Решение неравенств методом интервалов
Статья посвящена разбору примеров решения неравенств методом интервалов. При том, что этот метод решения неравенств достаточно универсален, важно помнить, что не всегда применение данного метода оправдано с точки зрения объема вычислений. Иногда бывает удобнее воспользоваться некоторыми другими методами решения неравенств. Все рассмотренные в статье неравенства взяты из реальных вариантов ЕГЭ по математике разных лет. Присутствует подробный видеоразбор одного из заданий.
Метод интервалов
Пусть заданное неравенство имеет вид: Для решения этого неравенства используется так называемый метод интервалов (метод промежутков), который состоит в следующем.
Во-первых, на числовую ось наносят точки разбивающие ее на промежутки, в которых выражение определено и сохраняет знак («плюс» или «минус»). Такими точками могут быть корни уравнений и Соответствующие этим корням точки отмечают на числовой оси: закрашенными кружками — точки, удовлетворяющие заданному неравенству, а светлыми кружками — не удовлетворяющие ему.
Во-вторых, определяют и отмечают на числовой оси знак выражения для значении , принадлежащих каждому из полученных промежутков. Если функции и являются многочленами и не содержат множителей вида где то достаточно определить знак функции в любом таком промежутке, а в остальных промежутках знаки «плюс» и «минус» будут чередоваться.
Если же в числителе или знаменателе дроби имеется множитель вида где то непосредственной проверкой выясняют, удовлетворяет ли значение заданному неравенству.
Изменение знаков удобно иллюстрировать с помощью волнообразной кривой (кривой знаков), проведенной через отмеченные точки и лежащей выше или ниже числовой оси в соответствии со знаком дроби в рассматриваемом промежутке. Промежутки, которые содержат точки, удовлетворяющие данному неравенству, иногда покрывают штрихами. На ту же ось помещают и точки, соответствующие Заштрихованная область в совокупности с полученными точками будет являться ответом к неравенству.
Общий вид прямой знаков в методе интервалов
Примеры решения неравенств методом интервалов
Решение. Упрощаем неравенство путем равносильных преобразований:
При умножении или делении обеих частей неравенства на отрицательное число, меняется знак неравенства!
Выражения, стоящие в числителе и знаменателе, можно разложить на множители, тогда неравенство примет вид:
Далее по алгоритму решения неравенств методом интервалов находим корни уравнений и . Из первого получаем Из второго получаем Наносим на числовую прямую получившиеся точки, причем точки и обозначаем закрашенными кружочками (для них неравенство выполняется), а точки и — светлыми (для них неравенство не выполняется, при этих значениях, выражение, стоящее слева от знака неравенства, вообще не имеет смысла):
Числовая прямая с отмеченными точками
Определяем теперь знаки выражения на полученных промежутках (подставляем любое значение из каждого полученного промежутка в данное выражение), изображаем кривую знаков, заштриховываем те промежутки, на которых исходное неравенство выполняется:
Кривая знаков для исходного неравенства
Итак, исходному неравенству удовлетворяют следующие значения:
Ответ:
Задача для самостоятельного решения №1. Решите неравенство:
Показать ответ
Ответ: Пример 2. Решите неравенство:
Решение. Подкоренное выражение, как известно, не может принимать отрицательных значений, также не допускается нахождение в знаменателе дроби нуля. Следовательно, область допустимых значений данного неравенства определяется неравенством и тем условием, что Решаем уравнения и Из первого уравнения получаем, что Из второго уравнения получаем, что Наносим область допустимых значений неравенства и полученные точки на числовую прямую, причем эти точки будет светлыми, поскольку ни одно из значений и не удовлетворяет неравенству. Сразу определяем знаки выражения в каждом из полученных промежутков и рисуем кривую знаков:
yourtutor.info
Метод интервалов: примеры, решения
Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.
Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.
Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.
Yandex.RTB R-A-339285-1Алгоритм
Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f(x)<0 (знак неравенства может быть использован любой другой, например, ≤, > или ≥). Здесь f(x) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:
- произведение линейных двучленов с коэффициентом 1 при переменной х;
- произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.
Приведем несколько примеров таких неравенств:
(x+3)·(x2−x+1)·(x+2)3≥0,
(x-2)·(x+5)x+3>0 ,
(x−5)·(x+5)≤0,
(x2+2·x+7)·(x-1)2(x2-7)5·(x-1)·(x-3)7≤0 .
Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:
- находим нули числителя и знаменателя, для этого числитель и знаменатель выражения в левой части неравенства приравниваем к нулю и решаем полученные уравнения;
- определяем точки, которые соответствуют найденным нулям и отмечаем их черточками на оси координат;
- определяем знаки выражения f(x) из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
- наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знаки < или ≤ изображается, штрихуются «минусовые» промежутки, если же мы работаем с неравенством, имеющим знаки > или ≥, то выделяем штрих
zaochnik.com
Метод интервалов, решение неравенств
Решение неравенств
Метод интервалов
Перенос знаков
Выбор точек
Система и совокупность
Точка знакопостоянства
Что нельзя делать в неравенстве, даже под пытками:
1) Домножать на знаменатель.
2) Умножать/делить на отрицательное число, не меняя знак.
3) Убирать бездумно логарифм или основание.
Начнем с простого:
Линейные уравнения решаются обычным переносом, один только очень важный момент (домножение или деление на отрицательное число):
Ответ: x ∈ ( −4; +oo).
Если же возьмем пример, где придется делить или умножать на отрицательное число, то знак поменяется:
Ответ: x ∈ ( 0; +oo).
Следующий пример уже с дробью:
Приравняем числитель к нулю, и скажем, что знаеменатель не равен нулю:
Раставляем корни числителя и знаменателя на одной прямой. Попробуем подставить х = 0, чтобы определить знаки:
Там, где «0», ставим знак «−», а дальше знаки чередуем:
Из-за того, что знаком неравенства был «≥», нам подходят промежутки со знаком «+»:
Когда мы включаем точку (корень числителя) ставим «[ ]» — квадратную скобку. Если не включаем (корень знаменатля), или знак строгий (>, <), скобки круглые «( )» .
Ответ: x ∈ (2; 7].
Данный пример можно решить по-другому. Подумаем, когда дробь больше нуля? Конечно, когда числитель и знаменатель — положительные значения, или когда оба отрицательные. Поэтому данное неравенство можно разбить на две системы в совокупности:
Отметим на прямой решение каждого неравенства.
Решением системы «{» является тот участок, который подходит обоим неравенствам.
Решением совокупонсти «[» является тот участок, который включен хотя бы в одно неравенство.
Мой любимый пример:
Покажу мастер-класс, как делать не надо. Дома не повторять!
А теперь через метод интервалов разберемся, как сделать правильно:
Там, где ноль, ставим знак «−», а дальше чередуем:
В данном неравенстве знак меньше, поэтому записываем в ответ промежуток, где знак «−».
Ответ: x ∈ (−3; 3).
Перейдем к квадратному уравнению:
Разложим на множители и подставим x = 10, чтобы определить знак:
Нам требуются положительные значения:
Неравенство можно также решить, разложив на множители:
Ответ: x ∈ (−oo; −1) ∪ (5; +oo).
А теперь простой, но крайне показательный пример:
Убирать квадрат ни в коем случае нельзя. Простенький контрпример:
Надеюсь, убедил. Вместо знака больше поставим знак равно и попробуем решить методом интервалов:
Если корень повторяется четное количество раз, то в этой точке знак меняться не будет. Отмечать будем такую точку восклицательным знаком (а внутри него ±, чуть ниже объясню, зачем это).
Проверим это:
В данном неравенстве знак больше, тогда отметим те промежутки, где стоит знак «+».
Только точка «0» не подходит, 0 > 0 — неверно!
Ответ: x ∈ R \ {0} или x ∈ (−oo; 0) ∪ (0; +oo).
Переходим на новый уровень:
Все говорят, что домножать на знаменатель нельзя, а я говорю, что буду! (joke)
По методу координат найдем корни числителя и знаменателя:
Отметим все корни на одной прямой. Ноль — корень четной кратности, над ним рисуем восклицательный знак! Если это корень числителя, то точка будет закрашена, если знаменателя — выколота.
Требуется найти промежутки, где выражение больше или равно нулю. Нам подойдут все «промежутки», где знак плюс. А что по поводу точки x = 0, эта точка нам подойдет? Подставим:
Вот для чего ставить в восклицательном знаке ±. Чтобы не потерять отдельные точки, в данном случае 0.
Ответ: (−oo; − 6) ∪ {0} ∪ [ 3; +oo).
Дальше интереснее:
По той же схеме корни числителя и знаменателя:
Определим знак при x = 10 и расставим знаки:
Ответ: {−3} ∪ (−2; +oo).
Закрепляем последовательность:
Точка x = 3 встречается 3 раза (2 раза в числителе и 1 раз в знаменателе), знак через нее меняться будет! А также эта точка будет выколота, проверь это, подставив в уравнение x = 3. На ноль же делить нельзя?
Подставим x = 10 и расставим знаки:
Ответ: [ −5; 3) ∪ [ 5; +oo).
Все скользкие моменты разборали, стало понятнее?
Резюме:
- Если знак строгий (>, <), все точки выколотые (в круглые скобки).
- Если знак нестрогий (≥, ≤), корни числителя закрашенные, точки знаменателя выколотые [в квадратные скобки].
- Если корень является решением уравнения четное кол-во раз (2, 4, 6, 8), то в этой точке знак меняться не будет.
- Отдельная точка записывается {в фигурных скобках}.
Нашел ошибку/опечатку — напиши.
Группа с полезной информацией и легким математическим юмором.
ik-study.ru
Неравенства методом интервалов
Рассмотрим, как решать неравенства методом интервалов, на конкретных примерах.
Используем алгоритм метода интервалов. Приравниваем к нулю левую часть:
Полученные точки отмечаем на числовой прямой:
Для проверки знака берем 0 (желательно на числовой прямой отметить взятую точку, чтобы потом не забыть, куда ставить знак). Подставляем 0 в последнее неравенство: (2∙0-14)(5∙0+25)= -14∙25, то есть (-)∙(+)= -. Таким образом, в промежуток, из которого взяли нуль, ставим знак «-«, остальные знаки чередуем в шахматном порядке. Поскольку решаем неравенство ≥0, выбираем промежутки со знаком «+» и записываем ответ.
Ответ:
Приравниваем к нулю левую часть:
Полученные точки отмечаем на числовой прямой:
В промежуток, которому принадлежит 0, ставим «+», остальные знаки расставляем в шахматном порядке. Поскольку решаем неравенство ≤0, в ответ выбираем промежутки со знаком «-«. (Не забываем, когда точки закрашенные, а когда — выколотые. Те точки, в которых знаменатель обращается в нуль, выколотые всегда).
Ответ:
Приравниваем к нулю левую часть:
По теореме, обратной теореме Виета
Полученные точки отмечаем на числовой прямой:
Для определения знака берем 0 и подставляем его в последнее неравенство. Получает (-)/(-)=(+). Остальные знаки расставляем в шахматном порядке. Поскольку решаем неравенство ≥0, выбираем промежутки со знаком «+» и записываем ответ.
Ответ:
Переносим все слагаемые в левую часть, приводим к наименьшему общему знаменателю и упрощаем:
После упрощения решаем неравенство методом интервалов.
Приравниваем к нулю левую часть:
Точек, в которых числитель обращается в нуль, нет. На числовой прямой отмечаем только одну точку:
Для проверки берем нуль. Подставляя его в последнее неравенство, получаем «+». На другом интервале — «-«. Нам нужен интервал с «-«.
Ответ:
Как решать более сложные неравенства методом интервалов, рассмотрим в следующий раз.
www.uznateshe.ru
Метод интервалов
Метод интервалов — это специальный алгоритм, предназначенный для решения сложных неравенств вида f(x) > 0. Алгоритм состоит из 5 шагов:
- Решить уравнение f(x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
- Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
- Найти кратность корней. Если корни четной кратности, то над корнем рисуем петлю. (Корень считается кратным, если существует четное количество одинаковых решений)
- Выяснить знак (плюс или минус) функции f(x) на самом правом интервале. Для этого достаточно подставить в f(x) любое число, которое будет правее всех отмеченных корней;
- Отметить знаки на остальных интервалах, чередуя их.
После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», если неравенство имело вид f(x) > 0, или знаком «−», если неравенство имеет вид f(x) < 0.
В случае с нестрогими неравенствами( ≤ , ≥) необходимо включить в интервалы точки, которые являются решением уравнения f(x) = 0;
Пример 1:
Решить неравенство:
(x — 2)(x + 7) < 0
Работаем по методу интервалов.
Шаг 1: заменяем неравенство уравнением и решаем его:
(x — 2)(x + 7) = 0
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю:
x — 2 = 0 => x = 2
x + 7 = 0 => x = -7
Получили два корня.
Шаг 2: отмечаем эти корни на координатной прямой. Имеем:
Шаг 3: находим знак функции на самом правом интервале (правее отмеченной точки x = 2). Для этого надо взять любое число, которое больше числа x = 2. Например, возьмем x = 3 (но никто не запрещает взять x = 4, x = 10 и даже x = 10 000).
Получим:
f(x) = (x — 2)(x + 7)
x = 3
f(3)=(3 — 2)(3 + 7) = 1*10 = 10
Получаем, что f(3) = 10 > 0 (10 – это положительное число), поэтому в самом правом интервале ставим знак плюс.
Шаг 4: нужно отметить знаки на остальных интервалах. Помним, что при переходе через каждый корень знак должен меняться. Например, справа от корня x = 2 стоит плюс (мы убедились в этом на предыдущем шаге), поэтому слева обязан стоять минус. Этот минус распространяется на весь интервал (−7; 2), поэтому справа от корня x = −7 стоит минус. Следовательно, слева от корня x = −7 стоит плюс. Осталось отметить эти знаки на координатной оси.
Вернемся к исходному неравенству, которое имело вид:
(x — 2)(x + 7) < 0
Итак, функция должна быть меньше нуля. Значит, нас интересует знак минус, который возникает лишь на одном интервале: (−7; 2). Это и будет ответ.
Пример 2:
Решить неравенство:
(9x2 — 6x + 1)(x — 2) ≥ 0
Решение:
Для начала необходимо найти корни уравнения
(9x2 — 6x + 1)(x — 2) = 0
Свернем первую скобку, получим:
(3x — 1)2(x — 2) = 0
Отсюда:
x — 2 = 0; (3x — 1)2 = 0
Решив эти уравнения получим:
x1 = 2; x2 = ; x3= ;
Нанесем точки на числовую прямую:
Т.к. x2 и x3 – кратные корни, то на прямой будет одна точка и над ней “петля”.
Возьмем любое число меньшее самой левой точки и подставим в исходное неравенство. Возьмем число -1.
(9*(-1)2 — 6*(-1) + 1)(-1 — 2) = -12
Т.к. решение уравнения при x = -1 отрицательное (-12), то на графике в крайнем левом интервале пишем -, и далее чередуя знак записываем его в следующие интервалы:
Далее выбираем отрицательные интервалы, т.к. знак нашего неравенства ≤.
Не забываем включать решение уравнения (найденные X), т.к. наше неравенство нестрогое.
Ответ: {} U [2;+∞)
Пример 3:
Решить неравенство:
(9x2 — 6x + 1)(x — 2) > 0
Все, чем данное неравенство отличается от предыдущего – вместо нестрогого неравенства (≥) стоит строгое (>). Как ни странно, решение данного неравенства будет иным.
Найдем корни уравнения (9x2 — 6x + 1)(x — 2) ≠ 0 (знак ≠ означает, что найденные корни не могут быть решениями нашего неравенства, т.к. оно строгое). Проделав все этапы, что и в предыдущем примере получим:
x1= 2; x2,3 =;
Вынесем наши решения на числовую прямую (обратите внимания, что данные точки не включены, т.к. неравенство строгое, т.е. левая часть неравенства не равна нулю)
Обратите внимание, что корни x2 и x3 совпадают, корень “” является кратным. Соответственно, в данной точке на числовой прямой рисуем петлю.
Возьмем число -1.
(9*(-1)2 — 6*(-1) + 1)(-1 — 2) = -12
Т.к. решение уравнения при x = -1 отрицательное (-12), то на графике в крайнем левом интервале пишем -, и далее чередуя знак записываем его в следующие интервалы:
Далее выбираем отрицательные интервалы, т.к. знак нашего неравенства <.
Найденные корни не включаем в ответ.
Ответ: (2;+∞).
ya-znau.ru
Метод интервалов — материалы для подготовки к ЕГЭ по Математике
Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.
1. Рассмотрим, например, такое неравенство
Метод интервалов позволяет решить его за пару минут.
В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.
Метод интервалов основан на следующем свойстве дробно-рациональной функции.
Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.
Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. (Если вы не помните, что такое нули функции и знак функции на промежутке – смотрите статью «Исследование графика функции»).
Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .
, где и — корни квадратного уравнения .
Получим:
Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.
Нули знаменателя и — выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и — закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.
Эти точки разбивают ось на промежутков.
Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из «скобок» отрицательная. Левая часть имеет знак .
Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .
. Возьмем . При выражение положительно — следовательно, оно положительно на всем промежутке от до .
При левая часть неравенства отрицательна.
И, наконец, . Подставим и проверим знак выражения в левой части неравенства. Каждая «скобочка» положительна. Следовательно, левая часть имеет знак .
Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:
Ответ: .
Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным.
Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:
, или , или , или .
(в левой части — дробно-рациональная функция, в правой — нуль).
Затем — отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого — записываем ответ. Вот и всё.
Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.
Ты нашел то, что искал? Поделись с друзьями!
2. Рассмотрим еще одно неравенство.
Снова расставляем точки на оси . Точки и — выколотые, поскольку это нули знаменателя. Точка — тоже выколота, поскольку неравенство строгое.
При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :
При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :
При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :
Наконец, при все множители положительны, и левая часть имеет знак :
Ответ: .
Почему нарушилось чередование знаков? Потому что при переходе через точку «ответственный» за неё множитель не изменил знак. Следовательно, не изменила знак и вся левая часть нашего неравенства.
Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется. В случае нечётной степени знак, разумеется, меняется.
3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:
Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:
Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю — следовательно, эта точка является решением.
Ответ: .
В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!
4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:
Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно — положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции.
И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:
— которое легко решается методом интервалов.
Обратите внимание — мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.
5. Рассмотрим еще одно неравенство, на вид совсем простое:
Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину — знак неравенства меняется.
Мы поступим по другому — соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:
И после этого — применим метод интервалов.
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
ege-study.ru
Метод интервалов. Как решать неравенства с помощью метода интервалов
Метод интервалов применяется при решении огромного количества самых разных неравенств – квадратных, дробно-рациональных, показательных, логарифмических…
Примеры неравенств, которые удобно решать методом интервалов:
\((2x-5)(x+3)≤0\) |
\(\frac{-14}{x^2+2x-15}\)\(≤0\) |
\(x^2<361\) |
\(\frac{x^2-6x+8}{x-1}\)\(-\)\(\frac{x-4}{x^2-3x+2}\)\(≤0\) |
\(\frac{x-2}{3-x}\)\(≤0\) |
\(\frac{2}{5^x-1}\)\(+\)\(\frac{5^x-2}{5^x-3}\)\(≥2\) |
\(x^2 (-x^2-64)≤64(-x^2-64)\) |
\(\frac{5\log^2_{2}x-100}{\log^2_{2}x-25}\)\(≥4\) |
Как решать неравенства методом интервалов (алгоритм с примерами)
-
Равносильными преобразованиями приведите неравенство к виду: \(\frac{(x-x_1 )^n (x-x_2 )^k…}{(x-x_3 )^l (x-x_4 )^m…}\)\(∨0\) или \((x-x_1 )^n (x-x_2 )^k…∨0\) (\(∨\) — любой знак сравнения; \(n,k,l,m\) – любые натуральные числа большие нуля, в том числе и \(1\))
Пример:
\((2x+5)(x-2)>5\)
\(2x^2-4x+5x-10-5>0\)
\(2x^2+x-15>0\)
\(D=1-4 \cdot 2 \cdot (-15)=121=11^2\)
\(x_1=\frac{-1-11}{2 \cdot 2}=-3;\) \(x_2=\frac{-1+11}{2 \cdot 2}=\frac{5}{2}\)
\(2(x-\frac{5}{2})(x+3)>0\) \(|:2\)
\((x-\frac{5}{2})(x+3)>0\)Отметим, что здесь применено разложение на множители квадратного трехчлена.
-
Найдите корни числителя и знаменателя (т.е. такие значения икса, которые превратят их в ноль).
\(x=\frac{5}{2}; x=-3\)
-
Нанесите найденные значения на числовую ось.
Если неравенство строгое, то корни числителя обозначьте «выколотой» точкой, если нет — закрашенной. Корни знаменателя «выколоты» всегда, независимо от строгости знака сравнения.
-
Расставьте знаки на интервалах числовой оси. Напомню правила расстановки знаков:
— В крайнем правом интервале ставим знак плюс;
— Дальше двигаемся влево;
— Переходя через число:
— меняем знак, если скобка с этим числом была в нечетной степени (1, 3, 5…)
— не меняем знак, если скобка с этим числом была в четной степени (2, 4, 6…)
-
Выделите нужные промежутки.
Если есть отдельно стоящий корень, то отметьте его флажком, чтоб не забыть внести этот корень в ответ (такая ситуация рассмотрена в одном из примеров ниже). -
Запишите в ответ выделенные промежутки и корни, отмеченные флажком (если они есть).
Ответ: \((-∞;-3)∪(\frac{5}{2};∞)\)
Пример. (задание из ОГЭ) Решите неравенство методом интервалов \((x-7)^2< \sqrt{11}(x-7)\)
Решение:
\((x-7)^2< \sqrt{11}(x-7)\) |
Чтобы в неравенстве справа был \(0\), перенесем выражение из правой части в левую. |
|
\((x-7)^2- \sqrt{11}(x-7)<0\) |
Вынесем за скобку \((x-7)\). |
|
\((x-7)(x-7-\sqrt{11})<0\) |
Находим корни. |
|
\(x=7;\) \(x=7+\sqrt11\) |
Расставляем на числовой оси корни, затем знаки и закрашиваем нужные интервалы |
|
Записываем ответ |
Ответ: \((7;7+\sqrt{11})\)
Пример. Решите неравенство методом интервалов \(\frac{(4-x)^3 (x+6)(6-x)^4}{(x+7,5)}\)\(≥0\)
Решение:
\(\frac{(4-x)^3 (x+6)(6-x)^4}{(x+7,5)}\)\(≥0\) |
Здесь на первый взгляд все кажется нормальным, а неравенство изначально приведенным к нужному виду. Но это не так – ведь в первой и третьей скобке числителя икс стоит со знаком минус.
Преобразовываем скобки, с учетом того, что четвертая степень — четная (т.е. уберет знак минус), а третья – нечетная (т.е. не уберет). |
|
\(\frac{-(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\)\(≥0\) |
Теперь все скобки выглядят как надо (первым идет иск без знака и только потом число). Но перед числителем появился минус. Убираем его, умножая неравенство на \(-1\), не забыв при этом перевернуть знак сравнения |
|
\(\frac{(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\)\(≤0\) |
Готово. Вот теперь неравенство выглядит как надо. Можно применять метод интервалов. |
|
\(x=4;\) \(x=-6;\) \(x=6;\) \(x=-7,5\) |
Расставим точки на оси, знаки и закрасим нужные промежутки. |
|
В промежутке от \(4\) до \(6\), знак не надо менять, потому что скобка \((x-6)\) в четной степени (см. пункт 4 алгоритма). Флажок будет напоминанием о том, что шестерка — тоже решение неравенства. |
Ответ: \((-∞;7,5]∪[-6;4]∪\left\{6\right\}\)
Пример. (Задание из ОГЭ) Решите неравенство методом интервалов \(x^2 (-x^2-64)≤64(-x^2-64)\)
Решение:
\(x^2 (-x^2-64)≤64(-x^2-64)\) |
Слева и справа есть одинаковые выражения – это явно не случайно. Первое желание – поделить на \(-x^2-64\), но это ошибка, т.к. есть шанс потерять корень. Вместо этого перенесем \(64(-x^2-64)\) в левую сторону |
|
\(x^2 (-x^2-64)-64(-x^2-64)≤0\) |
Вынесем за скобку общий множитель. |
|
\((-x^2-64)(x^2-64)≤0\) |
Вынесем минус в первой скобки и разложим на множители вторую |
|
\(-(x^2+64)(x-8)(x+8)≤0\) |
Обратите внимание: \(x^2\) либо равно нулю, либо больше нуля. Значит, \(x^2+64\) – однозначно положительно при любом значении икса, то есть это выражение никак не влияет на знак левой части. Поэтому можно смело делить обе части неравенства на это выражение. |
|
\((x-8)(x+8)≥0\) |
Теперь можно применять метод интервалов |
|
\(x=8;\) \(x=-8\) |
Запишем ответ |
Ответ: \((-∞;-8]∪[8;∞)\)
Смотрите также:
Квадратные неравенства
Дробно-рациональные неравенства
cos-cos.ru