Как определитель умножить на число – 4. ()

ОПРЕДЕЛИТЕЛЬ | Энциклопедия Кругосвет

Содержание статьи

ОПРЕДЕЛИТЕЛЬ, или детерминант, – в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число («значение» определителя). Очень часто под понятием «определитель» имеют в виду как значение определителя, так и форму его записи. Определители позволяют удобно записывать сложные выражения, возникающие, например, при решении линейных уравнений в аналитической геометрии и в математическом анализе. Открытие определителей приписывают японскому математику С.Кова (1683) и, независимо, Г.Лейбницу (1693). Современная теория восходит к работам Ж.Бине, О.Коши и К.Якоби в начале 19 в.

Простейший определитель состоит из 4 чисел, называемых элементами и расположенных в виде 2-х строк и 2-х столбцов. О таком определителе говорят, что он 2-го порядка. Например, таков определитель

значение которого равно 2ґ5 – 3ґ1 (т.е. 10 – 3 или 7). В общем случае определитель 2-го порядка принято записывать в виде

а его значение равно a1b2a2b1, где a и b – числа или функции.

Определитель 3-го порядка состоит из 9 элементов, расположенных в виде 3-х строк и 3-х столбцов. В общем случае определитель n-го порядка состоит из n2 элементов, и обычно его записывают как

Первый индекс каждого элемента указывает номер строки, второй – номер столбца, на пересечении которых стоит этот элемент, поэтому aij – элемент i-й строки и j-го столбца. Часто такой определитель записывают в виде |aij|.

Один из методов вычисления определителя, почти всегда используемый при вычислении определителей высокого порядка, состоит в разложении по «минорам». Минором, соответствующим любому элементу определителя, называется определитель меньшего на 1 порядка, получаемый из исходного вычеркиванием строки и столбца, на пересечении которых стоит этот элемент. Например, минором, соответствующим элементу

a2 из определителя

«Алгебраическим дополнением» элемента называется его минор, взятый со знаком плюс, если сумма номеров строки и столбца, на пересечении которых стоит элемент, четна, и со знаком минус, если она нечетна. В приведенном выше примере элемент a2 состоит в 1-м столбце и во 2-й строке; сумма (1 + 2) нечетна, и поэтому алгебраическое дополнение элемента a2 равно его минору, взятому со знаком минус, т.е.

Значение определителя равно сумме произведений элементов любой строки (или любого столбца) на их алгебраические дополнения. Например, определитель

разложенный по первому столбцу, имеет вид

а его разложение по второй строке, имеет вид

Вычислив каждый минор и умножив его на коэффициент, нетрудно убедиться в том, что оба выражения совпадают.

Значение определителя.

Под значением определителя

принято понимать сумму всех произведений из n элементов, т.е.

В этой формуле суммирование ведется по всем перестановкам j1, ј, jn чисел 1, 2, ј, n и перед членом ставится знак плюс, если перестановка четна, и минус, если эта перестановка нечетна. Такая сумма насчитывает ровно n! членов, половина которых берется со знаком плюс, половина – со знаком минус. Каждый член суммы содержит по одному члену из каждого столбца и каждой строки определителя. Можно доказать, что эта сумма совпадает с выражением, получаемым при разложении определителя по минорам.

Свойства определителя.

Среди наиболее важных свойств определителя назовем следующие.

