Калькулятор пределов
Что такое предел?
Предел функции (предельное значение функции) в предельной для области определения функции заданной точке — это величина, к которой стремится значение функции при стремлении её аргумента к данной точке.
Если предел функции существует, говорят, что функция сходится к указанному значению. Если такого предела не существует – функция расходится.
Другими словами, если некоторая переменная величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.
Для определенной функции в некотором интервале f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.
Определение предела функции часто формулируют на языке окрестностей. Предельная точка области определения не обязана принадлежать самой области определения. Можно рассматривать предел функции на концах открытого интервала, на котором определена функция. При этом сами концы интервала в область определения не входят.
На расширенной вещественной прямой можно построить базу окрестностей бесконечно удаленной точки. Поэтому допустимо описание предела функции при стремлении аргумента к бесконечности, а также ситуации, когда сама функция стремится к бесконечности в заданной точке. Предел последовательности при этом предоставляет пример сходимости по базе «стремление аргумента к бесконечности».
Отсутствие предела функции в данной точке означает, что для любого заранее заданного значения области значений имеется такая окрестность этого значения, при которой в любой сколь угодно малой окрестности точки, в которой функция принимает заданное значение, существуют точки, значение функции в которых окажется за пределами указанной окрестности.
Если в некоторой точке области определения функции существует предел, равный значению функции в данной точке, такая функция является непрерывной в данной точке.
Также читайте нашу статью «Решить систему уравнений методом сложения онлайн решателем»
Бесплатный онлайн калькулятор
Наш бесплатный решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
www.pocketteacher.ru
Вычисление предела функции онлайн | umath.ru
Найти предел функции при*Вместо и вводите
+inf
и -inf
.Пределом функции в некоторой точке называется та величина, к которой стремится значение функции при стремлении значения её аргумента к (). Пусть эта величина равна , тогда пишут
или при
Предел функции онлайн
Калькулятор быстро и точно найдёт предел любой функции онлайн. Можно считать пределы функций как в точках, так и на бесконечности. При это калькулятор выдаёт не только ответ, но и подробное решение, которое полезно проанализировать, особенно если ваш собственный результат не совпадает с результатом его вычислений.
umath.ru
Онлайн-калькулятор вычисления пределов | СпецКласс
Как быстро решить предел? Воспользоваться любым онлайн-калькулятором, ибо их сейчас предоставляется невероятное множество. Но вот только не все онлайн калькуляторы вам с этим помогут.
Неделю назад меня попросили решить один простой пример, которые с помощью правила Лопиталя решался в 1 строчку. Как любой нормальный человек, я не стал решать его самостоятельно и решил найти онлайн-калькулятор, который сделает это за меня. Тем более, что пример был плёвый:
В итоге я нашел парочку онлайн-калькуляторов, которые посчитали мне правильный ответ примера, но к сожалению, содержали ошибки внутри самого решения. И вот как это у них получилось.
Есть классный математический сервис, который называется Wolframalpha. Это международная компания, которая выпускает серьезный софт для ученых: в частности Mathematica. У них есть онлайн-версия, которая позволяет получить ответы на множество вопросов, особенно если вы знаете английский. Виджет, взятый с их сайта, расположен ниже, и с его помощью вы можете получить ответ любого предела, который вам задали в институте.
Так вот, как работают многие онлайн-калькуляторы в Интернете? Сперва надо ввести ваш пример. Для этого в калькуляторе есть поля ввода самого предела и поле для ввода значения, к которой стремится переменная в вашем пределе. В случае с виджетом от wolframalpha, в поле «limit of » нужно ввести сам предел (используя правила написания формул, такие же как в LaTex), а в поле «as x approaches» ввести значение, к которому стремится переменная Х из вашего предела. Например:
- если Х стремится к 2, то пишем просто » 2 «.
- если Х стремится к единице слева, пишем » 1-0 «
- если Х стремится к минус бесконечности, пишем » — infinity «
Не волнуйтесь, если ошибетесь: виджет либо выдаст ошибку, либо сам исправит ваш запрос. В любом случае помимо ответа вы увидите, какой предел возьмет виджет и чему он будет равен?
А что делают онлайн-калькуляторы на других сайтах? Они «парсят» ваш предел, и с помощью LaTex записывают его в красивом виде. Дальше им нужно его решить, но раз вы ищите решение предела онлайн, или же просто вбили в поиске онлайн-калькулятор решения пределов, то скорее всего вы сами толком не знаете, как должно выглядеть правильное решение этого примера. Из распарсенного выражения на калькуляторе происходит несколько преобразований (либо нахождение производных, либо стандартные упрощения), а затем подставляется правильный ответ пример. Который получен, например,с помощью того самого виджета, который вы видите на этой странице.
Еще один минус в работе таких «онлайн-калькуляторов» состоит в том, что их решение может быть неоптимальным. Очень часто вас просят найти предел определенным способом. Калькуляторы же ищут решения стандартным способом, одинаковым для всех. Так что если вы учитесь в серьезном техническом вузе, или ваш преподаватель серьезно относится к проверке ваших занятий, то вас скорее всего раскусят). Единственный способ избежать этого — понимать, что написано в решении вашего примера. В видеоуроках я разбираю, как подходить к тем или иным примерам, и на что стоит обращать внимание. Ну а после того, как вы самостоятельно решите пару десятков примеров, у вас выработается собственная «чуйка».
Онлайн калькулятор: Предел функции в точке
По многочисленным просьбам наших пользователей публикуем калькулятор вычисляющий предел функции одного аргумента в заданной точке. Калькулятор вычисляет предел функции приближенным численным методом, что не позволяет нам вычислить предел в том случае, когда аргумент стремится к бесконечности. Подробности, как обычно, следуют за калькулятором.
Допустимые операции: + — / * ^ Константы: pi Функции: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch
Точность вычисленияЗнаков после запятой: 2
Предел функции в точке
Сохранить share extension
Определение
Число A называется пределом функции y=f(x), при х->x0, если для всех значений x, достаточно мало отличающихся от числа x0, соответствующие значения функции f(x) как угодно мало отличаются от числа A.
На этом определении предела функции и основана работа нашего калькулятора.
Для вычисления предела мы попросту вычисляем значение функции в точке незначительно отличающейся от заданной. Говоря незначительно, я имею в виду величину предельно мало отличающуюся от заданной точки, которая только возможна для нашей вычислительной системы. Для получения такой предельно малой величины мы берем некоторую малую величину и уменьшаем ее методом половинного деления до тех пор, пока значение функции в точке, отличающейся от заданной на эту малую величину, определено.
В результате предпоследнего вычисления мы получаем предел нашей функции.
Метод требует наличия некоторых вычислительных мощностей, потому что значение функции вычисляется несколько сотен раз. Но так как все вычисления в наших калькуляторах делаются на компьютере пользователя, заботу о наличии этих мощностей мы перекладываем на ваши плечи, дорогие посетители нашего сайта 🙂
planetcalc.ru
Нахождение предела функции в точке по правилу Лопиталя
Калькулятор ниже находит предел функции по правилу Лопиталя (через производные числителя и знаменателя). Описание правила смотри ниже.
