), (b):
Формулы длины равных сторон , (a):
Как узнать сторону прямоугольного треугольника
Есть следующие формулы для определения катета или гипотенузы
a, b — катеты
c — гипотенуза
α, β — острые углы
Формулы для катета, (a):
Формулы для катета, (b):
Формулы для гипотенузы, (c):
Формулы сторон по теореме Пифагора, (c, a, b):
ifreestore.net