(i) Если все элементы любой строки (или любого столбца) равны нулю, то и значение определителя равно нулю:

(ii) Если элементы двух строк (или двух столбцов) равны или пропорциональны, то значение определителя равно нулю:

(iii) Значение определителя не изменится, если все его строки и столбцы поменять местами, т.е. записать первую строку в виде первого столбца, вторую строку – в виде второго столбца и т.д. (такая операция называется транспонированием). Например,

(iv) Значение определителя не изменится, если к элементам одной строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на произвольный множитель. В следующем примере элементы второй строки умножаются на –2 и прибавляются к элементам первой строки:

(v) Если поменять местами две строки (или два столбца), то определитель изменит знак:

(vi) Если все элементы одной строки (или одного столбца) содержат общий множитель, то этот множитель можно вынести за знак определителя:

Пример. Вычислим значение следующего определителя 4-го порядка:

Прибавим к 1-й строке 4-ю строку:

Вычтем 1-й столбец из 4-го столбца:

Умножим 3-й столбец на 3 и вычтем из 4-го столбца:

Если угодно, то строки и столбцы можно поменять местами:

Разложим определитель по элементам четвертой строки. Три элемента этой строки равны нулю, ненулевой элемент стоит в третьем столбце, а поскольку сумма (3 + 4) нечетна, его алгебраическое дополнение имеет знак минус. В результате получаем:

Минор можно разложить по элементам третьей строки: два ее элемента равны нулю, а отличный от нуля элемент стоит в третьем столбце; сумма (3 + 3) четна, поэтому предыдущее равенство можно продолжить:

Применения.

Решение системы уравнений

можно получить, если первое уравнение умножить на b2, второе – на b1, а затем вычесть одно уравнение из другого. Проделав эти операции, мы получим

или, если

то

Такая запись решения с помощью определителей допускает обобщение на случай решения системы n линейных уравнений с n неизвестными; каждый определитель будет n-го порядка. Определителем системы линейных уравнений

будет

Заметим, что если D = 0, то уравнения либо несовместны, либо не являются независимыми. Поэтому предварительное вычисление определителя D позволяет проверить, разрешима ли система линейных уравнений.

Определители в аналитической геометрии.

Общее уравнение конического сечения представимо в виде

Определитель

называется дискриминантом. Если D = 0, то кривая вырождается в пару параллельных или пересекающихся прямых либо в точку (см. также КОНИЧЕСКИЕ СЕЧЕНИЯ).

Другой пример: площадь треугольника A с вершинами в точках (обход – против часовой стрелки) (x1, y1), (x2, y2

) и (x3, y3) определяется выражением

Связь определителей с матрицами.

Матрицей называется запись массива чисел в виде прямоугольной таблицы. Определители связаны с квадратными матрицами; например, определитель матрицы

Если A, B и С – квадратные матрицы и , то |A|Ч|B| = |C|. См. также АЛГЕБРА АБСТРАКТНАЯ.

Якобиан.

Если x = f (u, v), y = g (u, v) – преобразование координат, то определитель

называется якобианом или определителем Якоби этого преобразования. Если J № 0 в некоторой точке, то в ее окрестности уравнения преобразования можно однозначно разрешить относительно u и v, представив их как функции от x и y.

www.krugosvet.ru

Умножение — определитель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Умножение — определитель

Cтраница 1

Умножение определителей одного и того же порядка производится по правилу умножения матриц.  [1]

Но умножение определителя, одна строка которого состоит из векторов, на некоторый вектор можно, очевидно1), произвести, умножая эту строку на данный вектор.  [2]

Правила умножения определителей совпадают с правилами умножения матриц, поэтому определитель, полученный в результате перемножения двух матриц, равен произведению двух отдельных определителей.  [3]

Согласно правилу умножения определителей, с учетом формул упр.  [4]

С помощью умножения определителей доказать, что при перестановке двух строк ( или столбцов) определитель меняет знак.  [5]

С помощью умножения определителей доказать, что при перестановке двух строк ( или столбцов) определитель меняет знак.  [6]

Теорема об умножении определителей могла бы быть доказана и без использования теоремы Лапласа.  [7]

Теорема об умножении определителей не приводит в случае вырожденных матриц ни к какому высказыванию сверх того, что их произведение также будет вырожденным, хотя вырожденные квадратные матрицы можно еще различать по их рангам.  [8]

Это следует из правила умножения определителей.  [9]

Это тождество выражает теорему умножения определителей. Произведение двух определителей Третьего порядка равно определителю того же порядка, у которого на пересечении г — го столбца и fe — й строки стоит сумма произведений элементов 1-го столбца множимого на соответствующие элементы й-й строки множителя. Для краткости говорят, что определитель-произведение получается умножением столбцов первого определителя на строки второго.  [10]

Свойство 5 выражает правило умножения определителя на некоторое число.  [11]

Сопоставляя эти формулы с законом умножения определителей ( в конце гл.  [12]

В этом и состоит теорема об умножении определителей.  [13]

Эту теорему называют также теоремой об умножении определителей.  [14]

Доказанное предложение называют также теоремой об умножении определителей. Кроме того, ясно, что если хотя бы одно из преобразований А или В вырожденное, то вырожденным будет и их произведение.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Далее будем рассматривать только квадратные матрицы. Каждой квадратной матрице ставится в соответствие действительное число, называемое Определителем матрицы и вычисляемое по определенному правилу.

Определитель матрицы естественно возникает при решении систем линейных уравнений, или в свернутой форме , или в свернутой форме . Предыдущая формула получается разложением определителя по первой строке.

Возьмем теперь квадратную матрицу -го порядка

(9.2)

Для записи определителя -го порядка матрицы будем применять обозначения . При матрица состоит из одного элемента и ее определитель равен этому элементу. При получаем определитель .

Минором элемента матрицы называют определитель матрицы -го порядка, получаемого из матрицы вычеркиванием -той строки и -го столбца.

Пример 7. Найти минор матрицы:

.

По определению, минор элемента есть определитель матрицы, получаемой из матрицы вычеркиванием первой строки и второго столбца. Следовательно, .

Алгебраическим дополнением элемента матрицы называется минор , взятый со знаком . Алгебраическое дополнение элемента обозначается , следовательно, .

Пример 8. Найти алгебраическое дополнение элемента матрицы из примера 7.

.

Определителем квадратной матрицы -го порядка называется число:

,

(9.3)

Где ‑ элементы первой строки матрицы (9.2), а их алгебраические дополнения.

Запись по формуле (9.3) называется Разложением определителя по первой строке.

Рассмотрим свойства определителей.

Свойство 1. При транспонировании матрицы ее определитель не меняется.

Это свойство устанавливает равноправность строк и столбцов определителя, поэтому определение определителя можно сформулировать так:

Определителем квадратной матрицы -го порядка называется число:

,

(9.4)

Где ‑ элементы первого столбца матрицы (9.2), а их алгебраические дополнения.

Свойство 2. Если поменять местами две строки или два столбца матрицы , то ее определитель изменит знак на противоположный.

Свойства 1 и 2 позволяют обобщить формулы (9.3) и (9.4) следующим образом:

Определитель квадратной матрицы -го порядка (будем в дальнейшем говорить определитель -го порядка) равен сумме попарных произведений любой строки (столбца) на их алгебраические дополнения.

, или .

Свойство 3. Определитель, у которого две строки или два столбца одинаковы, равен нулю.

Действительно, поменяем в определителе две одинаковые сроки местами. Тогда, по свойству 2 получим определитель , но с другой стороны, определитель не изменится, т. е. . Отсюда .

Свойство 4. Если все элементы какой-нибудь строки (столбца) определителя умножить на число , то определитель умножится на .

.

Умножим элементы -той строки на . Тогда получим определитель:

.

Следствие 1. Если все элементы какой-нибудь строки (столбца) имеют общий множитель, то его можно вынести за знак определителя.

Следствие 2. Если все элементы какой-нибудь строки (столбца) равны нулю, то определитель равен нулю.

Свойство 5. Определитель, у которого две строки (два столбца) пропорциональны, равен нулю.

Пусть -я строка пропорциональна -ой строке. Вынося коэффициент пропорциональности за знак определителя, получим определитель с двумя одинаковыми строками, который по свойству 3 равен нулю.

Свойство 6. Если каждый элемент строки (столбца) определителя есть сумма двух слагаемых, то определитель равен сумме двух определителей: у одного из них -той строкой (столбцом)служат первые слагаемые, а у другого – вторые.

Разложив определитель по -той строке получим:

.

Свойство 7. Определитель не изменится, если к элементам какой-нибудь строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Прибавив к элементам -той строки определителя соответствующие элементы -ой строки, умноженные на число , получим определитель . Определитель равен сумме двух определителей: первый есть , а второй равен нулю, так как у него -тая и -тая строки пропорциональны.

Свойство 8. Определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали, т. е.:

Свойство 9. Сумма произведений элементов какой-нибудь строки (столбца) определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Рассмотрим вспомогательный определитель , который получается из данного определителя заменой -той строки -той строкой. Определитель равен нулю, так как у него две одинаковые строки. Разложив его по -той строке получим:

.

Большое значение имеет следующий критерий равенства определителя нулю. Определитель квадратной матрицы равен нулю тогда и только тогда когда его строки (столбцы) линейно зависимы.

Строки (столбцы) матрицы называются линейно зависимыми, если одна (один) из них является линейной комбинацией с действительными коэффициентами остальных.

Теорема об определителе произведения двух квадратных матриц. Определитель произведения двух квадратных матриц равен произведению определителей этих квадратных матриц, т. е. .

< Предыдущая   Следующая >

matica.org.ua

Глава 4. Свойства определителей

Глава 4. Свойства определителей

Глава 4. Свойства определителей

СВОЙСТВО 1. Величина определителя не изменится, если все его строки заменить столбцами, причем каждую строку заменить столбцом с тем же номером, то есть

.

СВОЙСТВО 2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1. Например,

.

СВОЙСТВО 3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.

СВОЙСТВО 4. Умножение всех элементов одного столбца или одной строки определителя на любое число k равносильно умножению определителя на это число k. Например,

.

СВОЙСТВО 5. Если все элементы некоторого столбца или некоторой строки равны нулю, то сам определитель равен нулю. Это свойство есть частный случае предыдущего (при k=0).

СВОЙСТВО 6. Если соответствующие элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.

СВОЙСТВО 7. Если каждый элемент n-го столбца или n-й строки определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один в n-м столбце или соответственно в n-й строке имеет первые из упомянутых слагаемых, а другой — вторые; элементы, стоящие на остальных местах, у вех трех определителей одни и те же. Например,

СВОЙСТВО 8. Если к элементам некоторого столбца (или некоторой строки) прибавить соответствующие элементы другого столбца (или другой строки), умноженные на любой общий множитель, то величина определителя при этом не изменится. Например,

.

Дальнейшие свойства определителей связаны с понятием алгебраического дополнения и минора. Минором некоторого элемента называется определитель, получаемый из данного путем вычеркиванием строки и столбца, на пересечении которых расположен этот элемент.

Алгебраическое дополнение любого элемента определителя равняется минору этого элемента, взятому со своим знаком, если сумма номеров строки и столбца, на пересечении которых расположен элемент, есть число четное, и с обратным знаком, если это число нечетное.

Алгебраическое дополнение элемента мы будем обозначать большой буквой того же наименования и тем же номером, что и буква, кторой обозначен сам элемент.

СВОЙСТВО 9. Определитель

равен сумме произведений элементов какого-либо столбца (или строки) на их алгебраические дополнения.

Иначе говоря, имеют место следующие равенства:

, ,

, ,

, .

Текст издания:© Д.В.Клетеник «Сборник задач по аналитической геометрии». М., Наука, Физматлит, 1998.
Решение задач:© Кирилл Кравченко, http://a-geometry.narod.ru/.
Все права принадлежат мне, если не оговорено иное 😉

Сайт управляется системой uCoz

a-geometry.narod.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *