Какие из величин векторные – Два вида физических величин: скалярные величины и векторные величины | LAMPA

Содержание

Два вида физических величин: скалярные величины и векторные величины | LAMPA

«Что-то я не помню такой темы в физике» — первое, что, наверное, пришло вам в голову. Да, вы правы — тема незаметная, но в некоторых учебниках она присутствует. «А нужна она мне для ЕГЭ?» Нужна. Точно нужна. Очень нужна. Постоянно нужна.

Давайте приступим. Надо запомнить, что в физике (школьной) есть два типа физических величин:

  • скалярная величина;
  • векторная величина.

Скалярная величина — это просто число. Ну, например, масса тела MMM — это скалярная величина. Пусть, например, M=3M = 3M=3 кг. Время ttt — скалярная величина. Например, время может быть такое: t=7t = 7t=7 сек. 

Векторная величина. Что это такое? Давайте вспомним (а для тех, кто не знал — узнаем), что

вектор — это направленный отрезок.

Стрелка — по-простому. У стрелки (вектора) есть длина (длина стрелки) и направление. Вектор — это нечто, что обладает длиной и направлением.

Примеры векторных величин: сила F⃗\vec {F}F⃗, скорость V⃗\vec{V}V⃗.

Длина вектора обозначается специальным символом — символом модуля | | — это две параллельные палочки. Например, ∣F⃗∣|\vec{F}|∣F⃗∣ — модуль силы;  ∣V⃗∣|\vec{V}|∣V⃗∣ — модуль скорости. Модуль вектора — это уже число. Например, может быть так, что модуль силы ∣F⃗∣=8|\vec{F}|=8∣F⃗∣=8 H, модуль скорости ∣V⃗∣=8|\vec{V}|=8∣V⃗∣=8 м/с.

Направление вектора изображается на картинке. Куда показывает вектор — туда он и направлен. Например, бывает так, что вектор направлен вверх, вниз и т.д. Вектор может быть направлен вдоль какой-то плоскости. Примеры можете видеть на картинках.

Может возникнуть вопрос: а как отличить векторную величину от скалярной? Или так: как я узнаю, что передо мной вектор, а не скаляр?

Ну, самое простое — это опыт. Решая задачи, читая теоретический материал, вы со временем запомните, какие величины векторные, а какие скалярные. Физических величин не так много, как может показаться.

А способ чуть посложнее — это представить эти величины и решить для себя: могут они иметь направление? Если да — то это вектор, если нет — скаляр.

Например: заряд конденсатора. Если заряд имеет направление, то куда он направлен? Непонятно — поэтому, скорее всего, заряд — это скалярная величина.

Другой пример: длина отрезка. Если эта физическая величина имеет направление, то откуда куда она направлена: от точки 1 до точки 2? Или от точки 2 до точки 1? Трудно выбрать — поэтому, скорее всего, длина отрезка — это скаляр.

lampa.io

Векторная величина в физике. Примеры векторных величин

Физика и математика не обходятся без понятия «векторная величина». Ее необходимо знать и узнавать, а также уметь с нею оперировать. Этому обязательно стоит научиться, чтобы не путаться и не допускать глупых ошибок.

Как отличить скалярную величину от векторной?

Первая всегда имеет только одну характеристику. Это ее числовое значение. Большинство скалярных величин могут принимать как положительные, так и отрицательные значения. Их примерами может служить электрический заряд, работа или температура. Но есть такие скаляры, которые не могут быть отрицательными, например, длина и масса.

Векторная величина, кроме числовой величины, которая всегда берется по модулю, характеризуется еще и направлением. Поэтому она может быть изображена графически, то есть в виде стрелки, длина которой равна модулю величины, направленной в определенную сторону.

При письме каждая векторная величина обозначается знаком стрелки на буквой. Если идет речь о числовом значении, то стрелка не пишется или ее берут по модулю.

Какие действия чаще всего выполняются с векторами?

Сначала — сравнение. Они могут быть равными или нет. В первом случае их модули одинаковые. Но это не единственное условие. У них должны быть еще одинаковые или противоположные направления. В первом случае их следует называть равными векторами. Во втором они оказываются противоположными. Если не выполняется хотя бы одно из указанных условий, то векторы не равны.

Потом идет сложение. Его можно сделать по двум правилам: треугольника или параллелограмма. Первое предписывает откладывать сначала один вектор, потом от его конца второй. Результатом сложения будет тот, который нужно провести от начала первого к концу второго.