Допустимые операции: + — / * ^ Константы: pi Функции: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch
Точка в которой необходимо посчитать предел
Точность вычисленияЗнаков после запятой: 2
Правило Лопиталя
Предел функции в точке
Сохранить share extension
Правило Лопиталя
Если выполняются следующие условия:
- пределы функций f(x) и g(x) равны между собой и равны нулю или бесконечности:
или ; - функции g(x) и f(x) дифференцируемы в проколотой окрестности a;
- производная функции g(x) не равна нулю в проколотой окрестности a
- и существует предел отношения производной f(x) к производной g(x):
Тогда существует предел отношения функций f(x) и g(x):
,
И он равен пределу отношения производной функции f(x) к производной функции g(x):
В формуле допускается использование числа пи (pi), экспоненты (e), следующих математических операторов:
+ — сложение
— — вычитание
* — умножение
/ — деление
^ — возведение в степень
и следующих функций:
- sqrt — квадратный корень
- rootp — корень степени p, например root3(x) — кубический корень
- exp — e в указанной степени
- lb — логарифм по основанию 2
- lg — логарифм по основанию 10
- ln — натуральный логарифм (по основанию e)
- logp — логарифм по основанию p, например log7(x) — логарифм по основанию 7
- sin — синус
- cos — косинус
- tg — тангенс
- ctg — котангенс
- sec — секанс
- cosec — косеканс
- arcsin — арксинус
- arccos — арккосинус
- arctg — арктангенс
- arcctg — арккотангенс
- arcsec — арксеканс
- arccosec — арккосеканс
- versin — версинус
- vercos — коверсинус
- haversin — гаверсинус
- exsec — экссеканс
- excsc — экскосеканс
- sh — гиперболический синус
- ch — гиперболический косинус
- th — гиперболический тангенс
- cth — гиперболический котангенс
- sech — гиперболический секанс
- csch — гиперболический косеканс
- abs — абсолютное значение (модуль)
- sgn — сигнум (знак)
planetcalc.ru
Математические калькуляторы с решением — NIT for You
Математические онлайн-калькуляторы — это программы, с помощью которых можно получить решения математических задач.
http://calc-x.ru/
Математический калькулятор на этом сайте выполняет автоматическое и мгновенное решение как простых, так и сложных задач математики, в том числе операции над матрицами, геометрические расчеты, работа с дробями, логарифмами, уравнениями, процентами и т.д. Вы сможете произвести перевод чисел в другую систему счисления и перевод физических величин. Для теоретической помощи существует раздел «Полезное для решения математических задач», в котором можно найти различную табличную и другую информацию. Вычисления доступны 24 часа в сутки с телефона, планшета или компьютера подключенного к Internet.
http://matematikam.ru/calculate-online/
В разделе «Онлайн сервисы» вам предоставлена возможность решать онлайн интегралы, брать производные, пределы, считать ряды практически для любых функций. Решение задач производится автоматически программой и является быстрым и абсолютно бесплатным. Все калькуляторы выдают ответ с подробным решением. Считайте легко, быстро и надежно вместе с нами.
https://www.kontrolnaya-rabota.ru/s/
На сайте представлены следующие сервисы:
Задачи в данных сервисах решаются в несколько шагов, после чего решение автоматически отправляется к Вам на ящик.
Отправка на почтовый ящик позволяет решить проблему сохранности решения, а также позволяет напечатать решение на принтере.
http://o-math.com/math/assistance/
Особенностью онлайн-калькуляторов по математике есть то, что они не только выдают ответ, но и детально расписывают ход решения задачи. Данные калькуляторы пригодятся и людям, которым просто нужно найти ответ, не вникая в ход решения, и людям, желающим выучить математику.
Высшая математика
Онлайн калькуляторы. Аналитическая геометрия. Декартовые координаты.
http://www.matburo.ru/
С помощью сайта-сервиса WolframAlpha Вы можете выполнить самые разные математические вычисления on-line: построение графиков функции, работа с матрицами, решение алгебраических и дифференциальных уравнений, действия с числами и переменными, вычисление процентов и котировок акций, вычисление производных, интегралов, нулей функции, максимумов и минимумов… Кстати, возможны решения задач онлайн из разных областей наук: физика, химия, география, компьютеры, единицы измерения и др. Перейти к решению задач по математике онлайн (с инструкциями и примерами)
Этот список можно продолжать….
nitforyou.com