Найти наименьшее – Как найти наибольшее и наименьшее значение функции, примеры

Содержание

Как найти наибольшее и наименьшее значения функции на отрезке.

Как найти наибольшее и наименьшее значения функции на отрезке?

Для этого мы следуем известному алгоритму:

1. Находим ОДЗ функции.

2. Находим  производную функции

3. Приравниваем производную  к нулю

4. Находим промежутки, на которых производная сохраняет знак,  и по ним определяем промежутки возрастания и убывания функции:

Если на промежутке I производная функции , то функция возрастает на этом  промежутке.

Если на промежутке I производная функции , то функция убывает на этом промежутке.

5. Находим точки максимума и минимума функции.

В точке максимума функции производная меняет знак с «+» на «-«.

В точке минимума функции производная меняет знак с «-» на «+».

6. Находим значение функции в концах отрезка,

  • затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
  • или   сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции

Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.

Рассмотрим функцию . График этой функции выглядит так:

В зависимости от того, на каком промежутке мы будем рассматривать функцию, алгоритм нахождения наибольшего или наименьшего значения будет различным.

1. Рассмотрим функцию на отрезке

Функция возрастает на этом отрезке, поэтому наибольшее значение она будет принимать в правом конце отрезка: , а наименьшее — в левом: .

2. Рассмотрим функцию на отрезке

Очевидно, что наибольшее значение функция принимает в точке максимума , а наименьшее — в одном из концов отрезка, то есть надо найти значения и и выбрать из них наименьшее.

3. Если мы рассмотрим функцию на отрезке , то чтобы найти наибольшее значение, нам нужно будет сравнить значения функции в точке максимума и в правом конце отрезка, то есть  и .

Чтобы найти наименьшее значение функции,  нам нужно будет сравнить значения функции в точке минимума  и в левом конце отрезка, то есть  и .

Эти рассуждения очевидны, если перед глазами есть график функции. Но эскиз графика легко нарисовать, проведя исследование функции с помощью производной:

1. ОДЗ функции  — множество действительных чисел.

2. 

3. , если  или

Нанесем корни производной на числовую ось и расставим знаки. Теперь поведение функции легко определить, и, следуя за стрелками, символизирующими возрастание — убывание, можно схематично изобразить ее график:

 

Рассмотрим несколько примеров решения задач из  Открытого банка заданий для подготовки к ЕГЭ  по математике

1. Задание B15 (№ 26695)

Найдите наибольшее значение функции   на отрезке .

1. Функция определена при всех действительных значениях х

2.

3. 

Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция  возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.

y(0)=5

Ответ: 5.

2. Задание B15 (№ 26702)

Найдите наибольшее значение функции   на отрезке [].

1. ОДЗ функции  

2. 

Производная равна нулю при , однако, в этих точках она не меняет знак:

, следовательно, , значит, , то есть производная при всех допустимых значених х неотрицательна, следовательно, функция  возрастает и принимает наибольшее значение в правом конце промежутка, при .

Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:

у(0)=5

Ответ: 5.

3. Задание B15 (№ 26708)

Найдите наименьшее значение функции   на отрезке [].

1.  ОДЗ функции :

2. 

3.

Расположим корни этого уравнения на тригонометрической окружности.

Промежутку  принадлежат два числа:  и 

Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки  и  производная меняет знак.

Изобразим смену знаков производной функции  на координатной прямой:

Очевидно, что точка  является точкой минимума ( в ней производная меняет знак с «-» на «+»), и чтобы найти наименьшее значение функции  на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .

Схитрим: так как результат должен быть целым числом, или конечной десятичной дробью, а  таковым на является, следовательно подставим в уравнение функции 

Ответ: -1

Вероятно, Ваш браузер не поддерживается. Попробуйте скачать
Firefox

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Наименьшее и наибольшее значения функции на отрезке

Процесс поиска наименьшего и наибольшего значения функции на отрезке напоминает увлекательный облёт объекта (графика функции) на вертолёте с обстрелом из дальнобойной пушки определённых точек и выбором из этих точек совсем особенных точек для контрольных выстрелов. Точки выбираются определённым образом и по определённым правилам. По каким правилам? Об этом мы далее и поговорим.

Если функция y = f(x) непрерывна на отрезке [ab], то она достигает на этом отрезке наименьшего и наибольшего значений. Это может произойти либо в точках экстремума, либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции, непрерывной на отрезке [ab], нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.

Пусть, например, требуется определить наибольшее значение функции f

(x) на отрезке [ab]. Для этого следует найти все её критические точки, лежащие на [ab].

Критической точкой называется точка, в которой функция определена, а её производная либо равна нулю, либо не существует. Затем следует вычислить значения функции в критических точках. И, наконец, следует сравнить между собой по величине значения функции в критических точках и на концах отрезка (f(a) и f(b)). Наибольшее из этих чисел и будет наибольшим значением функции на отрезке [ab].

Аналогично решаются и задачи на нахождение наименьших значений функции.

Пример 1. Найти наименьшее и наибольшее значения функции на отрезке [-1, 2].

Решение. Находим производную данной функции . Приравняем производную нулю () и получим две критические точки: и . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке достаточно вычислить её значения на концах отрезка и в точке , так как точка не принадлежит отрезку [-1, 2]. Эти значения функции — следующие: , , . Из этого следует, что наименьшее значение функции (на графике ниже обозначено красным), равное -7, достигается на правом конце отрезка — в точке , а наибольшее (тоже красное на графике), равно 9, — в критической точке .

Если функция непрерывна в некотором промежутке и этот промежуток не является отрезком (а является, например, интервалом; разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок), то среди значений функции может и не быть наименьшего и наибольшего. Так, например, функция, изображённая на рисунке ниже, непрерывна на ]-∞, +∞[ и не имеет наибольшего значения.

Однако для любого промежутка (закрытого, открытого или бесконечного) справедливо следующее свойство непрерывных функций.

Если функция непрерывна в промежутке и имеет единственный экстремум, то он является наименьшим значением в случае минимума и наибольшим — в случае максимума.

Как наименьшее значение функции, так и её наибольшее значение, могут быть найдены не только в одной точке, принадлежащей заданного интервала, а, как, например, далее — в двух.

Нередки случаи, когда уравнение, полученное от приравнивания производной функции нулю, не имеет

действительных решений. Тогда наименьшее и наибольшее значения функции можно найти только на концах отрезка. Таков следующий пример.

Неплохо было бы взять и случаи, когда производная функции вычисляется не одним махом, как в предыдущих примерах. Это мы сейчас и сделаем, решив пример, где требуется найти производную частного.

Есть преподаватели, которые по теме нахождения наименьшего и наибольшего значений функции не дают студентам для решения примеры сложнее только что рассмотренных, то есть таких, в которых функция — многочлен либо дробь, числитель и знаменатель которой — многочлены. Но мы не ограничимся такими примерами, поскольку среди преподавателей бывают любители заставить студентов думать по полной (таблице производных). Поэтому в ход пойдут логарифм и тригонометрическая функция.

В прикладных экстремальных задачах нахождение наименьшего (наибольшего) значений функции, как правило, сводится к нахождению минимума (максимума). Но больший практический интерес имеют не сами минимумы или максимумы, а те значения аргумента, при которых они достигаются. При решении прикладных задач возникает дополнительная трудность — составление функций, описывающих рассматриваемое явление или процесс.

Пример 8. Резервуар ёмкостью 4 , имеющий форму параллелепипеда с квадратным основанием и открытый сверху, нужно вылудить оловом. Каковы должны быть размеры резервуара, чтобы на его покрытие ушло наименьшее количество материала?

Решение. Пусть x — сторона основания, h — высота резервуара, S — площадь его поверхности без крышки, V — его объём. Площадь поверхности резервуара выражается формулой , т.е. является функцией двух переменных . Чтобы выразить S как функцию одной переменной, воспользуемся тем, что , откуда . Подставив найденное выражение h в формулу для S:

или

.

Исследуем эту функцию на экстремум. Она определена и дифференцируема всюду в ]0, +∞[, причём

.

Приравниваем производную нулю () и находим критическую точку . Кроме того, при производная не существует, но это значение не входит в область определения и поэтому не может быть точкой экстремума. Итак, — единственная критическая точка. Проверим её на наличие экстремума, используя второй достаточный признак. Найдём вторую производную . При вторая производная больше нуля (). Значит, при функция достигает минимума . Поскольку этот минимум — единственный экстремум данной функции, он и является её наименьшим значением. Итак, сторона основания резервуара должна быть равна 2 м, а его высота .

Пример 9. Из пункта A, находящегося на линии железной дороги, в пункт С, отстоящий от неё на расстоянии l, должны переправляться грузы. Стоимость провоза весовой единицы на единицу расстояния по железной дороге равна , а по шоссе она равна . К какой точке М линии железной дороги следует провести шоссе, чтобы транспортировка груза из А в С была наиболее экономичной (участок АВ железной дороги предполагается прямолинейным)?

Пусть , , (см. рисунок ниже).

Тогда , , . Стоимость провоза p единиц груза по шоссе СМ составит , а по железной дороге МА она составит . Общая стоимость провоза груза по пути СМА выражается функцией

,

где .

Нужно найти наименьшее значение этой функции. Она дифференцируема при всех значениях x, причём

.

Приравняв производную нулю, получим иррациональное уравнение , решение которого даёт единственную критическую точку (так как точка не входит в область определения функции).

Взяв контрольные точки и слева и справа от критической точки, убедимся, что производная меняет знак с минуса на плюс. Следовательно, при стоимость провоза груза из А и С является наименьшей, если . Если же , т. е. , то шоссе должно пройти по прямой АС (см. рисунок ниже).

Весь блок «Производная»

function-x.ru

Найти наименьшее значение функции х2 | Геометрия

Найти наименьшее значение функции х2 | Геометрия — просто!
Друзья, добрый день!
Сегодня мы начнём разбирать 12 задание ЕГЭ,
в котором необходимо найти
наименьшее значение функции,
точку минимума или максимума функции с помощью производных.
Задание достаточно простое,
если знать
формулы производных,
уметь решать
простейшие квадратные уравнения
и отыскивать
интервалы знакопостоянства.
Давайте приступим.
Задание 1. Найти наименьшее значение функции  у = √(х²  + 10х + 106)
Решение: покажем два решения данного задания.
А. Берём производную по у и приравниваем её к нулю.
В тех точках, в которых производная равна нулю, функция имеет либо максимум, либо минимум.
Данная функция сложная. Поэтому берём производную от сложной функции:
у´ = (2х + 10)/2√(х²  + 10х + 106) = 0
Дробь равна нулю  в том случае, когда числитель её равен нулю, а знаменатель существует.
Выражение, стоящее под знаком корня всегда положительное, т.к. дискриминант его — отрицательный.
Приравниваем числитель дроби к нулю: 2
х + 10 = 0 х + 5 = 0 х = — 5
Имеем одну точку на числовой прямой.
Правее этой точки знак производной всегда положительный.
Левее этой точки знак меняется на противоположный, т.е. на минус.
При переходе производной с минуса на плюс через ноль, у функции в этой точке — минимум.
Подставляем -5 в значение  у = √(х²  + 10х + 106)
у(-5) = у = √(25  — 50 + 106) = √81 = 9
Б. Возводим в квадрат правую и левую части уравнения у = √(х²  + 10х + 106)
у² = х²  + 10х + 106
Теперь берём производную от правой и левой части
2у´ = 2х + 10
у´ = х + 5
у´ = 0 при х = -5.
Далее как  в решении А.
Ответ: наименьшее значение функции 9.
Задание 2. Найти наибольшее значение функции у = √(-х²  + 6х + 40)
Решение: Ещё один вариант решения данного задания.
Под корнем стоит выражение -х²  + 6х + 40, которое в силу ООФ должно быть не менее нуля.
Графически — это парабола и ветви её направлены вниз.
Найдем точки пересечения этой параболы с осью ОХ.
-х²  + 6х + 40 = 0
х²  — 6х — 40 = 0   Решая это уравнение по теореме Виета находим корни
х1 = 10   х2 = -4
Максимальное значение функции находится в вершине параболы.
Абсцисса вершины находится между корнями, т.е. в точке х = 3.
Находим у(3) = √(-9   + 6·3 + 40) = √49 = 7.
Решая это задание через производную, получим:
у² = -х²  + 6х + 40
2у´ = -2х + 6
у´ = -х + 3
у´ = 0 при х = 3.
Далее получаем максимум функции равен  7.
Ответ: 7.
Задание 3. Найти точку минимума функции   у = (х + 24)ех – 70
Решение: производная произведения равна производной первого множителя, умноженной на второй множитель плюс производной второго множителя, умноженной на первый множитель.
Ещё надо учесть, что второй множитель — сложная функция.
у´ = (х + 24)´ех – 70  + (х + 24)(ех – 70 )´ = 0
у´ = ех – 70  + (х + 24)ех – 70  = 0
ех – 70 (1 + х + 24) = 0
Произведение двух множителей равно нулю в том случае, если один из них равен нулю.
Показательная функция нулю никогда не равна, значит нулем может быть выражение в скобке.
х + 25 = 0
х = — 25.
Ответ: точка минимума функции — 25.
Задание 4. Найдите наименьшее значение функции у = (х – 23)2е2х – 44      на отрезке [1;23].
Решение: Задание похоже на задание № 3 с той лишь разницей, что первый множитель здесь тоже является сложной функцией.
 у´ = [(х – 23)2]´е2х – 44   +  (х – 23)22х – 44)´ = 0
2(х — 23) е2х – 44 + (х – 23)22х – 44)·2 = 0
2(х — 23)е2х – 44 (1 + х — 23) = 0
х — 23 = 0        х = 23
х — 23 + 1= 0   х = 22
Производная имеет два корня, т.е. равна нулю в двух точках.
А это значит, что в точках
х = 22 и х = 23 функция имеет максимум или минимум.
Чтобы определить в какой точке максимум, а в какой минимум, строим числовую прямую.
______+_____22______-_____23______+____
 Правее правого корня производная всегда положительна.
При переходе через корень она меняет знак на противоположный.
В точке х = 22 производная меняет знак с плюса на минус — значит у функции в этой точке — максимум.
В точке х = 23 производная меняет знак с минуса на плюс — значит у функции в этой точке — минимум.
Точка х = 23 входит в заданный интервал.
Отсюда у(23) = (23 — 23)е2*23 – 44  = 0
Ответ: наименьшее значение функции 0.
Задание 5. Найдите точку минимума функции   у = 2х3/2/3 – 5х + 24
Решение: Производная первого одночлена — это производная степенной функции с коэффициентом 2/3.
у´= 3/2 * 2/3 * х½ — 5 = 0
√х — 5 = 0
√х = 5
х = 25.
Ответ: точка минимума функции х = 25.
На сегодня всё.
Успехов все и до новых задач!

Вам так же будет интересно:

Оставить комментарий

geometriyaprosto.ru

Как найти наименьшее общее кратное (НОК)

Рассмотрим три способа нахождения наименьшего общего кратного.

Нахождение путём разложения на множители

Первый способ заключается в нахождении наименьшего общего кратного путём разложения данных чисел на простые множители.

Допустим, нам требуется найти НОК чисел: 99, 30 и 28. Для этого разложим каждое из этих чисел на простые множители:

Чтобы искомое число делилось на 99, на 30 и на 28, необходимо и достаточно, чтобы в него входили все простые множители этих делителей. Для этого нам необходимо взять все простые множители этих чисел в наибольшей встречающейся степени и перемножить их между собой:

22 · 32 · 5 · 7 · 11 = 13 860

Таким образом, НОК (99, 30, 28) = 13 860. Никакое другое число меньше 13 860 не делится нацело на 99, на 30 и на 28.

Чтобы найти наименьшее общее кратное данных чисел, нужно разложить их на простые множители, затем взять каждый простой множитель с наибольшим показателем степени, с каким он встречается, и перемножить эти множители между собой.

Так как взаимно простые числа не имеют общих простых множителей, то их наименьшее общее кратное равно произведению этих чисел. Например, три числа: 20, 49 и 33 – взаимно простые. Поэтому

НОК (20, 49, 33) = 20 · 49 · 33 = 32 340.

Таким же образом надо поступать, когда отыскивается наименьшее общее кратное различных простых чисел. Например, НОК (3, 7, 11) = 3 · 7 · 11 = 231.

Нахождение путём подбора

Второй способ заключается в нахождении наименьшего общего кратного путём подбора.

Пример 1. Когда наибольшее из данных чисел делится нацело на другие данные числа, то НОК этих чисел равно большему из них. Например, дано четыре числа: 60, 30, 10 и 6. Каждое из них делится нацело на 60, следовательно:

НОК (60, 30, 10, 6) = 60

В остальных случаях, чтобы найти наименьшее общее кратное используется следующий порядок действий:

  1. Определяем наибольшее число из данных чисел.
  2. Далее находим числа, кратные наибольшему числу, умножая его на натуральные числа в порядке их возрастания и проверяя делятся ли на полученное произведение остальные данные числа.

Пример 2. Дано три числа 24, 3 и 18. Определяем самое большое из них – это число 24. Далее находим числа кратные 24, проверяя делится ли каждое из них на 18 и на 3:

24 · 1 = 24 – делится на 3, но не делится на 18.

24 · 2 = 48 – делится на 3, но не делится на 18.

24 · 3 = 72 – делится на 3 и на 18.

Таким образом, НОК (24, 3, 18) = 72.

Нахождение путём последовательного нахождения НОК

Третий способ заключается в нахождении наименьшего общего кратного путём последовательного нахождения НОК.

НОК двух данных чисел равно произведению этих чисел, поделённого на их наибольший общий делитель.

Пример 1. Найдём НОК двух данных чисел: 12 и 8. Определяем их наибольший общий делитель: НОД (12, 8) = 4. Перемножаем данные числа:

12 · 8 = 96.

Делим произведение на их НОД:

96 : 4 = 24.

Таким образом, НОК (12, 8) = 24.

Чтобы найти НОК трёх и более чисел используется следующий порядок действий:

  1. Сначала находят НОК каких-нибудь двух из данных чисел.
  2. Потом, НОК найденного наименьшего общего кратного и третьего данного числа.
  3. Затем, НОК полученного наименьшего общего кратного и четвёртого числа и т. д.
  4. Таким образом поиск НОК продолжается до тех пор, пока есть числа.

Пример 2. Найдём НОК трёх данных чисел: 12, 8 и 9. НОК чисел 12 и 8 мы уже нашли в предыдущем примере (это число 24). Осталось найти наименьшее общее кратное числа 24 и третьего данного числа – 9. Определяем их наибольший общий делитель: НОД (24, 9) = 3. Перемножаем НОК с числом 9:

24 · 9 = 216.

Делим произведение на их НОД:

216 : 3 = 72.

Таким образом, НОК (12, 8, 9) = 72.

naobumium.info

Решаем задачи B14 из ЕГЭ

Автор Сергей Валерьевич

Воскресенье, Декабрь 18, 2011

В задании B14 из ЕГЭ по математике требуется найти наименьшее или наибольшее значение функции одной переменной. Это достаточно тривиальная задача из математического анализа, и именно по этой причине научиться решать её в норме может и должен каждый выпускник средней школы. Разберём несколько примеров, которые школьники решали на диагностической работе по математике, прошедшей в Москве 7 декабря 2011 года.

В зависимости от промежутка, на котором требуется найти максимальное или минимальное значение функции, для решения этой задачи используется один из следующих стандартных алгоритмов.

I. Алгоритм нахождения наибольшего или наименьшего значения функции на отрезке:

  • Найти область определения функции.
  • Найти производную функции.
  • Определить точки, подозрительные на экстремум (те точки, в которых производная функции обращается в ноль, и точки, в которых не существует двухсторонней конечной производной).
  • Выбрать из точек, подозрительных на экстремум, те, которые принадлежат данному отрезку и области определения функции.
  • Вычислить значения функции (не производной!) в этих точках.
  • Среди полученных значений выбрать наибольшее или наименьшее, оно и будет искомым.

Пример 1. Найдите наименьшее значение функции
y = x3 – 18x2 + 81x + 23 на отрезке [8; 13].

Решение: действуем по алгоритму нахождения наименьшего значения функции на отрезке:

  • Область определения функции не ограничена: D(y) = R.
  • Производная функции равна: y’ = 3x2 – 36x + 81. Область определения производной функции также не ограничена: D(y’) = R.
  • Нули производной: y’ = 3x2 – 36x + 81 = 0, значит x2 – 12x + 27 = 0, откуда x = 3 и x = 9, в наш промежуток входит только x = 9 (одна точка, подозрительная на экстремум).
  • Находим значение функции в точке, подозрительной на экстремум и на краях промежутка. Для удобства вычислений представим функцию в виде: y = x3 – 18x2 + 81x + 23 = x(x-9)2+23:
    •  y(8) = 8 · (8-9)2+23 = 31;
    • y(9) = 9 · (9-9)2+23 = 23;
    • y(13) = 13 · (13-9)2+23 = 231.

Итак, из полученных значений наименьшим является 23. Ответ: 23.

II. Алгоритм нахождения наибольшего или наименьшего значения функции:

  • Найти область определения функции.
  • Найти производную функции.
  • Определить точки, подозрительные на экстремум (те точки, в которых производная функции обращается в ноль, и точки, в которых не существует двухсторонней конечной производной).
  • Отметить эти точки и область определения функции на числовой прямой и определить знаки производной (не функции!) на получившихся промежутках.
  • Определить значения функции (не производной!) в точках минимума (те точки, в которых знак производной меняется с минуса на плюс), наименьшее из этих значений будет наименьшим значением функции. Если точек минимума нет, то у функции нет наименьшего значения.
  • Определить значения функции (не производной!) в точках максимума (те точки, в которых знак производной меняется с плюса на минус), наибольшее из этих значений будет наибольшим значением функции. Если точек максимума нет, то у функции нет наибольшего значения.

Пример 2. Найдите наибольшее значение функции:
.

Решение: действуем по алгоритму нахождения наибольшего значения функции:

  • Область определения функции задается неравенством:
    , которое выполняется при любом x, поскольку ветви соответствующей параболы направлены вверх, а дискриминант соответствующего квадратного трехчлена отрицателен: D(y) = R.
  • Производная функции равна:
    ,
    область определения которой также не ограничена, поскольку по указанной выше причине x2 – 6x + 10 > 0, и знаменатель дроби нигде не обращается в ноль: D(y’) = R.
  • Нули производной: 2x — 6 = 0, откуда x = 3 (одна точка, подозрительная на экстремум).
  • Отмечаем область определения функции и точки, подозрительные на экстремум, на числовой прямой, определяем знаки производной в получившихся промежутках:x = 3 — точка максимума, поскольку в ней возрастание функции (плюс производной) сменяется убыванием (минусом производной). Следовательно, максимального значения функция достигает в этой точке.
  • Находим это значение:
    .

Итак, наибольшее значение функции равно -1. Ответ: -1.

Репетитор по математике
Сергей Валерьевич

yourtutor.info

Наименьшее значение функции онлайн · Как пользоваться Контрольная Работа РУ

Чтобы найти наименьшее значение заданной функции, то стоит воспользоваться сервисом на сайте «Контрольная работа РУ».

 На примере функции

как можно найти наименьшее значение онлайн.

Итак:

1. Вам нужно перейти на страницу сервиса по исследованию функций онлайн и построения графиков.

2. Для указанного примера вбиваем функцию x^2 + 5*x — 1 в форму:

3. После того как вбили функцию, для которой надо найти наименьшее значение, то нажимаем кнопку «Найти наименьшее значение!»

4. Ждём, когда сервер произведёт исследование функции (1-2 сек) и вы увидите результат данного исследования. В том числе там будет подробное решение по нахождению наименьшего значения функции. Я скопировал часть результата исследования для моего примера, которая связана с вычислением минимального значения функции:

Экстремумы функции:
Для того, чтобы найти экстремумы, нужно решить уравнение y’=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:

y'=2*x + 5=0
Решаем это уравнение и его корни будут экстремумами:
  1. x=-5/2. Точка: (-5/2, -29/4)
Интервалы возрастания и убывания функции:
Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:
  • Минимумы функции в точках:
  • Максимумов у функции нету
  • Возрастает на промежутках: [-5/2, oo)
  • Убывает на промежутках: (-oo, -5/2]

 Видим, что наименьшее значение функции для моего примера найдено и равно y min = -5/2 = — 2.5

www.kontrolnaya-rabota.ru

Найти наименьшее общее кратное (НОК)

Общее кратное для двух целых чисел — это такое целое число, которое делится нацело без остатка на оба заданных числа.

Наименьшее общее кратное для двух целых чисел — это наименьшее из всех целых чисел, которое делится нацело и без остатка на оба заданных числа.

Способ 1. Найти НОК можно, по очереди, для каждого из заданных чисел, выписывая в порядке возрастания все числа, которые получаются путем их умножения на 1, 2, 3, 4 и так далее.

Пример для чисел 6 и 9.
Умножаем число 6, последовательно, на 1, 2, 3, 4, 5.
Получаем: 6, 12, 18, 24, 30
Умножаем число 9, последовательно, на 1, 2, 3, 4, 5.
Получаем: 9, 18, 27, 36, 45
Как видно, НОК для чисел 6 и 9 будет равно 18.

Данный способ удобен, когда оба числа небольшие и их несложно умножать на последовательность целых чисел. Однако, бывают случаи, когда нужно найти НОК для двузначных или трехзначных чисел, а также, когда исходных чисел три или даже больше.

Способ 2. Найти НОК можно, разложив исходные числа на простые множители.
После разложения необходимо вычеркнуть из получившихся рядов простых множителей одинаковые числа. Оставшиеся числа первого числа будут множителем для второго, а оставшиеся числа второго — множителем для первого.

Пример для числе 75 и 60.
Наименьшее общее кратное чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на простые множители:
75 = 3 * 5 * 5, а
60 = 2 * 2 * 3 * 5.
Как видно, множители 3 и 5 встречаются в обоих строках. Мысленно их «зачеркиваем».
Выпишем оставшиеся множители, входящие в разложение каждого из этих чисел. При разложении числа 75 у нас осталось число 5, а при разложении числа 60 — остались 2 * 2
Значит, чтобы определить НОК для чисел 75 и 60, нам нужно оставшиеся числа от разложения 75 (это 5) умножить на 60, а числа, оставшиеся от разложения числа 60 (это 2 * 2 ) умножить на 75. То есть, для простоты понимания, мы говорим, что умножаем «накрест».
75 * 2 * 2 = 300
60 * 5 = 300
Таким образом мы и нашли НОК для чисел 60 и 75. Это — число 300.

Пример. Определить НОК для чисел 12, 16, 24
В данном случае, наши действия будут несколько сложнее. Но, сначала, как всегда, разложим все числа на простые множители
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3
Чтобы правильно определить НОК, выбираем наименьшее из всех чисел (это число 12) и последовательно проходим по его множителям, вычеркивая их, если хотя бы в одном из других рядов чисел встретился такой же, еще не зачеркнутый множитель.

 Шаг 1 . Мы видим, что 2 * 2 встречаются во всех рядах чисел. Зачеркиваем их.
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 22 * 2 * 3

Шаг 2. В простых множителях числа 12 осталось только число 3. Но оно присутствует в простых множителях числа 24. Вычеркиваем число 3 из обоих рядов, при этом для числа 16 никаких действий не предполагается.
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3

Как видим, при разложении числа 12 мы «вычеркнули» все числа. Значит нахождение НОК завершено. Осталось только вычислить его значение.
Для числа 12 берем оставшиеся множители у числа 16 (ближайшего по возрастанию)
12 * 2 * 2 = 48
Это и есть НОК

Как видим, в данном случае, нахождение НОК было несколько сложнее, но когда нужно его найти для трех и более чисел, данный способ позволяет сделать это быстрее. Впрочем, оба способа нахождения НОК являются правильными.

 Дроби, задачи на нахождение частей от целого | Описание курса | Привести дробь к наименьшему общему знаменателю 

   

profmeter.com.ua

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *