Математическое ожидание. (вся правда)
наберитесь терпения и прочитайте это..
Игра с положительным математическим ожиданием — жизненно важная концепция для всех спекулянтов, это концепция, на которой строится система веры, но сама концепция не может быть построена на вере. Казино не работают на вере. Казино оперирует, управляя своим бизнесом, основываясь на чистой математике. Казино знает, что, в конечном счете, законы рулетки и игры в кости возьмут верх. Поэтому казино не дает игре останавливаться. Казино не против того чтобы подождать, но казино не останавливается и играет круглые сутки, ведь чем дольше вы играете в его игру отрицательного математического ожидания, тем больше организаторы казино уверены, что получат ваши деньги.
Трейдеру необходимо иметь понятие о математическом ожидании. В зависимости от того, у кого математическое преимущество в игре, оно называется либо преимуществом игрока — положительное ожидание, либо преимуществом игорного дома — отрицательное ожидание. Допустим, мы играем с вами в орла-или-решку. Ни у вас, ни у меня нет преимущества у каждого 50% шансов на выигрыш. Но если мы перенесем эту игру в казино, которое снимает 10% с каждого кона, то вы выиграете только 90 центов на каждый проигранный доллар. Это преимущество игорного дома оборачивается для вас как игрока сильным отрицательным математическим ожиданием. И ни одна система контроля, над капиталом, ни одна стратегия не может одолеть игру с отрицательным ожиданием.
В играх с отрицательным математическим ожиданием не имеется никакой схемы управления деньгами (стратегии) которая сделает вас победителем.
Интересная штука рулетка, передовик всех азартных игр, в основу возьмем ее. Итак, казино, крики, шум, эмоции и роскошная показуха, но мы сосредоточимся на рулетке. Давайте рассчитаем математическое ожидание игры в рулетку, если играть только на красное-черное (в трейдинге кстати это лонг или шорт). Итак на рулетке всего 38 игровых полей — 36 цифр (18 красных и 18 черных полей), а также два зеро (возьмем релетку с двумя зеро). Таким образом, вероятность выигрыша при ставке на красное или черное составляет приблизительно 0.45 (18/38). В случае положительного исхода ставки мы удваиваем свою ставку, а в случае неудачи теряем все поставленное. Ах да, в случае выпадения зеро мы так же теряем свои деньги. Отсюда имеем отрицательное математическое ожидание. Данную игру можно назвать невыгодной по причине наличия среди игровых полей двух зеро, при выпадении которых нашу ставку забирает в свою пользу казино. Одна ячейка — это примерно 2,6% колеса рулетки, две ячейки это более 5%, именно такой процент хозяева казино кладут себе в карман в среднем с каждой сделки, так казино медленно выкачивает деньги из клиентов, зарабатывая уже много десятилетий.
Безусловно для казино эта игра с положительным математическим ожиданием, при двух зеро казино получит деньги игрока в двадцати случаях из 38. И чем больше игра будет продолжаться, тем больше казино получит прибыли.
А каково математическое ожидание финансовых игр? Ставки на финансовые инструменты обладают всеми внешними атрибутами азартных игр, финансовые игры на бирже распыляют зеро рулетки на большое количество компонентов вероятности — спрэд, комиссионные бирже, комиссионные брокеру, абоненская плата за пользованием биржевого терминала, плата за перевод средств на счета и по сути 13% налог на будущую прибыль в совокупности являются своеобразными аналогами зеро рулетки. Это дает основание говорить об отрицательном, изначально неблагоприятном математическом ожидании для игрока (трейдера).
Я хочу что бы вы поняли — Никакой метод управления капиталом, никакая стратегия, не может превратить отрицательное ожидание в положительное. Это абсолютно верное замечание. Математических доказательств этому утверждению нет. Однако это не означает, что такое не может произойти. Конечно в азартных играх участник может выйти на полосу выигрышей, совпадений и просто прекратить игру, в результате такой человек по сути окажется победителем. Но на долго ли он завяжет с игрой?…
Поэтому единственный случай, когда у вас есть шанс выиграть в долгосрочной перспективе, — это игра с положительным математическим ожиданием. Думаю, вы можете выиграть как правило при многократном использовании ставки одинакового размера и только при отсутствии верхнего поглощающего барьера. Азартный игрок, который начинает со 100 долларов, прекратит играть, если его счет вырастит до 101 доллара. Эта верхняя цель (101 доллар) называется поглощающим барьером. Допустим, игрок всегда ставит 1 доллар на красный цвет рулетки где 18 полос красные, 18 полос черные, 2 полосы ноль, при нуле деньги уходят в казино. Таким образом, игра идет при небольшом отрицательном математическом ожидании. У игрока больше шансов увидеть, как его счет вырастет до 101 доллара и игрок прекратит играть, чем то, что его счет уменьшится до нуля, и игроку будет не на что играть. Если игрок будет играть на рулетке снова и снова, то окажется жертвой отрицательного математического ожидания. Если сыграть в такую игру только раз, то аксиома неизбежного банкротства, конечно же, не применима, если сыграть один раз то скажем так сила отрицательного мат. ожидания будет максимально слаба. Различие между отрицательным ожиданием и положительным ожиданием — это различие между жизнью и смертью вашего депозита.
Когда вы понимаете, что игра имеет отрицательное математическое ожидание, то лучшей ставкой будет отсутствие ставки. Помните, что нет стратегии управления деньгами, которая может превратить проигрышную игру в выигрышную. Допустим вы все же должны сделать ставку в игре с отрицательным ожиданием, то наилучшей стратегией будет «стратегия максимальной смелости». Другими словами, вам надо сделать как можно меньше ставок (в противоположность игре с положительным ожиданием, где следует ставить как можно чаще, желательно вообще не выходить из игры). Итак чем больше попыток, тем больше вероятность, что при отрицательном ожидании вы проиграете. Поэтому при отрицательном ожидании меньше возможности для проигрыша, если длина игры укорачивается (то есть когда число попыток приближается к 1). Если вы играете в игру, где есть шанс 49% выиграть 1 доллар и 51% проиграть 1 доллар, то лучше всего сделать только одну попытку. Чем больше ставок вы будете делать, тем больше сила вероятности, что вы проиграете (с вероятностью проигрыша, приближающейся к 100% уверенности, когда игра приближается к бесконечности при отрицательном мат. ожидании).
Организаторы игры, казино — не расскажут трейдеру о математическом ожидании, «они» расскажут трейдеру о возможности выиграть и найдут различные причины для трейдера сделать ставку. Слушая организаторов игры и огромного количества околорыночников которые получают комиссию не рискуя своими деньгами трейдер полагает, что для успешной игры важно проанализировать график, новости, нарисовать черточки по лженауке тех анализа и тем самым найти подходящий момент для открытия позиций и этим якобы повысить надежность своей системы-стратегии (если она есть) и победить рынок. Но правда кроется в том, что не менее 97% людей, пытающихся изобрести системы-стратегии трейдинга, просто пытаются найти идеальный входной сигнал. Этот входной сигнал бессилен против изначального математически отрицательного ожидания. Фактически трейдеры почти всегда говорят о своих системах, имеющих коэффициент надежности не менее 60%. Но при этом их удивляет, почему они не зарабатывают денег, в долгосрочной перспективе трейдеры теряют деньги! Поймите, даже система с высоким процентом выигрышей при отрицательном математическом ожидании это путь в никуда, лучшее что может сделать трейдер это остановиться на полосе побед и больше не входить в рынок.
Еще такая интересная подробность, допустим вы начинаете игру с одного доллара, выигрываете при первом броске и зарабатываете доллар. При следующем броске вы ставите весь счет (2 доллара), однако на этот раз проигрываете и теряете их. Вы проиграли первоначальную сумму в 1 доллар и 1 доллара прибыли, Дело в том, что если вы используете 100% счета, то выйдете из игры, как только столкнетесь с проигрышем который является неизбежным событием. Из этого вытекает важное правило, если вы все таки начали игру, то играйте одинаковыми ставками, а прибыль забирайте себе. Не входите в рынок большими ставками при отрицательном математическом о
Постоянно краткосрочные трейдеры рассказывают типа Я успешный дэй-трейдер. Вхожу в рынок и выхожу из него по нескольку раз в день. И почти каждый день зарабатываю деньги. Но за один вчерашний день я потерял почти годовую прибыль и очень этим расстроен. Такие ошибки возникают в результате изменения ставки, попадании в ловушку с использованием плечей и эмоциональном трейдинге. Подбор входа, заработок в течении некоторого времени и слив счета в итоге, это судьба подавляющего большинства трейдеров играющих но поле отрицательного мат. ожидания.
Как трейдеры борятся с рынком? Попытки преломить отрицательное математическое ожидание – это одинаковые серии ставок по одинаковым «событиям». Это — классический пример азартной игры, где участники пытаются воспользоваться сериями. Единственный случай, который приводит их к проигрышу при таком подходе, — это когда в серии наблюдается много одинаковых выпадений подряд. Серии, чем более мелкие тем лучше — более эффективны чем слепая игра, тем не менее серии не обеспечивают положительное математическое ожидание.
Все вы наверно слышали про Мартингейл, это усовершенствованная стратегия серий. Тут игрок начинает с минимальной ставки, обычно с 1 доллара, и после каждого проигрыша удваивает ставку. Теоретически он рано или поздно должен выиграть и тогда получит обратно все проигранное плюс один доллар. После этого он опять может сделать минимальную ставку и начать сначала. Базовая концепция метода Мартингейл строится на том, что по мере уменьшения суммы в результате убытков возможность компенсации потерь либо увеличивается, либо остается прежней. Это популярный тип управления капиталом для игроков в азартные игры. Система удвоения выглядит беспроигрышной до того момента, когда вы сообразите, что длинная полоса неудач разорит любого игрока, сколь бы богат он ни был. Игрок, начавший с 1 доллара и проигравший 46 раз, должен поставить 47-ю ставку в 70 триллионов долларов, а это больше, чем стоимость всего мира (примерно 50 триллионов). Ясно, что намного раньше у него кончатся деньги или он упрется в ограничения его депозита или казино. Считаю что система удвоения бесполезна, если у вас отрицательное математическое ожидание и слишком рискованна для того что бы использовать эту систему на свои деньги.
В бесконечном продолжении игра с отрицательным математическим ожиданием является бесперспективной. Но при ограниченном числе серий вероятность выйти победителем есть. Либо нужно искать мат. положительную игру где возможная прибыль будет больше, чем возможный убыток на 1 ставку.
Большинство трейдеров гибнут от одной из двух пуль это незнание и эмоции. Профаны играют по наитию, ввязываясь в сделки, которые им — вследствие отрицательного математического ожидания — следовало бы пропустить. Если они выживают, то, подучившись, начинают разрабатывать системы поумнее. Затем, уверившись в себе, они высовывают голову из окопа — и попадают под вторую пулю. От самонадеянности они ставят слишком много на одну сделку и вылетают из игры после короткой вереницы потерь. Эмоциональность оказывает самое непосредственное влияние на финансовый результат, получаемый инвестором — в большей степени игроком от финансовых спекуляций. И чем эмоциональней поведение человека, тем значительней будет отклонение математического ожидания финансовых результатов его торговли от реальности. Для азартных игр, обладающих отрицательным математическим ожиданием финансовые результаты, полученные под влиянием эмоций, это похороны депозита.
Как правило, любые игры с денежным выигрышем, будь это лотерея, ставки на ипподроме и в букмекерских конторах, игральные автоматы и т.п., являются играми с отрицательным математическим ожиданием для игрока. Казино не просто так организуют для вас эти игры. Особенность среднестатистического трейдера состоит в том, что он не способен просчитать все мелочи которые ожидают его в будущем, потому и будущее его игры предрешено.
Хочу что бы вы поняли — участие в любой из игр с отрицательным математическим ожиданием нельзя расценивать как источник стабильного дохода.
Что делать? Каждый решает для себя сам, я нашел математически положительное ожидание на биржевых опционах, но даже там постоянные изменения правил игры брокерами и биржами приводят к сильному уменьшению итогового дохода. Размазанный ноль рулетки на спредах, поборах, брокеров и других мелочах жестоко уменьшает итоговую прибыль, но именно с использованием опционов и только можно выстроить мат+ систему в этом «казино 21 века».
Ищите математически положительное ожидание любыми способами!
Думаю так, ключ к зарабатыванию денег на финансовом рынке состоит в том, чтобы иметь систему с высоким положительным математическим ожиданием, используя эту систему крайне важно использовать изначально установленый размер позиции, работать строго по правилам и многократно и как можно дольше раз продолжать игру и зарабатывать борясь с выходками организаторов этого «казино».
Удачи вам!
smart-lab.ru
Математическое ожидание. Просто о сложном.
При размещении ставок любого типа всегда существует определенная вероятность получения прибыли и риск потерпеть неудачу. Положительный исход сделки, и риск потерять деньги неразрывно связаны с математическим ожиданием. В данной статье мы подробно остановимся на этих двух аспектах трейдинга.
Математическое ожидание —среднее значениеслучайной величины при количестве выборок или количества её измерений (иногда говорят — количества испытаний) стремящимся к бесконечности.
Смысл в том, что положительное математическое ожидание ведет к положительной (с повышением прибыли) торговле, а нулевое или отрицательное математическое ожидание означают, что не нужно торговать вообще.
Что бы было легче разобраться в данном вопросе, давайте рассмотрим понятие математического ожидания при игре в рулетку. Пример с рулеткой очень прост для понимания.
Рулетка —азартная игра ( Крупье запускает шарик в противоположную сторону вращения колеса, с того номера на какой шарик упал в предыдущий раз, который должен упасть в одну из пронумерованных ячеек, сделав не менее трёх полных оборотов по колесу.
Ячейки, пронумерованные числами от 1 до 36, окрашены в чёрный и красный цвета. Номера расположены не по порядку, хотя цвета ячеек строго чередуются, начиная с 1 — красного цвета. Ячейка, обозначенная цифрой 0, окрашена в зелёный цвет и называется зеро
Рулетка- это игра с отрицательным математическим ожиданием. Все из-за поля зеро.«0», которое не является ни черным, ни красным.
Поскольку (в общем случае) если не применять изменение ставки, игрок теряет 1$ за каждые 37 вращений колеса (при ставке 1$ за раз), что приводит к линейному убытку на уровне -2,7%, который увеличивается по мере роста числа ставок (в среднем).
Конечно у игрока на интервале , к примеру, в 1000 игр, могут случаться серии побед, и человек может начать ошибочно считать, что он может зарабатывать, обыгрывая казино, так и серии поражений. Серия побед в таком случае может увеличить капитал игрока на большее значение, чем у него было изначально, в таком случае, если у игрока была 1000$, после 10 игр по 1$ у него в среднем должно остаться 973$. Но если в таком сценарии у игрока окажется денег меньше или больше, мы будем называть такую разницу между текущим капиталом дисперсией. Зарабатывать на игре в рулетку можно только в рамках дисперсии.Если игрок продолжит следовать этой стратегии, в конечном счете человек останется без денег, а казино заработает.
Второй пример — знаменитые бинарные опционы. Вам дают сделать ставку, при удачном исходе вы забираете аж 90 процентов сверху от своей ставки, а при неудачном- теряете все 100. И дальше владельцам БО достаточно просто ждать, рынок и отрицательное мат ожидание сделают свое дело. А временная дисперсия даст надежду трейдеру бинарных опционов, что на данном рынке можно зарабатывать. Но это временно.
В чем же плюс криптовалютного трейдинга ( как и трейдинга на фондовом рынке) ?
Человек сам может создать для себя систему. Сам может ограничить свой риск, и стараться забрать с рынка максимум возможной прибыли. (Причем если со вторым ситуация довольно спорная, то риск нужно контролировать очень четко.)
Чтобы понимать в каком направлении вас ведёт ваша стратегия необходимо ведение статистики. Трейдер должен знать:
- Количество своих трейдов. Чем больше количество трейдов по заданной стратегии, тем точнее будет математическое ожидание
- Частота удачных входов. (Вероятность) (R)
- Свой профит по каждой положительной сделке.
- Смещение (коэффициент прибыльных сделок) (B)
- Средний размер вашей ставки (стоп ордер) (S)
Математическое ожидание (Е) = B * R – (1 – B) = B * (1 + R) –1
Чтобы примерно узнать свой итоговый заработок или убыток на счете (EE), к примеру, на дистанции в 1000 трейдов, воспользуемся формулой.
EE =E* N * S
Где N — количество трейдов, которые мы планируем исполнить.
Для примера возмем начальные данные:
стоп лосс — 30 долларов.
профит — 100 долларов.
Количество сделок 30
Математическое ожидание отрицательное только при соотношении прибыльных и убыточных сделок (R) 20%/80% или хуже В остальных случаях положительное.
Пусть теперь профит будет 150. Тогда отрицательным мат ожидание будет при соотношении 16%/84%. Или ниже.
Вывод.
Что с этим делать? Начните вести статистику, если еще не начинали. Проверьте свои трейды, определите Ваше мат ожидание. Найдите то, что можно улучшить ( количество верных входов, добор профита, урезание убытков)
expertcoin.com
Отрицательное математическое ожидание в ставках
Часто происходит так, что после продолжительной серии успешных ставок беттор вдруг начинает «сыпаться». Та стратегия игры, которая давала результат вчера, сегодня приносит лишь одни убытки. Одна из основных ошибок бетторов состоит в том, что они полностью полагаются на свой успех в прогнозировании, при этом не рассчитывая реальные вероятности прохода тех или иных рынков.
Возьмем обычный пример, чтобы посмотреть, как себя ведут различные типы игроков.
К примеру, в теннисной игре встречаются Джокович и Вавринка. Букмекер дает на Джоковича коэффициент 1.3, а на Вавринку 3.70.
Как размышляет обычный игрок:
- Джокович сильнее Вавринки;
- У Джоковича хорошая форма;
- Джокович победит.
После этого делается ставка на победу серба.
Как размышляет опытный беттор:
- У Джоковича превосходство в личных встречах;
- Джокович – универсал, поэтому сила Вавринки на харде не сыграет большого значения;
- С учетом погоды, мотивации, формы и других факторов вероятность победы Джоковича равна 70%.
После этого делается ставка на серба.
Как размышляет профессиональный гандикапер:
- Так же, как и опытный беттор, но так как вероятность победы Джоковича равна 70%, то минимальный коэффициент безубыточности должен быть равен 1.43. Поэтому ставка на коэффициент 1.30 будет невыгодным вложением средств;
- Вероятность победы Вавринки составляет не менее 30%. В этом случае коэффициент 3.34 уже на дистанции даст возврат средств, а так как на Вавринку дают коэффициент 3.70, то делается ставка именно на него.
Допустим, что Джокович все же победил Вавринку в трех сетах. В этом случае первый игрок порадуется «легким» деньгам, опытный беттор оценит свое умение анализировать, а профессионал даже не обратит внимания на исход данного противостояния.
Дело в том, что по логике двух первых игроков ставка сделана верно, так как она прошла. При этом они не учитывают, того, что в 70% случаев эта ставка должна быть выигрышной и поэтому на дистанции у них не будет преимущества над линией. Если вероятность составляет 75%, а букмекер дает коэффициент, который равносилен 70% вероятности, то такая ставка будет с отрицательным математическим ожиданием. Можно получить от данных ставок сиюминутную прибыль, но со временем депозит будет проигран.
Вывод
При анализе вы должны не указать победителя предстоящей игры, а правильно оценить шансы соперников. Сопоставив шансы с коэффициентами букмекеров, можно понять, насколько такая ставка будет выгодна на дистанции.
bukmekerskie-kontory.bet
Игра с отрицательным мат. ожиданием
Это жизненно важная концепция для всех спекулянтов, это концепция, на которой строится система веры, но сама концепция не может быть построена на вере. Казино не работают на вере. Они оперируют, управляют своим бизнесом, основываясь на чистой математике. Они знают, что, в конечном счете, законы рулетки или игры в кости возьмут верх. Поэтому они не дают игре останавливаться. Они не против того, чтобы подождать, но они не останавливаются. Они играют круглые сутки также не без причины чем дольше вы играете в их игру отрицательного математического ожидания, тем больше они уверены, что получат ваши деньги. [c.193]В отношении управления капиталом очень важно понимать, что при игре с отрицательным ожиданием нет схемы управления деньгами, которая может сделать вас победителем. Если вы продолжаете играть, то независимо от способа управления деньгами вы проиграете весь ваш счет, каким бы большим он ни был е начале. [c.25]
Эта аксиома истинна только при отсутствии верхнего поглощающего барьера. Например, азартный игрок, который начинает со 100 долларов, прекратит играть, если его счет вырастет до 101 доллара. Эта верхняя цель (101 доллар) называется поглощающим барьером. Допустим, игрок всегда ставит 1 доллар на красный цвет рулетки. Таким образом, у него небольшое отрицательное математическое ожидание. У игрока больше шансов увидеть, как его счет вырастет до 101 доллара и он прекратит играть, чем то, что его счет уменьшится до нуля, и он будет вынужден прекратить играть. Если он будет повторять этот процесс снова и снова, то окажется в отрицательном математическом ожидании. Если сыграть в такую игру только раз, то аксиома неизбежного банкротства, конечно же, не применима. Различие между отрицательным ожиданием и положительным ожиданием — это различие между жизнью и смертью. Не имеет значения, насколько положительное или насколько отрицательное ожидание важно только то, положительное оно или [c.25]
Допустим, вы начинаете игру с одного доллара, выигрываете при первом броске и зарабатываете два доллара. При следующем броске вы также ставите весь счет (3 доллара), однако на этот раз проигрываете и теряете 3 доллара. Вы проиграли первоначальную сумму в 1 доллар и 2 доллара, которые ранее выиграли. Если вы выигрываете при последнем броске, то зарабатываете 6 долларов, так как сделали 3 ставки по 1 доллару. Дело в том, что если вы используете 100% счета, то выйдете из игры, как только столкнетесь с проигрышем, что является неизбежным событием. Если бы мы могли переиграть предыдущий сценарий и вы делали бы ставки без реинвестирования, то выиграли бы 2 доллара при первой ставке и проиграли 1 доллар при второй. Теперь ваша чистая прибыль 1 доллар, а счет равен 2 долларам. Где-то между этими двумя сценариями находится оптимальный выбор ставок при положительном ожидании. Однако сначала мы должны рассмотреть оптимальную стратегию ставок для игры с отрицательным ожиданием. Когда вы знаете, что игра имеет отрицательное математическое ожидание, то лучшей ставкой будет отсутствие ставки. Помните, что нет стратегии управления деньгами, которая может превратить проигрышную игру в выигрышную. Однако если вы должны сделать ставку в игре с отрицательным ожиданием, то наилучшей стратегией будет стратегия максимальной смелости. Другими словами, вам надо сделать как можно меньше ставок (в противоположность игре с положительным ожиданием, где следует ставить как можно чаще). Чем больше попыток, тем больше вероятность, что при отрицательном ожидании вы проиграете. Поэтому при отрицательном ожидании меньше возможности для проигрыша, если длина игры укорачивается (то есть когда число попыток приближается к 1). Если вы играете в игру, где есть шанс 49% выиграть 1 доллар и 51% проиграть 1 доллар, то лучше всего сделать только одну попытку. Чем больше ставок вы будете делать, тем больше вероятность, что вы проиграете (с вероятностью проигрыша, приближающейся к уверенности, когда игра приближается к бесконечности). Это не означает, что вы достигаете [c.31]
Необходимо отметить, что залог под открытые позиции не имеет ничего общего с тем, какое математически оптимальное количество контрактов надо открывать. Залог не так важен, поскольку размеры отдельных прибылей и убытков не являются продуктом залоговых средств. Прибыли и убытки зависят от выигрыша и убытка в расчете на одну открытую единицу (один фьючерсный контракт). Для управления деньгами залог не имеет значения, так как размер убытка не ограничивается только залоговыми средствами. Многие ошибочно полагают, что f является линейной функцией, и чем большей суммой рисковать, тем больше можно выиграть, так как по мнению сторонников такого подхода положительное математическое ожидание является зеркальным отражением отрицательного ожидания, то есть если увеличение общего оборота в игре с отрицательным ожиданием в результате приносит более быстрый проигрыш, то увеличение общего оборота в игре с положительным ожиданием в результате принесет более быстрый выигрыш. Это неправильно. В некоторой точке в ситуации с положительным ожиданием дальнейшее увеличение общего оборота работает против вас. Эта точка является функцией как прибыльности системы, так и ее стабильности (то есть ее средним геометрическим), так как вы реинвестируете прибыли обратно в систему. Когда два человека сталкиваются с одной и той же последовательностью благоприятных ставок или сделок, и один использует оптимальное f, а другой использует любую другую систему управления деньгами, математическим фактом является то, что отношение счета держащего пари на [c.35]
Я подозреваю, что большинство теорий, основанных на эффекте нескольких следующих друг за другом выигрышных и/или проигрышных сделок, проникло в мир торговли из азартных игр. Азартная игра основана на теории полос. Любой профессиональный игрок скажет вам, что невозможно обратить неблагоприятную ситуацию в свою пользу. Таким образом, схемы управления капиталом, которые используют азартные игроки, берут свое начало в сфере управления полосами удач и неудач. Вспомним пример с подбрасыванием монеты и пари с отрицательным ожиданием. В некоторых ситуациях [c.147]
Приведем интересный сценарии. Я все время напоминаю, что никакой метод управления капиталом не может превратить отрицательное ожидание в положительное. Это абсолютно верное замечание. Математических доказательств этому утверждению нет. Однако это не означает, что такое не может произойти. В азартных играх участник может выйти на полосу выигрышей и просто прекратить игру. Такой человек оказывается победителем. Торговлю с использованием скользящей средней капитала нельзя сравнивать с азартной игрой. Но в некоторых ситуациях использование этого метода может дать положительные результаты, даже если система и/или метод приводят к убыткам по всем сделкам. Трейдеры стараются не торговать на некоторых рынках и избегают некоторых методов, потому что опасаются потерять деньги. При этом ожидания могут быть вполне положительными. Независимо оттого, насколько положительными могут быть ожидания, используемый метод или система не всегда следуют одному и тому же правилу. Рассмотрим следующий торговый поток [c.163]
Трейдеру необходимо иметь понятие о математическом ожидании. В зависимости от того, у кого математическое преимущество в игре, оно называется либо преимуществом игрока — положительное ожидание, либо преимуществом игорного дома — отрицательное ожидание. Допустим, мы играем с вами в орла-или-решку. Ни у вас, ни у меня нет преимущества у каждого 50% шансов на выигрыш. Но если мы перенесем эту игру в казино, которое снимает 10% с каждого кона, то вы выиграете только 90 центов на каждый проигранный доллар. Это преимущество игорного дома оборачивается для вас как игрока отрицательным математическим ожиданием. И ни одна система контроля над капиталом не может одолеть игру с отрицательным ожиданием. [c.278]
Кстати, игры с нулевым математическим ожиданием обладают отрицательным ожиданием полезности, так как полезность прироста меньше ущерба от возможного убытка аналогичной суммы. Это будет хорошо видно в материале главы, посвященной психологии. [c.125]
Для красных PL = 0,04, a AL = 3 поэтому PL xAL = 0,04 х 3 = 0,12. Сложив их, получим 0,5 + 0,2 + 0,12 = 0,82. Это сумма всех отрицательных ожиданий игры. [c.159]
И наконец, общее ожидание для игры равно разности этих двух сумм. Мы найдем эту разность, вычтя сумму отрицательных ожиданий (0,82) из суммы положительных ожиданий (1,6). Ответ равен 0,78. Таким образом, в этой игре в результате многих извлечений шаров вы можете ожидать выигрыша, равного 78 центам на каждый вложенный в игру доллар или на каждый доллар риска. Отметим, что эта игра почти в четыре раза более прибыльна, чем первая игра. [c.159]
Большинство полагает, что основное назначение входных сигналов состоит в том, чтобы улучшить выбор подходящего момента для открытия позиций и тем самым повысить надежность вашей системы. По моей оценке, не менее 95% людей, пытающихся изобрести системы трейдинга, просто пытаются найти замечательный входной сигнал. Фактически трейдеры почти всегда говорят мне о своих краткосрочных системах, имеющих коэффициент надежности не менее 60%. Но при этом их удивляет, почему они не зарабатывают денег. Если вы начали читать книгу не с этой главы, то должны знать, что система с высоким процентом выигрышей может все же иметь отрицательное ожидание. Ключ к зарабатыванию денег состоит в том, чтобы иметь систему с высоким положительным ожиданием, и в том, чтобы использовать такую модель установления размера позиции, которая при данном показателе ожидания позволит вам все же не выходить из игры. Вход составляет лишь малую часть игры в зарабатывание денег на рынке. И все же следует затратить определенную энергию, чтобы найти такие входы (правила входа), которые отвечают вашим целям. Для решения этой задачи существует два подхода. [c.217]
Не один раз краткосрочные трейдеры звонили мне по телефону с заявлениями типа Я дэй-трейдер. Вхожу в рынок и выхожу из него по нескольку раз в день. И почти каждый день зарабатываю деньги. Это замечательно Но за один вчерашний день я потерял почти годовую прибыль и очень этим расстроен . Это явно психологическая проблема. Такие ошибки возникают в результате грубых промахов при трейдинге либо психологических просчетов, связанных с игрой при отрицательном ожидании. В такой игре выигрыши идут почти посто- [c.305]
Важно помнить, что исторически ваш проигрыш может быть такой же большой, как и процент f (в смысле возможного уменьшения баланса). В действительности вам следует ожидать, что в будущем он будет выше, чем данное значение. Это означает, что комбинация двух рыночных систем, даже если они имеют отрицательную корреляцию, может привести к уменьшению баланса на 44%. Это больше, чем в системе с положительным математическим ожиданием, в которой оптимальное f= 0,25, и поэтому максимальный исторический проигрыш уменьшит баланс только на 25%. Мораль такова диверсификация, если она произведена правильно, является методом, который повышает прибыли. Она не обязательно уменьшает проигрыши худшего случая, что абсолютно противоречит популярному представлению. Диверсификация смягчает многие мелкие проигрыши, но она не уменьшает проигрыши худшего случая. При оптимальном f максимальные проигрыши могут быть существенно больше, чем думают многие. Поэтому, даже если вы хорошо диверсифицировали портфель, следует быть готовым к значительным уменьшениям баланса. Однако давайте вернемся и посмотрим на результаты, когда коэффициент корреляции между двумя играми равен 0. В такой ситуации, какими бы ни были результаты одного броска, они не влияют на результаты другого броска. Таким образом, есть четыре возможных результата [c.49]
Отметьте, что в этом примере ставки как после выигрышей, так и после проигрышей все еще имеют положительное математическое ожидание. Что произойдет, если после проигрыша вероятность выигрыша будет равна 0,3 В таком случае математическое ожидание имеет отрицательное значение и оптимального f не существует, таким образом, вам не следует использовать эту игру (1.03) МО=(0,3 2)+(0,7 -1) =0,6-0,7 =-0,1 [c.64]
Как мы уже знаем (см. главу 2), добавление рыночных систем увеличивает среднее геометрическое по портфелю в целом. Однако возникает проблема каждая следующая рыночная система вносит все меньший и меньший вклад в среднее геометрическое и все больше ухудшает его, понижая эффективность из-за одновременных, а не последовательных результатов. Поэтому не следует торговать слишком большим числом рыночных систем. Более того, реальное применение теоретически оптимальных портфелей осложняется из-за залоговых требований. Другими словами, вам лучше торговать 3 рыночными системами при полном оптимальном f, чем 300 рыночными системами при значительно пониженных уровнях, согласно уравнению (8.08). Скорее всего вы придете к выводу, что оптимальное число рыночных систем для торговли должно быть невелико. Особенно это обстоятельство важно, когда у вас много ордеров к исполнению и увеличивается вероятность ошибок. Если одна или несколько рыночных систем в портфеле имеют оптимальные веса больше единицы, может возникнуть еще одна проблема. Рассмотрим рыночную систему с оптимальным f=0,8 и наибольшим проигрышем, составляющим 4000 долларов. Для этой рыночной системы f = 5000 долларов. Давайте предположим, что оптимальный вес данного компонента в портфеле равен 1,25, поэтому вы будете торговать одной единицей компонента на каждые 4000 долларов ( 5000/1,25) баланса счета. Как только компонент столкнется с наибольшим проигрышем, весь активный баланс на счете будет обнулен, если прибылей в других рыночных системах не хватит для сохранения активного баланса. Рассмотренная проблема наиболее актуальна для систем, которые редко генерируют сделки. Если бы у нас были две рыночные системы с отрицательной корреляцией и положительным ожиданием, необходимо было бы открывать бесконечное количество контрактов на рынке. Когда один из компонентов проигрывает, другой выигрывает равную или большую сумму. Таким образом, мы получаем прибыль в каждой игре, однако только в том случае, когда рыночные системы ведут игру одновременно. Рассматриваемая же торговля аналогична гипотетической ситуации, когда один из компонентов в игре не активен, но используется другая рыночная система с бесконечным числом контрактов. Проигрыш может быть катастрофическим. Проблему можно решить следующим образом разделите единицу на наибольший вес компонента портфеля и используйте полученное значение в качестве верхней границы активного баланса, если оно меньше, чем значение, найденное из уравнения (8.08). В таком случае, если в будущем произойдет проигрыш той же величины, что и наибольший проигрыш (на основе которого рассчитано f), мы не потеряем все деньги. Например, наибольший вес компонента в нашем портфеле составляет 1,25. Если значение из уравнения (8.08) будет больше 1 / 1,25 = 0,8, следует использовать 0,8 в качестве верхней границы для доли активного баланса. Если первоначальная доля активного баланса небольшая, вышеописанная проблема может и не возникнуть, однако более агрессивному трейдеру следует всегда принимать ее во внимание. Альтернативное решение состоит в введении дополнительных ограничений в матрице портфеля (например, для каждой рыночной системы можно ограничить максимальные веса единицей и ввести дополнительные ограничения по залоговым средствам). Подобные дополнительные ограничения [c.241]
Заметьте, что оптимальное /, доставляющее максимум роста, одинаково для всех конов игры, хотя и является функцией того, как долго вы будете играть. Если вы собираетесь остановиться после первого кона, то оптимальное / максимизирует среднее арифметическое HPR (для игры с положительным математическим ожиданием это/всегда равно 1,0, а игры с отрицательным математическим ожиданием — 0,0). Для игры с положительным математическим ожиданием оптимальное/убывает по мере увеличения времени до остановки (асимптотически убывает для бесконечной игры) и максимизирует среднее геометрическое HPR. Для игры с отрицательным математическим ожиданием оптимальное / всегда остается нулевым. [c.106]
Это — классический пример азартной игры, где участники пытаются воспользоваться сериями. Единственный случай, который приводит их к проигрышу при таком подходе, — это когда в серии наблюдается 6 одинаковых выпадений подряд. Тем не менее здесь все же не обеспечивается положительное математическое ожидание. С математической точки зрения мы обсудим серии несколько позже. Сейчас же, как я думаю, будет достаточно рассказать вам о том, каким образом повела себя следующая серия, состоящая из 100 подбрасываний. У меня получилось 9 серий из 3 орлов или решек подряд. Однако только четыре из них дали противоположный результат при четвертом подбрасывании. В этих 4 сериях выигрыши составили 16 долларов. Только одна серия дала противоположный результат после пятого подбрасывания монеты. Она добавила еще 3 доллара выигрыша, общая сумма которого составила 19 долларов. Две серии закончились после шести одинаковых выпадений подряд и обеспечили еще по 1 доллару, что привело к совокупному итогу в 21 доллар. Были также еще две серии, которые давали подряд 6 орлов или решек. В результате каждая из этих двух серий принесла убыток в размере 35 долларов. Это привело к тому, что общая сумма выигрыша по итогу второй группы серий была отрицательной (49 долларов), и общий результат после двух [c.27]
Может показаться, что эта тема является неуместной в книге по управлению капиталом. Тем не менее косвенным образом она тесно связана с вопросами, рассматриваемыми в этом издании. Управление капиталом без метода или системы торговли попросту бесполезно. Помимо этого, использование в торговле метода с отрицательным математическим ожиданием тоже бесполезно. Таким образом, метод или торговая система должны давать деньги для того, чтобы в игру вступили факторы роста, ведущие происхождение от управления капиталом и позволяющие получить хорошие конечные результаты. Откройте любой журнал по торговле и вы найдете там больше торговых систем и методов, чем сумеете опробовать. Все они кажутся великолепными, и большинство из них, как утверждается, являются самыми лучшими способами создания денег. Помимо всего прочего, основой для большинства таких утверждений являются гипотетические результаты. Как-то раз я получил «рассылку», автор которой утверждал, что он «превратил» 200 долларов в 18.000.000 долларов (здесь нет ошибки — в 18 миллионов долларов) за какие-то несколько лет. Там же говорилось, что вы тоже сумеете это сделать, приобретя книгу за 39,95 доллара и прочитав о невероятном методе, описанном в ней. (За небольшую плату я скажу вам, что собой представляет эта книга). Дело в том, что большинство этих гипотетических результатов появляется только после проведения значительного оптимизационного тестирования представляемого метода. Если управление капиталом сложным образом связано с системой или методами, используемыми в торговле, то гипотетические результаты становятся особенно важны в момент принятия решения о том, стоит ли пользоваться данным методом или системой. [c.188]
Большинство игроков погибают от одной из двух пуль от невежества или от эмоций. Любители играют по интуиции и заключают такие сделки, которые не следует заключать никогда из-за отрицательного математического ожидания. Те, кто переживает стадию исходного невежества, начинает строить более приемлемые системы игры. Когда они становятся более уверенными, они высовывают голову из окопа, и вторая пуля поражает их Уверенность делает их жадными, они рискуют слишком большой суммой в одной сделке, и короткая череда неудач выметает их с рынка. [c.149]
Система удвоения выглядит беспроигрышной до того момента, когда вы сообразите, что длинная полоса неудач разорит любого игрока, сколь бы богат он ни был. Игрок, начавший с 1 доллара и проигравший 46 раз, должен поставить 47-ю ставку в 70 триллионов долларов, а это больше, чем стоимость всего мира (примерно 50 триллионов). Ясно, что намного раньше у него кончатся деньги или он упрется в ограничения казино. Система удвоения бесполезна, если у вас отрицательное или нулевое математическое ожидание. Она самоубийственна, если у вас хорошая система игры и положительное математическое ожидание. [c.150]
Игра с отрицательным математическим ожиданием [c.164]
Дополнительно к этому отметим, что неприглядная роль спрэда усугубляется еще и тем, что из-за него не только возникает неблагоприятное соотношение вероятностей успеха и неудачи , но и становится отрицательным средний итог игры, т.е. математическое ожидание результата. [c.122]
В бесконечном продолжении такая игра является бесперспективной (потому что математическое ожидание имеет отрицательное значение). Но при ограниченном числе серий вероятность выйти победителем достаточно убедительна (вероятность достижения 0,79). [c.126]
Большинство трейдеров гибнут от одной из двух пуль это незнание и эмоции. Профаны играют по наитию, ввязываясь в сделки, которые им — вследствие отрицательного математического ожидания — следовало бы пропустить. Если они выживают, то, подучившись, начинают разрабатывать системы поумнее. Затем, уверившись в себе, они высовывают голову из окопа — и попадают под вторую пулю От самонадеянности они ставят слишком много на одну сделку и вылетают из игры после короткой вереницы потерь. [c.281]
Здесь мы видим, что математическое ожидание игры в рулетку при игры на красное-черное отрицательное и равно -0.0526. Данную игру, таким образом, можно назвать невыгодной. Произошло это по причине наличия среди игровых полей двух зеро, при выпадении которых наш жетон забирает в свою пользу казино. В принципе, именно зеро и является прямым доходом казино во всех играх в рулетку. [c.172]
В играх с отрицательным математическим ожиданием не имеется никакой схемы управления деньгами, которая сделает вас победителем [c.172]
Эмоциональность оказывает самое непосредственное влияние на финансовый результат, получаемый инвестором н в большей степени игроком от финансовых спекуляций. И чем эмоциональней поведение человека, тем значительней будет отклонение математического ожидания финансовых результатов его торговли от реальности. Для азартных игр, обладающих отрицательным математическим ожиданием финансовые результаты, полученные под влиянием эмоций, будут выглядеть как это показано на нижеприведенном рисунке. [c.263]
У вас может возникнуть закономерный вопрос а каково математическое ожидание финансовых игр С одной стороны, эти игры обладают всеми внешними атрибутами азартных игр — спрэд и комиссионные являются своеобразными аналогами зеро рулетки. Это дает основание говорить об отрицательном математическом ожидании. Однако финансовые игры имеют одно кардинальное отличие от азартных игр — главным действующим лицом в них является не господин случай, а человек. Если поведение человека прогнозируемо и подчиняется определенным закономерностям, то и рынок может быть прогнозируемым. [c.113]
Из этого раздела можно сделать два вывода. Первый состоит в том, что при одновременных ставках или торговле портфелем существует небольшая потеря эффективности, вызванная невозможностью рекапитализировать счет после каждой отдельной игры. Второй заключается в том, что комбинирование рыночных систем, при условии, что они имеют положительные математические ожидания (даже если они положительно коррелированы), никогда не уменьшит ваш общий рост за определенный период времени. Однако когда вы продолжаете добавлять все больше и больше рыночных систем, эффективность уменьшается. Если у вас есть, скажем, 10 рыночных систем, и все они одновременно несут убытки, совокупный убыток может уничтожить весь счет, так как вы не сможете уменьшить размер каждого проигрыша, как в случае последовательных сделок. Таким образом, при добавлении новой рыночной системы в портфель польза будет только в двух случаях когда рыночная система имеет коэффициент корреляции меньше 1 и положительное математическое ожидание или же когда система имеет отрицательное ожидание, но достаточно низкую корреляцию с другими составляющими портфеля, чтобы компенсировать отрицательное ожидание. Каждая добавленная рыночная система вносит постепенно уменьшающийся вклад в среднее геометрическое. То есть каждая новая рыночная система улучшает среднее геометрическое все в меньшей и меньшей степени. Более того, когда вы добавляете новую рыночную систему, теряется общая эффективность из-за одновременных, а не последовательных результатов. В некоторой точке добавление еще одной рыночной системы принесет больше вреда, чем пользы. [c.67]
Согласно этому методу, по мере уменьшения суммы счета размер последующей торговли увеличивается. Базовая концепция метода Мартингейл строится на том, что по мере уменьшения суммы в результате убытков возможность компенсации потерь либо увеличивается, либо остается прежней. Это популярный тип управления капиталом для игроков в азартные игры. Как сказано во второй главе, никакой тип управления капиталом не может превратить сценарий с «отрицательным ожиданием» в сценарий с «положительным ожиданием». Поэтому игроки не пытаются изменить шансы, они стараются воспользоваться сериями. Рассмотрим следующий пример. [c.26]
В случае ожидания резкого скачкообразного изменения курса валюты несбалансированность спроса и предложения на нее в любом случае будет вызвана нормальными операциями по покрытию рисков продажа поступлений и отсутствие сделок по покупке валюты, в отношении которой ожидаются обесценение, хеджирование риска вложений в этой валюте. Опережения и задержки ( лидз энд лэгз ) по валютным расчетам и валютным сделкам достигают миллиардных сумм и вызывают огромное давление на курс. Спекулятивные валютные сделки могут многократно усилить такие воздействия. Игра на повышение и понижение курса валют дезорганизует валютный рынок, нарушает равновесие между спросом и предложением валюты, отрицательно влияет на валютно-экономическое положение соответствующих стран и мировую валютную систему. [c.360]
Normal Distribution — нормальное распределение распределение вероятностей случайной величины X, возникающее обычно, когда X представляет собой сумм большого числа независимых случайных величин, каждая из которых играет в образовании всей суммы незначительную роль. Нормальное распределение унимодально, описывается колоколообразной кривой его средняя (математическое ожидание) совпадает с модой. Н.р. широко используется в математической статистике. Предпосылка Н.р. учитывается в большинстве критериев статистической проверки гипотез. Математики считают, что Н.р. в экономике во многих случаях неприменимо например, вряд ли можно себе представить его в модели ценообразования, тогда в нее вошли бы также отрицательные цены. [c.35]
По отношению к личности группа может играть как положительную, так и отрицательную роль. Если группа обеспечивает удовлетворение потребностей личности, а установленный группой статус соответствует ожиданиям личности, это можно считать положительным моментом в ее развитии (профессиональном, социальном, культурном, физическом и т. д.). Если этого не наблюдается, возможна деградация личности, искажение развития, конфликт между личностью и группой. Это отмечали немецкие ученые В. Зигерт и Л. Ланг, особенно для личности, находящейся на стадии удовлетворения потребностей в уважении и самореализации. [c.112]
У игроков в рулетку математическое ожидание отрицательное. На колесе американской рулетки 38 ячеек, на европейском — 37, но в обоих случаях в игре участвует только 36. Одну или две ячейки оставляет за собой казино. Поскольку одна ячейка — это примерно 2,7% колеса рулетки, именно такой процент хозяева казино кладут себе в карман в среднем с каждой сделки, медленно выкачивая деньги из клиентов. Есть примитивная система управления капиталом, называемая мартингал (martingale) игрок начинает с минимальной ставки, обычно с 1 доллара, и после каждого проигрыша удваивает ставку. Теоретически он рано или поздно должен выиграть и тогда получит обратно все проигранное плюс один доллар. После этого он опять может сделать минимальную ставку и начать сначала. В реальной жизни системой мартингал воспользоваться нельзя, так как казино ограничивают максимальную ставку. Как только [c.236]
Эта интерпретация U — U (7) как полезности, приписываемой конкретному риску, непосредственно соотносится с вопросом, которому фон Нейман и Моргенштерн и комментаторы их работы уделили много внимания, а именно, вопросу, может ли человек распознавать полезность (положительную или отрицательную) простого акта риска», азартной игры, ведь полезность не учитывается при использовании математического ожидания (von Neumann and Morgenstern. Op. it. P. 28 рус. изд. С. 58). С нашей точки зрения, гипотезу лучше интерпретировать как довольно нестандартное объяснение того, почему азартные игры имеют для потребительской единицы полезность или вредность, и ее лучше интерпретировать как дающую конкретную меру полезности или вредности, чем как отрицание того, что азартные игры имеют полезность (см. там же, стр. 28, 629—632 рус. изд. С. 58, 626—630). [c.225]
Например. Так, рассчитаем математическое ожидание игры в рулетку, если играть только на красное-черное . Прн это задано, что всего 38 игровых полей — 36 цифр (по 18 красных и черных полей), а также два зеро . Таким образом, вероятность выигрыша при ставке на красное или черное составляет приблизительно 0.4737 (18/38). В случае положительного исхода ставки мы получаем 1 жетон, а в случае неудачи теряем один жетон. Отсюда имеем отрицательное матожндание [c.172]
Как правило, любые игры с денежным выигрышем, будь это лотерея, ставки на ипподроме и в букмекерских конторах, игральные автоматы и т.п., являются играми с отрицательным математическим ожиданием. Поэтому участие в любой из них нельзя расценивать как источник стабильного дохода. [c.172]
Ответ мы найдем у тех же рыночных участников. В любой сделке неизменно участвуют две стороны — покупатель н продавец. То, что хорошо для покупателя, как правило, ие хорошо для продавца и наоборот. Я здесь не рассматриваю случаи вынужденной продажи, к которой могут прибегать инвесторы, нуждающиеся в деньгах, импортеры и экспортеры в другой валюте, хеджеры в конкретном товаре и т.д. Тогда можно рассчитать, что максимальное положительное математическое ожидание покупателя на уровне поддержки является максимальным отрицательным матожиданием для продавца. Вряд ли вы найдете много таких продавцов. Скорее всего это будут или недальновидные игроки, или вынужденные рыночные участники. Таким образом, наибольшие объемы сделок действительно будут находиться в зонах, где матожидания прибыли покупателей н продавцов будут как можно больше совпадать. Небольшую подвижку в значениях матожиданий будет играть разница в оценках уровней сопротивления и поддержки, присущая разным рыночным участникам. [c.176]
economy-ru.info
Математическое ожидание в трейдинге. Риски
В трейдинге достаточно много нюансов, которые, не являясь значительными в принципе, существенно влияют на конечный результат. К примеру, математическое ожидание. Примечательно, что, даже хорошо владея фундаментальным и техническим анализом, трейдер, чья торговая система показывает отрицательное математическое ожидание, не добьётся успеха и сольёт депозит в долгосрочной перспективе. В этой статье мы постараемся максимально просто объяснить, что такое математическое ожидание в трейдинге, каким оно бывает и как сказывается на торговле. Также мы обсудим, что можно сделать, чтобы повысить мат. ожидание по сделкам.
Математическое ожидание в трейдинге – простыми словами
Если говорить просто, то математическое ожидание – это усреднённый статистический показатель, дающий представление о прибыльности торговой системы или стратегии. Расчёт математического ожидания позволяет трейдеру увидеть, что превалирует в его торговле – убыток или прибыль.
Казалось бы, чтобы это понять, достаточно просто подбить процент прибыльных и убыточных сделок по итогу какого-то периода – недели, месяца и т. п. Но такая статистика не всегда будет объективна, ведь на прибыльность сделок в этот период могли влиять самые разные факторы, не имеющие отношения к эффективности торговой системы.
Для расчёта же математического ожидания берётся как минимум, 100 сделок. Расчёт происходит по простой формуле: От процента успешных сделок торговой системы, умноженного на прибыль в средней прибыльной сделке, отнимается процент убыточных сделок, умноженный на средний убыток в такой сделке. Статистические данные для расчёта можно без труда выгрузить из торгового терминала.
Каким бывает математическое ожидание и что это даёт?
Математическое ожидание бывает положительным и отрицательным. То есть, если после расчёта по вышеприведённой формуле у Вас получилась цифра от 0 и выше, мат. ожидание положительное. Если же получилась цифра со знаком «минус» — оно отрицательное. Что это даёт трейдеру?
Положительное мат. ожидание означает, что доход от прибыльных сделок способен перекрыть потери от убыточных. Следовательно, торговая система работает хорошо, трейдер всегда в плюсе, даже несмотря на периодические неудачи. Поэтому, в долгосрочной перспективе можно рассчитывать на рост депозита.
Отрицательное значение математического ожидания – плохая новость для трейдера. Это означает, что торговая система работает не так, как должна, а убытки превышают прибыль. Даже если на данном этапе процент прибыльных сделок превышает процент убыточных, но имеет место отрицательное математическое ожидание, в долгосрочной перспективе трейдер уйдёт в минус и неизбежно сольёт депозит. Как такое возможно?
Тут всё достаточно просто. К примеру, у трейдера 70% прибыльных сделок. Это хороший показатель. Но при этом, математическое ожидание показывает минус. Это значит, что общая сумма прибыли от этих 70% не перекроет сумму убытков от оставшихся 30% убыточных.
Поясним на примере. Допустим, трейдер заключил 100 сделок. Из них было 70 прибыльных и 30 убыточных. На прибыльных он заработал в сумме 1000 долларов, а на убыточных потерял 1200 долларов. В итоге, убытки на 200 долларов превысили доход, хотя прибыльных сделок и было больше. В чём причина? Скорее всего, прибыльными оказались более мелкие позиции, а убыточными оказались крупные.
По сути, именно такую вероятность развития событий прогнозирует отрицательное математическое ожидание, даже если на момент расчёта убытки ещё не превышают прибыль.
Итак, что даёт трейдеру расчёт мат. ожидания? По сути, возможность оценить эффективность своей торговой системы в перспективе. Либо по результатам расчётов он ещё раз убедится, что делает всё правильно, либо заметит риск слива депозита и поймёт, что необходимо пересмотреть систему и стратегию, и то-то поменять. В каком-то смысле, расчёт математического ожидания – как система раннего оповещения о потере депозита (если он отрицательный).
Мат. ожидание в минусе. Всё плохо?
Если говорить откровенно, то да, перспективы у трейдера с отрицательным математическим ожиданием не радужные. Но это лишь в том случае, если он не захочет ничего предпринять. А что можно сделать, чтобы повысить математическое ожидание?
Один из самых эффективных вариантов – повысить соотношение между стоп-лоссом и тейк-профитом. Вероятнее всего, математическое ожидание показало минус, потому что соотношение между стопом и тейком сейчас 1:1 или 1:2. При соотношении 1:1 убытки почти гарантированы, поскольку на бирже взымают комиссионные, что уже лишает это соотношение равенства. Соотношение 1:2 уже лучше, но если трейдеру предстоит пройти через череду неудач, этот показатель его не спасёт.
Многие считают, что оптимальное соотношение стопа к тейку – 1:3 или 1:4. В этом действительно есть смысл, ведь при таких соотношениях прибыль сможет перекрыть убытки даже в трудные времена для трейдера.
Однако стоит понимать, что чем больше это соотношение, тем больше риск, что цена попросту не дойдёт до отметки тейка. Тут нужно сохранять уравновешенность – вероятность, что цена пройдёт путь до тейка при соотношении 1:3 гораздо выше, чем, что она пройдёт этот путь при соотношении 1:10. Таковы уж рыночные условия – редко можно наблюдать такую волатильность достаточно долго, чтобы она сорвала тейк.
Итак, как видно, математическое ожидание в трейдинге – полезный показатель для оценки эффективности своей торговли в перспективе. Он позволяет вовремя заметить проблему и успеть предпринять меры для её решения до того, как трейдер окажется в минусе.
Помочь создать эффективную торговую систему с положительным математическим ожиданием может обучение в Школе трейдинга Александра Пурнова у опытного наставника. А полезные материалы на тему трейдинга из нашего блога будут доступны Вам в полном объёме после подписки.
Читайте также:
blog.purnov.com
Положительное математическое ожидание — Мегаобучалка
Если вы знаете, как считать карты в очко, у вас может быть преимущество перед казино, если они не заметят этого и не выкинут вас вон. Казино обожают пьяных игроков и не переносят считающих карты. Преимущество позволит вам со временем выиграть большее число раз, чем проиграть. Хорошее управление капиталом может помочь вам извлечь
больше прибыли из вашего преимущества и сократить потери. Без преимущества вам лучше отдать деньги на благотворительность. В игре на бирже преимущество даёт система игры, создающая большую прибыль, чем потери, разница цен и комиссионные. Никакое управление капиталом не спасёт плохую игровую систему.
Вы можете выиграть только тогда, когда у вас положительное математическое ожидание, разумная система игры. Игра по интуиции приводит к катастрофе. Многие игроки ведут себя как пьяницы в казино, переходящие от стола к столу. Тех, кто играет слишком много, убивают разница цен и комиссионные.
Лучшие системы игры жёсткие и практичные. Они состоят из небольшого числа элементов. Чем сложнее система, тем большее число её элементов могут не сработать. Игроки любят оптимизировать свои системы по прошлым данным. К сожалению, ваш брокер не позволит вам играть в прошлом. Рынки изменяются, и параметры, идеальные в прошлом, могут не быть таковыми сегодня. Попробуйте вместо этого деоптимизировать вашу систему. Посмотрите, как она будет работать в неблагоприятных условиях. Практичная система ведёт себя хорошо, когда рынок изменяется. В реальной игре она, вероятно, превзойдёт глубоко оптимизированную систему.
И, наконец, если вы разработали хорошую систему, не балуйтесь с ней. Разработайте другую, если вам нравится разнообразие. Роберт Причер формулирует это так: «Большинство игроков берут хорошую систему игры и ломают её, пытаясь сделать совершенной». Если у вас уже есть система игры, то пора установить правила управления капиталом.
Управление капиталом
Предположим, я и вы играем на 1 пенс, подбрасывая монетку. Если «орёл», то вы выигрываете, если грешка», то проигрываете. Предположим, что у вас 10 долларов рискового капитала, а у меня 1 доллар. Хотя у меня и меньше денег, мне нечего бояться: нужна последовательность из 100 поражений, чтобы я проиграл. Мы можем играть очень долго, если, конечно, между нами не встанут два брокера и не вытянут капитал через разницу цен и комиссионные.
Шансы резко изменятся, если мы поднимем ставку до четвертака. Если у меня всего 1 доллар, то четыре поражения меня доконают. Если у вас 10 долларов, то вы можете проиграть четвертак в серии 40 игр подряд. Серия из четырёх проигрышей наступит, вероятно, гораздо раньше, чем из сорока. При равенстве всех остальных факторов, более бедный из двух игроков должен разориться первым.
Большинство любителей думают, что «остальные факторы» далеки от равенства. Они считают себя умнее большинства из нас. Биржевая индустрия старательно поддерживает это заблуждение, утверждая, что победители получают деньги проигравших. Она пытается скрыть, что у игры на бирже отрицательная сумма (см. глава 2). Шальные любители идут на бешенный риск, обеспечивая комиссионные брокерам и прибыль торговцам в зале. Когда они вымываются с рынка, приходят новые сопляки, поскольку надежда никогда не умирает.
Выживание прежде всего
Первой задачей управления капиталом является обеспечение выживания. Вам нужно избегать риска, способного вывести вас из игры. Вторая цель состоит в обеспечении устойчивого потока прибыли, а третья в получении сверхдохода, но выживание идёт первым. «Не рискуйте всем состоянием» – вот первая заповедь игры. Неудачники нарушают её, поставив слишком много на одну сделку. Они продолжают играть с той же или даже большей позицией, когда она даёт убыток. Большинство неудачников окончательно разоряется при попытке оправиться от удара. Хорошее управление капиталом, прежде всего, сохранит вас от удара.
Чем в большую яму вы попадаете, тем более скользкие у неё стенки. Если вы потеряли 10 процентов, то вам нужно сделать 11 процентов, чтобы восстановиться, а если вы потеряли 20 процентов, то вам уже нужно заработать 25, чтобы вернуть своё. При потере 40 процентов нужно сделать блистательные 67 процентов, а если вы потеряли 50, то вам нужна 100 процентная прибыль просто для возвращения к исходному уровню. Когда потери растут в арифметической прогрессии, прибыли, необходимые для их возмещения, растут в геометрической.
Вам нужно знать заранее, сколько вы можете проиграть, когда и на каком уровне вы ограничите свои потери. Профессионалы тяготеют убегать при первых признаках беды и возвращаться на рынок, когда замечают подходящий момент. Любители – ждут и надеются.
Богатейте медленно
Любитель, стремящийся разбогатеть быстро, похож на обезьяну на тонкой ветке. Он тянется к зрелым плодам, но падает, когда ветка ломается.
Игроки, выступающие за фирму, обычно более успешны, как группа, чем индивидуальные игроки. Они обязаны этим своим начальникам, которые обеспечивают дисциплину (см. главу 2.3). Если игрок теряет больше предельной величины в одной сделке, его выгоняют за неподчинение. Если он проигрывает свой месячный лимит, то его лишают права играть до конца месяца и он становится мальчиком, который приносит остальным кофе. Если он проигрывает свой месячный лимит несколько раз подряд, фирма увольняет или переводит его. Эта система заставляет корпоративных игроков избегать потерь. Индивидуальные игроки действуют по собственному усмотрению.
Игрок, открывающий счёт в 20 000 долларов и надеющийся превратить его в два миллиона через два года, похож на подростка, убегающего в Голливуд, чтобы стать популярным певцом. Он может преуспеть в этом, но исключения только подтверждают правило. Любители хотят разбогатеть быстро, но губят себя, когда идут на высокий риск. Они могут преуспевать некоторое время, но повесятся, если им хватит верёвки.
Любители часто спрашивают меня, какой процент прибыли они смогут ежегодно получать от игры на бирже. Ответ зависит от их мастерства, везения и состояния рынка. Любители никогда не задают более важный вопрос: «Как много я проиграю до того, как прекращу играть и заново оценю себя, свою систему и рынки?» Если вы позаботитесь о продолжении процесса, прибыли позаботятся о себе сами.
Тот, кто делает 25 процентов в год – король Wall Street. Многие из финансистов высокого полёта отдадут своего первенца, чтобы добиться этого. Игрок, способный удвоить капитал за год – это звезда, столь же редкая, как популярный певец или великий спортсмен.
Если вы ставите перед собой скромные цели и достигаете их, вы можете пойти очень далеко. Если вы сможете делать 30 процентов в год, люди будут умолять вас принять их деньги под ваше руководство. Если вы будете управлять 10 миллионами, что не редкость в наши дни, то только ваша плата как менеджера составит 6 процентов, то есть 600 000 долларов в год. Если вы сделаете 30 процентов прибыли, то 15 процентов будут вашими как премия, то есть ещё 450 000 ‘долларов в год. Вы заработаете на биржевой игре более миллиона в год, не идя на большой риск. Когда вы будете планировать свою следующую сделку, имейте эти цифры в виду. Играйте для того, чтобы получить хороший послужной список с постоянными прибылями и небольшими потерями.
Скольким рисковать
Большинство игроков погибают от одной из двух пуль: от невежества или от эмоций. Любители играют по интуиции и заключают такие сделки, которые не следует заключать никогда из-за отрицательного математического ожидания. Те, кто переживает стадию исходного невежества, начинает строить более приемлемые системы игры. Когда они становятся более уверенными, они высовывают голову из окопа, и вторая пуля поражает их! Уверенность делает их жадными, они рискуют слишком большой суммой в одной сделке, и короткая череда неудач выметает их с рынка.
Если в каждой сделке вы рискуете четвертью своего счета, то ваш крах неминуем. Вас разорит короткая серия неудач, которая случается даже с самыми лучшими игровыми системами. Даже если вы будете рисковать только десятой долей вашего счёта в одной сделке, то и тогда продержитесь не намного дольше.
Профессионал может позволить себе рисковать только очень небольшой долей своих средств в одной сделке. У любителя тот же подход к игре, что у алкоголика к выпивке. Он начинает, чтобы хорошо провести время, а заканчивает самоуничтожением.
Обширные исследования показали, что максимальной суммой, которой игрок может рисковать в одной сделке, не ухудшая своих долговременных перспектив, являются 2 процента его активов. Этот предел учитывает разницу цен и комиссионные. Если у вас счёт в 20 000 долларов, вы не можете рисковать большим, чем 400 долларов в любой сделке. Если у вас счёт в 100 000 долларов, вы не должны рисковать большим, чем 2000 долларов, а если у вас всего 10 000 долларов, то максимальный риск в одной сделке не должен превышать всего 200 долларов.
Большинство любителей качают головой, когда им говорят об этом. У многих маленькие счета и правило 2 процентов разбивает мечту о больших прибылях. Большинство успешных профессионалов, напротив, считают предел в 2 процента завышенным. Они не позволяют себе рисковать большим, чем 1 или 1,5 процента в одной сделке.
Правило 2 процентов надёжно ограничивает ущерб, который рынок может нанести вашему счету. Даже последовательность из пяти или шести убыточных операций не способна значительно ухудшить ваши перспективы. В любом случае, если вы играете для того, чтобы иметь хороший послужной список, вам вряд ли захочется показать 6 или 8 процентов месячных убытков. Если вы подошли к этому пределу, перестаньте играть до конца месяца. Используйте это время отдыха для того, чтобы заново оценить себя, ваши методы и рынок.
Правило 3 процентов удержит вас от самых рискованных сделок» Когда ваша система даёт сигнал о вступлении в игру, посмотрите, где разумно доставить остановку. Если при этом под угрозой окажется более 2 процентов ваших активов, то пропустите такую возможность. Полезно ждать возможностей сыграть с очень близкой остановкой (см. главу 9). Ожидание уменьшит удовольствие от игры, но повысит потенциальные Прибыли. Выбирайте, что вам на самом деле дороже.
Правило 2 процентов помогает решить, сколько контрактов должно быть в игре. Например, у вас на счету 20 000 и вы можете рискнуть 400 долларами на сделку. Если ваша система показывает привлекательную сделку с риском в 275 долларов, то вы можете сыграть только на один контракт. Если риск всего 175 долларов, то можно сыграть на два контракта.
Как насчёт добавления, увеличения вашей позиции, когда рынок движется в вашу пользу? Правило 2 процентов поможет и здесь. Если вы получили прибыль на следующей за трендом позиции, вы можете добавить к ней, если ваша открытая позиция заведомо безубыточна и добавление не ставит под вопрос больше 2 процентов ваших активов.
Система удвоения
После того, как вы установили максимальный риск на сделку, вам нужно решить, рисковать ли этой суммой в каждой сделке. Большинство систем таковы, что вы рискуете в разных сделках разными суммами. Одна из древнейших систем управления капиталом, это система удвоения, первоначально придуманная для азартных игр. Она подсказывает вам ставить больше после неудачи, чтобы «поправить дела». Не надо говорить о том, насколько этот подход эмоционально привлекателен для неудачников.
Игрок на удвоение в казино продолжает ставить 1 доллар, пока выигрывает, но после проигрыша он ставит 2 доллара. Если он выигрывает, то уходит с прибылью в 1 доллар (-1+2) и возвращается к ставке в 1 доллар. Если же он проигрывает, то удваивает опять и ставит 4 доллара. Если он выиграет, то получит 1 доллар (-1-2+4), а если он проиграет, то поставит 8 долларов. Пока он продолжает удваивать, первый же выигрыш вернёт все проигранное и даст прибыль, равную первоначальной ставке.
Система удвоения выглядит беспроигрышной до того момента, когда вы сообразите, что длинная полоса неудач разорит любого игрока, сколь бы богат он ни был. Игрок, начавший с 1 доллара и проигравший 46 раз, должен поставить 47-ю ставку в 70 триллионов долларов, а это больше, чем стоимость всего мира (примерно 50 триллионов). Ясно, что намного раньше у него кончатся деньги или он упрётся в ограничения казино. Система удвоения бесполезна, если у вас отрицательное или нулевое математическое ожидание. Она самоубийственна, если у вас хорошая система игры и положительное математическое ожидание.
Любители любят систему удвоения из-за её эмоциональной привлекательности. Распространённым заблуждением является то, что не повезти может только до определённого предела или что удача обязательно улыбнётся. Неудачники часто играют более крупно после неудачи. Неудачник, стремящийся к компенсации, часто удваивает объем сделки после неудачи. Это очень плохой метод управления капиталом.
Если вы хотите менять объем сделки, то логика подсказывает, что нужно играть крупнее, когда ваша система соответствует рынку и делает деньги. Если ваш счёт растёт, правило 2 процентов позволит вам играть на большие суммы. Вам надо играть скромнее, когда ваша система не в ладах с рынком и теряет деньги.
Оптимальное f
Некоторые игроки, разработавшие компьютеризированные системы игры, верят в то, что они называют оптимальным f – «оптимальной фиксированной долей» активов. Доля счета, которой они рискуют в одной сделке, определяется по формуле, основанной на результатах их системы и размерах счета. Это сложный метод, но вы можете воспользоваться некоторыми его идеями независимо от того, используете ли вы сам метод.
Ральф Вине показал в своей книге «Формулы управления портфелем», что
1) оптимальное f переменно,
2) если вы играете крупнее оптимального f, то не получаете преимущества и, в принципе, должны разориться,
3) если вы играете мельче, чем оптимальное f, то ваш риск уменьшается в арифметической прогрессии, а прибыль – в геометрической.
Игра на уровне оптимального f эмоционально тяжела, поскольку может давать 85 процентов неудач. Её можно практиковать только с действительно рисковым капиталом. Ключевым пунктом является то, что если вы играете крупнее оптимального f, то обязательно погубите свой счёт. Урок прост: если сомневаетесь, рискуйте меньшим.
Компьютеризированное исследование правил управления капиталом подтвердило некоторые старинные правила и наблюдения. Истинным показателем риска для данной системы игры является размер максимальной проигранной сделки. Ущерб зависит от длительности полосы неудач, которую нельзя предсказать. Диверсификация позволяет сгладить эффект неудач. Вы можете диверсифицироваться, играя на нескольких рынках с разными системами. Тесно связанные рынки, такие, как валютный, не допускают диверсификацию. Мелкий игрок вынужден следовать простому правилу: сложите все яйца в одну корзину и внимательно следите за ней.
Согласно Винсу, компьютерное тестирование подтвердило некоторые общие правила управления капиталом: никогда не округляйте вниз, никогда не выходите на предел маржи, если вам нужны средства, ликвидируйте худшую позицию, первая ошибка самая дешёвая.
megaobuchalka.ru
Ставки с отрицательным математическим ожиданием
Несмотря на то, что вероятность наступления того или иного события в спорте — вещь порой очень субъективная и иной раз кажется, что законы теории вероятности здесь не работают вовсе, стоит понимать, что некоторые действия игрока априори не могут быть плюсовыми на дистанции.
Речь пойдет о ставках на спорт с отрицательным математическим ожиданием или, как ещё говорят, минусовых ставках.
Главной ошибкой рядовых клиентов букмекерских контор, которые не рассматривают ставки на спорт как долгосрочные инвестиции, является то, что они полностью отождествляют прогнозирование и беттинг. Что не так? Безусловно, все мы (и профессионалы, и любители) хотим верно спрогнозировать результат того события, на которое делаем ставку, и чем больше верных ставок, тем лучше.
Однако, профессиональный игрок делает не только прогноз, но и пытается сопоставить его выгодность/убыточность на дистанции с теми котировками, которые предлагают букмекерские конторы. Обычный же клиент БК, который не хочет обременять себя теорией беттинга, делает ставку «на глазок», т.е. он, конечно, смотрит на коэффициенты в линии букмекерской конторы и чем больше они, тем лучше (это он понимает), но попан не сопоставляет вероятность своей оценки наступления события с вероятностью и маржой, которую заложил букмекер в котировки …
Главное для данного типа игроков — просто угадать/спрогнозировать исход поединка, а выгодно ли было это решение с точки зрения математики — дело десятое …
Для пояснения написанного выше о ставках на спорт с отрицательным математическим ожиданием разберем пару элементарнейших примеров с монеткой, которые в той или иной редакции приводятся в любом рассказе о теории вероятности.Классические примеры с монеткой
Подбрасываем монетку, вероятность «орла» или «решки» «фифти-фифти», если, конечно, отбросить вероятность зависания в воздухе и вечное кручение на ребре, о которых спорили в одном бородатом анекдоте мужья, нежелающие нести зарплату женам и хотевшие таким путем разыграть пьянку или поход к проституткам.Если незадачливый «собутыльник-букмекер» предложит Вам на подобное подбрасывание монетки коэффициенты не 1.95 — 1.95 (за вычетом маржи 50 на 50), а например, ставить на выпадение «решки» за 2.20, то Вы должны хвататься за такое предложение руками и ногами. Вытекает это из элементарных соображений выгодности/убыточности на игры на дистанции.
В первом случае, пускай по чуть-чуть, Вы будете проигрывать в перспективе, во втором, несмотря на возможные серии поражений, выигрывать. Кстати о выигрышных и проигрышных сериях, в одном материале я читал, что в неком казино Монако был задокументирован факт выпадения монеты на одну и ту же сторону … 20 раз подряд. Ещё один контраргумент для любителей поиграть классическим догоном, а также порассуждать о верности/ошибочности прогноза после его результата.
Конкретный пример проверки ставки на «минусовость»
Однако, оговоримся, что в реальных «боевых условиях» всё намного сложнее и не так однозначно. Допустим, онлайн-букмекер Pinnacle выставил котировки на теннисный матч Джокович — Киргиос: 1.30 — 3.90. Если переводить коэффициенты в проценты (со скидкой на 2% маржи от конторы Pinnacle) это равняется примерно 75% на успех серба и 25% на викторию австралийца.Один эксперт Вам скажет, что Джокович победит Киргиоса с вероятностью в 70%, другой «каппер» оценит это событие в 65%. Несмотря на знание котировок, они будут Вам рекомендовать ставить … Вы аналогично, как и «эксперты», оценивали успех Джоковича в диапазоне 70-65%.
Продолжим размышление и предположим стандартную картину: Вы не стали мучить себя категориями «выгодно/невыгодно», переводить проценты в коэффициенты, а просто сделали ставку и она прошла. По логике обычного человека: всё круто, ставка сыграла и это — главное. С точки же зрения теории: сделали ставку с отрицательным математическим ожиданием (при условии более-менее точного умения определять вероятности наступления событий на дистанции). Сейчас ставка зашла, но если Вы будете регулярно придерживаться подобной «тактики», то будете нести убытки. Так как если соглашаться со своей оценкой, то ставить Вы должны были начинать на Джоковича с коэффициента не ниже 1.40 (70%).
Был приведен пример с номинальным фаворитом, но естественно, что более показательны случаи с недооценкой аутсайдеров. Там проще говорить о стратегии value betting.
Хватит ли у Вас дисциплины строить свои действия согласно теории беттинга? Верно ли Вы будете оценивать шансы команд/спортсменов на дистанции? Не будете ли делать ставок ради ставок, оправдывая это формулировками типа: «А мне просто было скучно и захотелось поставить …»? Какие финансовые стратегии ставок на спорт Вы применяете? От этих многих других условий и будет зависеть Ваш конечный успех в ставках на спорт!
Всем удачи! Надеюсь, что материал был полезен для Вас!
betsmagazine.com