Правило параллелограмма можно использовать, когда нужно сложить векторные величины в физике. В отличие от первого правила, здесь их следует откладывать от одной точки. Потом достроить их до параллелограмма. Результатом действия следует считать диагональ параллелограмма, проведенную из той же точки.

Если векторная величина вычитается из другой, то они снова откладываются из одной точки. Только результатом будет вектор, который совпадает с тем, что отложен от конца второго к концу первого.

Какие векторы изучают в физике?

Их так же много, как скаляров. Можно просто запомнить то, какие векторные величины в физике существуют. Или знать признаки, по которым их можно вычислить. Тем, кто предпочитает первый вариант, пригодится такая таблица. В ней приведены основные векторные физические величины.

Обозначение в формулеНаименование
vскорость
rперемещение
аускорение
Fсила
римпульс
Енапряженность электрического поля
Вмагнитная индукция
Ммомент силы

Теперь немного подробнее о некоторых из этих величин.

Первая величина — скорость

С нее стоит начать приводить примеры векторных величин. Это обусловлено тем, что ее изучают в числе первых.

Скорость определяется как характеристика движения тела в пространстве. Ею задается числовое значение и направление. Поэтому скорость является векторной величиной. К тому же ее принято разделять на виды. Первый является линейной скоростью. Ее вводят при рассмотрении прямолинейного равномерного движения. При этом она оказывается равной отношению пути, пройденного телом, ко времени движения.

Эту же формулу допустимо использовать при неравномерном движении. Только тогда она будет являться средней. Причем интервал времени, который необходимо выбирать, обязательно должен быть как можно меньше. При стремлении промежутка времени к нулю значение скорости уже является мгновенным.

Если рассматривается произвольное движение, то здесь всегда скорость — векторная величина. Ведь ее приходится раскладывать на составляющие, направленные вдоль каждого вектора, направляющего координатные прямые. К тому же определяется он как производная радиус-вектора, взятая по времени.

Вторая величина — сила

Она определяет меру интенсивности воздействия, которое оказывается на тело со стороны других тел или полей. Поскольку сила — векторная величина, то она обязательно имеет свое значение по модулю и направление. Так как она действует на тело, то важным является еще и точка, к которой приложена сила. Чтобы получить наглядное представление о векторах сил, можно обратиться к следующей таблице.

СилаТочка приложенияНаправление
тяжестицентр телак центру Земли
всемирного тяготенияцентр телак центру другого тела
упругостиместо соприкосновения взаимодействующих телпротив внешнего воздействия
трениямежду соприкасающимися поверхностямив сторону, противоположную движению

Также еще векторной величиной является равнодействующая сила. Она определяется как сумма всех действующих на тело механических сил. Для ее определения необходимо выполнить сложение по принципу правила треугольника. Только откладывать векторы нужно по очереди от конца предыдущего. Результатом окажется тот, который соединяет начало первого с концом последнего.

Третья величина — перемещение

Во время движения тело описывает некоторую линию. Она называется траекторией. Эта линия может быть совершенно разной. Важнее оказывается не ее внешний вид, а точки начала и конца движения. Они соединяются отрезком, который называется перемещением. Это тоже векторная величина. Причем оно всегда направлено от начала перемещения к точке, где движение было прекращено. Обозначать его принято латинской буквой r.

Здесь может появиться такой вопрос: «Путь — векторная величина?». В общем случае это утверждение не является верным. Путь равен длине траектории и не имеет определенного направления. Исключением считается ситуация, когда рассматривается прямолинейное движение в одном направлении. Тогда модуль вектора перемещения совпадает по значению с путем, и направление у них оказывается одинаковым. Поэтому при рассмотрении движения вдоль прямой без изменения направления перемещения путь можно включить в примеры векторных величин.

Четвертая величина — ускорение

Оно является характеристикой быстроты изменения скорости. Причем ускорение может иметь как положительное, так и отрицательное значение. При прямолинейном движении оно направлено в сторону большей скорости. Если перемещение происходит по криволинейной траектории, то вектор его ускорения раскладывается на две составляющие, одна из которых направлена к центру кривизны по радиусу.

Выделяют среднее и мгновенное значение ускорения. Первое следует рассчитывать как отношение изменения скорости за некоторый промежуток времени к этому времени. При стремлении рассматриваемого интервала времени к нулю говорят о мгновенном ускорении.

Пятая величина — импульс

По-другому его еще называют количеством движения. Импульс векторной величиной является из-за того, что напрямую связан со скоростью и силой, приложенной к телу. Обе они имеют направление и задают его импульсу.

По определению последний равен произведению массы тела на скорость. Используя понятие импульса тела, можно по-другому записать известный закон Ньютона. Получается, что изменение импульса равно произведению силы на промежуток времени.

В физике важную роль имеет закон сохранения импульса, который утверждает, что в замкнутой системе тел ее суммарный импульс является постоянным.

Мы очень кратко перечислили, какие величины (векторные) изучаются в курсе физики.

Задача о неупругом ударе

Условие. На рельсах стоит неподвижная платформа. К ней приближается вагон со скоростью 4 м/с. Массы платформы и вагона — 10 и 40 тонн соответственно. Вагон ударяется о платформу, происходит автосцеп. Необходимо вычислить скорость системы «вагон-платформа» после удара.

Решение. Сначала требуется ввести обозначения: скорость вагона до удара — v1, вагона с платформой после сцепки — v, масса вагона m1, платформы — m2. По условию задачи необходимо узнать значение скорости v.

Правила решения подобных заданий требуют схематичного изображения системы до и после взаимодействия. Ось OX разумно направить вдоль рельсов в ту сторону, куда движется вагон.

В данных условиях систему вагонов можно считать замкнутой. Это определяется тем, что внешними силами можно пренебречь. Сила тяжести и реакция опоры уравновешены, а трение о рельсы не учитывается.

Согласно закону сохранения импульса, их векторная сумма до взаимодействия вагона и платформы равна общему для сцепки после удара. Сначала платформа не двигалась, поэтому ее импульс был равен нулю. Перемещался только вагон, его импульс — произведение m1 и v1.

Так как удар был неупругий, то есть вагон сцепился с платформой, и дальше он стали катиться вместе в ту же сторону, то импульс системы не изменил направления. Но его значение стало другим. А именно произведением суммы массы вагона с платформой и искомой скорости.

Можно записать такое равенство: m1 * v1 = (m1 + m2) * v. Оно будет верно для проекции векторов импульсов на выбранную ось. Из него легко вывести равенство, которое потребуется для вычисления искомой скорости: v = m1 * v1 / (m1 + m2).

По правилам следует перевести значения для массы из тонн в килограммы. Поэтому при подстановке их в формулу следует сначала умножить известные величины на тысячу. Простые расчеты дают число 0,75 м/с.

Ответ. Скорость вагона с платформой равна 0,75 м/с.

Задача с разделением тела на части

Условие. Скорость летящей гранаты 20 м/с. Она разрывается на два осколка. Масса первого 1,8 кг. Он продолжает двигаться в направлении, в котором летела граната, со скоростью 50 м/с. Второй осколок имеет массу 1,2 кг. Какова его скорость?

Решение. Пусть массы осколков обозначены буквами m1 и m2. Их скорости соответственно будут v1 и v2. Начальная скорость гранаты — v. В задаче нужно вычислить значение v2.

Для того чтобы больший осколок продолжал двигаться в том же направлении, что и вся граната, второй должен полететь в обратную сторону. Если выбрать за направление оси то, которое было у начального импульса, то после разрыва большой осколок летит по оси, а маленький — против оси.

В этой задаче разрешено пользоваться законом сохранения импульса из-за того, что разрыв гранаты происходит мгновенно. Поэтому, несмотря на то что на гранату и ее части действует сила тяжести, она не успевает подействовать и изменить направление вектора импульса с его значением по модулю.

Сумма векторных величин импульса после разрыва гранаты равна тому, который был до него. Если записать закон сохранения импульса тела в проекции на ось OX, то он будет выглядеть так: (m1 + m2) * v = m1 * v1 — m2 * v2. Из него просто выразить искомую скорость. Она определится по формуле: v2 = ((m1 + m2) * v — m1 * v1) / m2. После подстановки числовых значений и расчетов получается 25 м/с.

Ответ. Скорость маленького осколка равна 25 м/с.

Задача про выстрел под углом

Условие. На платформе массой M установлено орудие. Из него производится выстрел снарядом массой m. Он вылетает под углом α к горизонту со скоростью v (данной относительно земли). Требуется узнать значение скорости платформы после выстрела.

Решение. В этой задаче можно использовать закон сохранения импульса в проекции на ось OX. Но только в том случае, когда проекции внешних равнодействующих сил равна нулю.

За направление оси OX нужно выбрать ту сторону, куда полетит снаряд, и параллельно горизонтальной линии. В этом случае проекции сил тяжести и реакции опоры на OX будут равны нулю.

Задача будет решена в общем виде, так как нет конкретных данных для известных величин. Ответом в ней является формула.

Импульс системы до выстрела был равен нулю, поскольку платформа и снаряд были неподвижны. Пусть искомая скорость платформы будет обозначена латинской буквой u. Тогда ее импульс после выстрела определится как произведение массы на проекцию скорости. Так как платформа откатится назад (против направления оси OX), то значение импульса будет со знаком минус.

Импульс снаряда — произведение его массы на проекцию скорости на ось OX. Из-за того, что скорость направлена под углом к горизонту, ее проекция равна скорости, умноженной на косинус угла. В буквенном равенстве это будет выглядеть так: 0 = — Mu + mv * cos α. Из нее путем несложных преобразований получается формула-ответ: u = (mv * cos α) / M.

Ответ. Скорость платформы определяется по формуле u = (mv * cos α) / M.

Задача о переправе через реку

Условие. Ширина реки по всей ее длине одинакова и равна l, ее берега параллельны. Известна скорость течения воды в реке v1 и собственная скорость катера v2. 1). При переправе нос катера направлен строго к противоположному берегу. На какое расстояние s его снесет вниз по течению? 2). Под каким углом α нужно направить нос катера, чтобы он достиг противоположного берега строго перпендикулярно к точке отправления? Сколько времени t потребуется на такую переправу?

Решение. 1). Полная скорость катера является векторной суммой двух величин. Первая из них течение реки, которое направлено вдоль берегов. Вторая — собственная скорость катера, перпендикулярная берегам. На чертеже получается два подобных треугольника. Первый образован шириной реки и расстоянием, на которое сносит катер. Второй — векторами скоростей.

Из них следует такая запись: s / l = v1 / v2. После преобразования получается формула для искомой величины: s = l * (v1 / v2).

2). В этом варианте задачи вектор полной скорости перпендикулярен берегам. Он равен векторной сумме v1 и v2. Синус угла, на который должен отклоняться вектор собственной скорости, равен отношению модулей v1 и v2. Для расчета времени движения потребуется разделить ширину реки на сосчитанную полную скорость. Значение последней вычисляется по теореме Пифагора.

v = √(v22 – v12), тогда t = l / (√(v22 – v12)).

Ответ. 1). s = l * (v1 / v2), 2). sin α = v1 / v2, t = l / (√(v22 – v12)).

fb.ru

Векторные величины

 

Векторные величины и скаляры

 

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Например, масса, время, длина.

 

Величины, которые характеризуются только числовым значением, называются скалярными или скалярами.

Кроме скалярных величин, используются величины, которые имеют и числовое значение и направление. Например, скорость, ускорение, сила.

 

Величины, которые характеризуются числовым значением и направлением, называются векторными или векторами.

 

Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Например, вектор силы обозначается  или F. Числовое значение векторной величины называется модулем или длиной вектора. Значение вектора силы обозначают F или .

 

Изображение вектора

Векторы изображают направленными отрезками. Началом вектора называют ту точку, откуда начинается направленный отрезок (точка А на рис. 1), концом вектора – точку, в которой заканчивается стрелка (точка B на рис. 1).

рис. 1

 

Два вектора называются равными, если они имеют одинаковую длину и направлены в одну сторону. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления. Например, на рис. 2 изображены векторы .

рис. 2

 

При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе. Например, на рис. 3 изображены вектора, длины которых υ1 = 2 м/c, υ2 = 3 м/c.

рис. 3

Способ задания вектора

На плоскости вектор можно задавать несколькими способами:

1. Указать координаты начала и конца вектора. Например, вектор  на рис. 4 задан координатами начала вектора – (2, 4) (м), конца – (6, 8) (м). рис. 4

 

2. Указать модуль вектора (его значение) и угол между направлением вектора и некоторым заранее выбранным направлением на плоскости. Часто за такое направление в положительную сторону оси 0Х. Углы, измеренные от этого направления против часовой стрелки, считаются положительными. На рис. 5  вектор  задан двумя числами b и α , указывающими длину и направление вектора. рис. 5

interneturok.ru

Вопрос 10. Скалярные и векторные величины. Линейные операции с векторами.

Скалярные величины величины, которые определяются только числовыми значениями. Например: масса, площадь, длина отрезка, температура.

Если величина, кроме числового значения характеризуется еще и направлением, то она называется векторной величиной или просто вектором. Например: сила, скорость, ускорение. Следовательно, вектор полностью определяется числом и направлением. Геометрически вектор изображают отрезком, длина которого соответствует его числовому значению, а для указания направления используют стрелку.

В

А

Обозначают вектор гдеА – начало вектора, В – конец вектора, или просто . Заметим, что т. к. длина отрезка соответствует числовому значению вектора, то это числовое значение наз-ютдлиной или модулем вектора и обозначают или .

Два вектора будем называть равными, если они имеют одно и то же направление и одинаковую длину. Вектор называется противоположным вектору . = В этом случае пишут = – .

Нулевым вектором наз-ся век-р, начало и конец кот-го совпадают. Его обозначают . Заметим, что модуль нулевого вектора равен 0, а направление не определено.

Единичный вектор — вектор, длина кот-го = единице.

2 Век-ра наз-ют коллинеарными , если онт лежат на одной и той же прямой , или -х прямых

Векторы ‖-ые одной и той же плоскости, наз. компланарными.

Одним из самых важных св-в вектора явл-ся то, что его можно перемещать‖-но самому себе в любую точку плоскости или пространства. (Поэтому коллинеарные векторы всегда можно перенести на одну прямую, а компланарные на одну плоскость).

Углом = ( , ) между векторами и называется угол при вершине в Δ, где = = .

В

Следовательно, 0 ≤ ≤

А С

^

Два вектора и считаются ортогональными (перпендикулярными), если . (,) =.Обозначают .В частности , где – любой вектор.

Линейными операциями над векторами называют сложение, вычитание, умножение вектора на число.

  1. Суммой векторов и называют третий вектор , начало которого совпадает с началом вектора , а конец – с концом вектора при условии, что вектор отложен из конца вектора . Вектор получается по правилу треугольника или параллелограмма.

Свойства суммы

1) а + в = в + а,

2) (а + в)+ с = а + (в + с),

3) а + о = а, а + (- а)= о.

Если складываются более двух векторов, то сумма определяется по правилу замыкающей.

с = а1 + а2 +…+ аn .

2) Разностью двух векторов а и в наз-ся такой вектор d , который в сумме с векторами в дает вектор а .

а в = d, если в + d = а.

Чтобы получить разность а в двух векторов а и в , необходимо отложить их из одной точки и соединить конец второго вектора с концом первого.

studfiles.net

Векторные величины — PhysBook

Векторные величины и скаляры

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Например, масса, время, длина.

Величины, которые характеризуются только числовым значением, называются скалярными или скалярами.

Кроме скалярных величин, используются величины, которые имеют и числовое значение и направление. Например, скорость, ускорение, сила.

Величины, которые характеризуются числовым значением и направлением, называются векторными или векторами.

Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Например, вектор силы обозначается \(\vec F\) или F. Числовое значение векторной величины называется модулем или длиной вектора. Значение вектора силы обозначают F или \(\left|\vec F \right|\).

Изображение вектора

Векторы изображают направленными отрезками. Началом вектора называют ту точку, откуда начинается направленный отрезок (точка А на рис. 1), концом вектора – точку, в которой заканчивается стрелка (точка B на рис. 1).

Рис. 1.

Два вектора называются равными, если они имеют одинаковую длину и направлены в одну сторону. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления. Например, на рис. 2 изображены векторы \(\vec F_1 =\vec F_2\).

Рис. 2.

При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе. Например, на рис. 3 изображены вектора, длины которых \(\upsilon_1\) = 2 м/c, \(\upsilon_2\) = 3 м/c.

Рис. 3.
Способ задания вектора

На плоскости вектор можно задавать несколькими способами:

1. Указать координаты начала и конца вектора. Например, вектор \(\Delta\vec r\) на рис. 4 задан координатами начала вектора – (2, 4) (м), конца – (6, 8) (м).

Рис. 4.

2. Указать модуль вектора (его значение) и угол между направлением вектора и некоторым заранее выбранным направлением на плоскости. Часто за такое направление в положительную сторону оси 0Х. Углы, измеренные от этого направления против часовой стрелки, считаются положительными. На рис. 5 вектор \(\Delta\vec r\) задан двумя числами b и \(\alpha\) , указывающими длину и направление вектора.

Рис. 5.

www.physbook.ru

Физические величины, обозначение, векторные и скалярные

Тестирование онлайн

  • Тест по теме: «Физические величины»

Что такое физическая величина?

Нас окружает много различных материальных предметов. Материальных, потому что их возможно потрогать, понюхать, увидеть, услышать и еще много чего можно сделать. То, какие эти предметы, что с ними происходит, или будет происходить, если что-нибудь сделать: кинуть, разогнуть, засунуть в печь. То, почему с ними происходит что-либо и как именно происходит? Все это изучает

физика. Поиграйте в игру: загадайте предмет в комнате, опишите его несколькими словами, друг должен угадать что это. Указываю характеристики задуманного предмета. Прилагательные: белый, большой, тяжелый, холодный. Догадались? Это холодильник. Названные характеристики — это не научные измерения вашего холодильника. Измерять у холодильника можно разное. Если длину, то он большой. Если цвет, то он белый. Если температуру, то холодный. А если его массу, то выйдет, что он тяжелый. Представляем, что один холодильник можно исследовать с разных сторон. Масса, длина, температура — это и есть физическая величина.

Но это лишь та небольшая характеристика холодильника, которая приходит на ум мгновенно. Перед покупкой нового холодильника можно ознакомиться еще с рядом физических величин, которые позволяют судить о том, какой он, лучше или хуже, и почему он стоит дороже. Представь масштабы того, на сколько все окружающее нас разнообразно. И на сколько разнообразны характеристики.

Обозначение физической величины

Все физические величины принято обозначать буквами, чаще греческого алфавита. НО! Одна и та же физическая величина может иметь несколько буквенных обозначений (в разной литературе).

И, наоборот, одной и той же буквой могут обозначаться разные физические величины.

Несмотря на то, что с такой буквой вы могли не сталкиваться, смысл физической величины, участие ее в формулах остается прежним.

Векторные и скалярные величины

В физике существует два вида физических величин: векторные и скалярные. Основное их отличие в том, что векторные физические величины имеют направление. Что значит физическая величина имеет направление? Например, число картофелин в мешке, мы будем называть обыкновенными числами, или скалярами. Еще одним примером такой величины может служить температура. Другие очень важные в физике величины имеют направление, это, например, скорость; мы должны задать не только быстроту перемещения тела, но и путь, по которому оно движется. Импульс и сила тоже имеют направление, как и смещение: когда кто-нибудь делает шаг, можно сказать не только, как далеко он шагнул, но и куда он шагает, то есть определить направление его движения. Векторные величины лучше запомнить.

Почему над буквами рисуют стрелку?

Рисуют стрелку только над буквами векторных физических величин. Согласно тому, как в математике обозначают вектор! Действия сложения и вычитания над этими физическими величинами выполняются согласно математическим правилам действий с векторами. Выражение «модуль скорости» или «абсолютное значение» означает именно «модуль вектора скорости», то есть численное значение скорости без учета направления — знака «плюс» или «минус».

Обозначение векторных величин

Главное запомнить

1) Что такое векторная величина;
2) Чем скалярная величина отличается от векторной;
3) Векторные физические величины;

4) Обозначение векторной величины

fizmat.by

Какие из данных величин являются векторными?

Кошмар. На элементарнейший вопрос ни одного верного ответа. Правильно так: скорость, сила, ускорение.

Скорость и ускорение. У этих величин есть не только значение, но и направление.

ускорение и скорость

скорость, сила, давление, ускорение.

Физика, физика, вся пипися синяя. Давление в точке x направлении r — это скаляр, а выражение F/S тогда читается скалярно. Давление в точке x — это совокупность скалярных давлений в точке по всем направлениям. Если в жидкости или газе выполняется закон Паскаля, то все эти скаляры в точке равны и отождествляются просто с давлением в точке. В нешкольном случае закон Паскаля может нарушаться, давление выражается через сложный тензорный объект. А если оса прокусывает кожу, то закон Паскаля применять нельзя. Получается какая-то неведомая школьная ерунда!

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *