Преобразование рациональных выражений примеры – .

Содержание

Преобразование рациональных выражений

Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

  1. ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ — разность квадратов;
  2. ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ — квадрат суммы;
  3. ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ — квадрат разности;
  4. ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  5. ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню. 

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!». 

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

\[\frac{4x+3{{y}^{2}}}{9{{y}^{4}}-16{{x}^{2}}}\]

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

\[9{{y}^{4}}={{3}^{2}}\cdot {{y}^{4}}={{3}^{2}}\cdot {{\left( {{y}^{2}} \right)}^{2}}={{\left( 3{{y}^{2}} \right)}^{2}}\]

\[16{{x}^{2}}={{2}^{4}}\cdot {{x}^{2}}={{\left( {{2}^{2}} \right)}^{2}}\cdot {{x}^{2}}={{\left( {{2}^{2}}\cdot x \right)}^{2}}={{\left( 4{{x}^{2}} \right)}^{2}}\]

Перепишем наше выражение с учетом этих фактов:

\[\frac{4x+3{{y}^{2}}}{{{\left( 3{{y}^{2}} \right)}^{2}}-{{\left( 4x \right)}^{2}}}=\frac{4x+3{{y}^{2}}}{\left( 3{{y}^{2}}-4x \right)\left( 3{{y}^{2}}+4x \right)}=\frac{1}{3{{y}^{2}}-4x}\]

Ответ: $\frac{1}{3{{y}^{2}}-4x}$.

Задача № 2

Переходим ко второй задаче:

\[\frac{8}{{{x}^{2}}+5xy-6{{y}^{2}}}\]

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

\[{{x}^{2}}+5x-6=\left( x-… \right)\left( x-… \right)\]

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[{{x}^{2}}+5x-6=0\]

\[D=25-4\cdot \left( -6 \right)=25+24=49\]

\[\sqrt{D}=7\]

\[{{x}_{1}}=\frac{-5+7}{2}=\frac{2}{2}=1\]

\[{{x}_{2}}=\frac{-5-7}{2}=\frac{-12}{2}=-6\]

Мы можем переписать трехчлен следующим образом:

\[{{x}^{2}}+5xy-6{{y}^{2}}=\left( x-1 \right)\left( x+6 \right)\]

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

\[{{x}^{2}}+5y\cdot x-6{{y}^{2}}\]

\[a=1;b=5y;c=-6{{y}^{2}}\]

\[D={{\left( 5y \right)}^{2}}-4\cdot \left( -6{{y}^{2}} \right)=25{{y}^{2}}+24{{y}^{2}}=49{{y}^{2}}\]

\[\sqrt{D}=7y\]

\[{{x}_{1}}=\frac{-5y+7y}{2}=y\]

\[{{x}_{2}}=\frac{-5y-7y}{2}=\frac{-12y}{2}=-6y\]

Запишем разложение нашей квадратной конструкции:

\[\left( x-y \right)\left( x+6y \right)\]

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

\[\frac{8}{\left( x-y \right)\left( x+6y \right)}\]

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

\[\frac{4{{x}^{2}}-6xy+9{{y}^{2}}}{2x-3y}\cdot \frac{9{{y}^{2}}-4{{x}^{2}}}{8{{x}^{3}}+27{{y}^{3}}}\]

Переписываем и стараемся разложить каждое слагаемое:

\[4{{x}^{2}}={{2}^{2}}\cdot {{x}^{2}}={{\left( 2x \right)}^{2}}\]

\[6xy=2\cdot 3\cdot x\cdot y=2x\cdot 3y\]

\[9{{y}^{2}}={{3}^{2}}\cdot {{y}^{2}}={{\left( 3y \right)}^{2}}\]

\[8{{x}^{3}}={{2}^{3}}\cdot {{x}^{3}}={{\left( 2x \right)}^{3}}\]

\[27{{y}^{3}}={{3}^{3}}\cdot {{y}^{3}}={{\left( 3y \right)}^{3}}\]

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

\[\frac{{{\left( 2x \right)}^{2}}-2x\cdot 3y+{{\left( 3y \right)}^{2}}}{2x-3y}\cdot \frac{{{\left( 3y \right)}^{2}}-{{\left( 2x \right)}^{2}}}{{{\left( 2x \right)}^{3}}+{{\left( 3y \right)}^{3}}}=\]

\[=\frac{{{\left( 2x \right)}^{2}}-2x\cdot 3y+{{\left( 3y \right)}^{2}}}{2x-3y}\cdot \frac{\left( 3y-2x \right)\left( 3y+2x \right)}{\left( 2x+3y \right)\left( {{\left( 2x \right)}^{2}}-2x\cdot 3y+{{\left( 3y \right)}^{2}} \right)}=-1\]

Ответ: $-1$.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

Давайте рассмотрим все дроби.

Первая:

\[3-6x=3\left( 1-2x \right)\]

\[2{{x}^{2}}+4x+8=2\left( {{x}^{2}}+2x+{{2}^{2}} \right)\]

Вторая:

\[{{x}^{2}}+4-4x={{x}^{2}}-4x+2={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left( x-2 \right)}^{2}}\]

Третья:

\[8-{{x}^{3}}={{2}^{3}}-{{x}^{3}}=\left( 2-x \right)\left( {{2}^{2}}+2x+{{x}^{2}} \right)\]

\[4{{x}^{2}}-1={{2}^{2}}\cdot {{x}^{2}}-{{1}^{2}}={{\left( 2x \right)}^{2}}-{{1}^{2}}=\left( 2x-1 \right)\left( 2x+1 \right)\]

Перепишем всю конструкцию с учетом изменений:

\[\frac{3\left( 1-2x \right)}{2\left( {{x}^{2}}+2x+{{2}^{2}} \right)}\cdot \frac{2x+1}{{{\left( x-2 \right)}^{2}}}\cdot \frac{\left( 2-x \right)\left( {{2}^{2}}+2x+{{x}^{2}} \right)}{\left( 2x-1 \right)\left( 2x+1 \right)}=\]

\[=\frac{3\cdot \left( -1 \right)}{2\cdot \left( x-2 \right)\cdot \left( -1 \right)}=\frac{3}{2\left( x-2 \right)}\]

Ответ: $\frac{3}{2\left( x-2 \right)}$.

Нюансы решения

Итак, чему мы только что научились:

  • Далеко не каждый квадратный трехчлен раскладывается на множители, в частности, это относится к неполному квадрату суммы или разности, которые очень часто встречаются как части кубов суммы или разности.
  • Константы, т.е. обычные числа, не имеющие при себе переменных, также могут выступать активными элементами в процессе разложения. Во-первых, их можно выносить за скобки, во-вторых, сами константы могут быть представимы в виде степеней.
  • Очень часто после разложения всех элементов на множители возникают противоположные конструкции. Сокращать эти дроби нужно крайне аккуратно, потому что при из зачеркивании либо сверху, либо снизу возникает дополнительный множитель $-1$ — это как раз и есть следствие того, что они противоположны.

Решение сложных задач

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{2}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Рассмотрим каждое слагаемое отдельно.

Первая дробь:

\[27{{a}^{3}}={{3}^{3}}\cdot {{a}^{3}}={{\left( 3a \right)}^{3}}\]

\[64{{b}^{3}}={{2}^{6}}\cdot {{b}^{3}}={{\left( {{2}^{2}} \right)}^{3}}\cdot {{b}^{3}}={{\left( {{2}^{2}}\cdot b \right)}^{3}}={{\left( 4b \right)}^{3}}\]

\[{{\left( 3a \right)}^{3}}-{{\left( 4b \right)}^{3}}=\left( 3a-4b \right)\left( {{\left( 3a \right)}^{2}}+3a\cdot 4b+{{\left( 4b \right)}^{2}} \right)\]

\[{{b}^{2}}-{{2}^{2}}=\left( b-2 \right)\left( b+2 \right)\]

Вторая:

\[9{{a}^{2}}={{3}^{2}}\cdot {{a}^{2}}={{\left( 3a \right)}^{2}}\]

\[16{{b}^{2}}={{4}^{2}}\cdot {{b}^{2}}={{\left( 4b \right)}^{2}}\]

\[12ab=3\cdot 4ab=3a\cdot 4b\]

Весь числитель второй дроби мы можем переписать следующим образом:

\[{{\left( 3a \right)}^{2}}+3a\cdot 4b+{{\left( 4b \right)}^{2}}\]

Теперь посмотрим на знаменатель:

\[{{b}^{2}}+4b+4={{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left( b+2 \right)}^{2}}\]

Давайте перепишем все рациональное выражение с учетом вышеизложенных фактов:

\[\frac{\left( 3a-4b \right)\left( {{\left( 3a \right)}^{2}}+3a\cdot 4b+{{\left( 4b \right)}^{2}} \right)}{\left( b-2 \right)\left( b+2 \right)}\cdot \frac{{{\left( b+2 \right)}^{2}}}{{{\left( 3a \right)}^{2}}+3a\cdot 4b+{{\left( 4b \right)}^{2}}}=\]

\[=\frac{\left( 3a-4b \right)\left( b+2 \right)}{\left( b-2 \right)}\]

Ответ: $\frac{\left( 3a-4b \right)\left( b+2 \right)}{\left( b-2 \right)}$.

Нюансы решения

Как мы еще раз убедились, неполные квадраты суммы либо неполные квадраты разности, которые часто встречаются в реальных рациональных выражениях, однако не стоит их пугаться, потому что после преобразования каждого элемента они практически всегда сокращаются. Кроме того, ни в коем случае не стоит бояться больших конструкций в итогом ответе — вполне возможно, что это не ваша ошибка (особенно, если все разложено на множители), а это автор задумал такой ответ.

В заключение хотелось бы разобрать еще один сложных пример, который уже не относится напрямую к рациональным дробям, однако он содержит все то, что ждет вас на настоящих контрольных и экзаменах, а именно: разложение на множители, приведение к общему знаменателю, сокращение подобных слагаемых. Вот именно этим мы сейчас и займемся.

Решение сложной задачи на упрощение и преобразование рациональных выражений

\[\left( \frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left( \frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала рассмотрим и раскроем первую скобку: в ней мы видим три отдельных дроби с разными знаменателями поэтому первое, что нам необходимо сделать — это привести все три дроби к общему знаменателю, а для этого каждый из них следует разложить на множители:

\[{{x}^{2}}+2x+4={{x}^{2}}+2\cdot x+{{2}^{2}}\]

\[{{x}^{2}}-8={{x}^{3}}-{{2}^{2}}=\left( x-2 \right)\left( {{x}^{2}}+2x+{{2}^{2}} \right)\]

Перепишем всю нашу конструкцию следующим образом:

\[\frac{x}{{{x}^{2}}+2x+{{2}^{2}}}+\frac{{{x}^{2}}+8}{\left( x-2 \right)\left( {{x}^{2}}+2x+{{2}^{2}} \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left( x-2 \right)+{{x}^{3}}+8-\left( {{x}^{2}}+2x+{{2}^{2}} \right)}{\left( x-2 \right)\left( {{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left( x-2 \right)\left( {{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{{{x}^{2}}-4x-4}{\left( x-2 \right)\left( {{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{\left( x-2 \right)}^{2}}}{\left( x-2 \right)\left( {{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Это результат вычислений из первой скобки.

Разбираемся со второй скобкой:

\[{{x}^{2}}-4={{x}^{2}}-{{2}^{2}}=\left( x-2 \right)\left( x+2 \right)\]

Перепишем вторую скобку с учетом изменений:

\[\frac{{{x}^{2}}}{\left( x-2 \right)\left( x+2 \right)}+\frac{2}{x-2}=\frac{{{x}^{2}}+2\left( x+2 \right)}{\left( x-2 \right)\left( x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left( x-2 \right)\left( x+2 \right)}\]

Теперь запишем всю исходную конструкцию:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left( x-2 \right)\left( x+2 \right)}=\frac{1}{x+2}\]

Ответ: $\frac{1}{x+2}$.

Нюансы решения

Как видите, ответ получился вполне вменяемый. Однако обратите внимание: очень часто при таких масштабных вычислениях, когда единственная переменная оказывается лишь в знаменателе, ученики забывают, что это знаменатель и он должен стоял внизу дроби и пишут это выражение в числитель — это грубейшая ошибка.

Кроме того, хотел бы обратить ваше отдельное внимание на то, как оформляются такие задачи. В любых сложных вычислениях все шаги выполняются по действиям: сначала отдельно считаем первую скобку, потом отдельно вторую и лишь в конце мы объединяем все части и считаем результат. Таким образом мы страхуем себя от глупых ошибок, аккуратно записываем все выкладки и при этом нисколько не тратим лишнего времени, как это может показаться на первый взгляд.

До новых встреч!

Смотрите также:

  1. Как выполнять сокращение рациональных дробей без ошибок? Простой алгоритм на примере пяти различных задач.
  2. Дробно-рациональные выражения
  3. Как сдать ЕГЭ по математике
  4. Пробный ЕГЭ 2012. Вариант 12 (без логарифмов)
  5. Метод интервалов: случай нестрогих неравенств
  6. Тест по задачам B14: легкий уровень, 1 вариант

www.berdov.com

Конспект лекции: «Преобразование рациональных выражений»

Занятие № 9

Тема: Преобразование рациональных выражений

Количество часов: 2 часа

Цель: обобщить и систематизировать знания о рациональных выражениях; добиться усвоения обучающимися понятий преобразования рациональных выражений, развить умение обобщать, систематизировать на основе сравнения, делать вводы.

План:

  1. Общие сведения о рациональных выражениях.

  2. Типовые примеры решений.

  3. Практическая часть.

Вопрос 1. Общие сведения о рациональных выражениях

Любое дробное выражение можно записать в виде , где P и Q – рациональные выражения, причем Q обязательно содержит переменные. Такую дробь называют рациональной дробью.

Примеры рациональных дробей:

, ,

Основное свойство дроби выражается тождеством , справедливым при условиях и ; здесь R – целое рациональное выражение. Это значит, что числитель и знаменатель рациональной дроби можно умножить или разделить на одно и то же отличное от нуля число, одночлен или многочлен.

Дробно-рациональные выражения, содержащие переменную под корнем, упрощаются с помощью двух шагового алгоритма:

  1. Раскладываем знаменатели всех дробей на множители, в т. ч. используя формулы сокращенного умножения:

  1. Приводим все дроби к общему знаменателю, а затем находим подобные слагаемые в числителе.

Вопрос 2. Типовые примеры решений

Вопрос 3. Практическая часть

Вопросы для самопроверки:

  1. Какое выражение называется рациональным?

  2. Как выполняется упрощение дробно-рациональных выражений?

  3. Перечислите формулы сокращенного умножения.

Список литературы и ссылки на Интернет-ресурсы, содержащие информацию по теме:

  1. Никольский С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. организаций: базовый и углубл. уровни – М.: Просвещение, 2014. – 431 с.: ил.

  2. Выгодский М.Я. Справочник по элементарной математике / М.Я. Выгодский. – М: Книга по требованию, 2013.-513с.

  3. Материалы по математике Материалы в Единой коллекции цифровых образовательных ресурсов: http://school_collection.edu.ru/collection/matematika/

4. Вся элементарная математика: Средняя математическая интернет – школа http://www.bymath.net

infourok.ru

Тождественные преобразования рациональных выражений /qualihelpy

Тождеством называют равенство, верное при всех значениях переменных, принадлежащих области его определения. 

Например, равенства ,  являются тождествами, так как они справедливы на множестве всех действительных чисел.

Рациональным выражением называют выражение, в котором, относительно входящих в него переменных и чисел, не выполняется никаких других операций кроме операций сложения, вычитания, умножения, деления и возведения в целую степень. 

Например, выражения , и  являются рациональными. 

Целые рациональные выражения не содержат переменную в знаменателе дроби. 

Дробные рациональные выражения содержат переменную в знаменателе дроби. 

Например, выражения  и  – целые, а выражение  – дробное. 

Все значения переменных, при которых выражение имеет смысл, образуют

область определения (или область допустимых значений) переменных выражения.

В процессе преобразований рациональных выражений используют формулы сокращенного умножения, действия с алгебраическими дробями, способы разложения многочленов на множители.

Формулы сокращенного умножения:

 (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7)

Целые рациональные выражения имеют смысл при любых значениях переменных. Дробные рациональные выражения не имеют смысла при тех значениях переменных, которые обращают в нуль знаменатель дроби. 

В результате некоторых преобразований может измениться область определения рационального выражения, например, в результате сокращения дроби на выражение, содержащее переменную. 

Теорема Виета. Сумма корней квадратного уравнения  равна , а произведение его корней равно  (при условии, что ).Если , то учитываем, что  – двукратный корень уравнения.Приведенным квадратным уравнением
называют уравнение вида: . Согласно теореме Виета, сумма корней этого уравнения равна , а произведение его корней равно . 

helpy.quali.me

Рациональные выражения. Задачи В11 ЕГЭ по математике

Часть 1.

Здесь смотрим части 2, 3, 4, 5

Разбор Задач №9 ЕГЭ по математике из открытого банка заданий
I. Преобразование числовых рациональных выражений

Задание 1.

Найдите значение выражения .

Решение: + показать

Ответ: 18. 

Задание 2.

Найдите значение выражения  .

Решение: + показать

Ответ: 0,1. 

Задание 3.

Найдите значение выражения .

Решение: + показать

Задание 4.

Найдите значение выражения: .

Решение: + показать

Ответ: -24,32. 

II. Преобразование буквенных рациональных выражений

Задание 1.

Найдите значение выражения .

Решение: + показать

Задание 2.

Найдите значение выражения .

Решение: + показать

Задание 3.

Найдите значение выражения .

Решение: + показать

Раскладываем числитель на множители, пользуясь формулой разности квадратов:

Ответ: -2. 

Задание 4.

Найдите значение выражения .

Решение: + показать

Раскладываем числитель и знаменатель на множители путем вынесения общего множителя за скобку:

Ответ: 17. 

Задание 5.

Найдите значение выражения .

Решение: + показать

Задание 6.

Найдите значение выражения .

Решение: + показать

Не выполняя действие во вторых скобках, сразу производим раскрытие скобок:

Ответ: -8. 

Задание 7.

Найдите , если  при .

Решение: + показать

Ответ: 1. 

Задание 8.

Найдите , если   при .

Решение: + показать

Ответ: 0. 

Задание 9.

Найдите , если .

Решение: + показать

   =>  

Делим обе части равенства на :

Ответ: -0,2. 

Задание 10.

Найдите , если .

Решение: + показать

 =>

Тогда

Ответ: 2. 

Задание 11.

Найдите значение выражения  , если , .

Решение: + показать

🙂 За улыбкой сюда –>+ показать

Надеюсь, вам было также интересно…

Вы можете пройти тест по заданиям 9 «Преобразования рациональных выражений».

egemaximum.ru

Преобразование более сложных рациональных выражений. Видеоурок. Алгебра 8 Класс

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Преобразование более сложных рациональных выражений

На этом уроке мы рассмотрим преобразование более сложных рациональных выражений. Первый пример будет посвящён доказательству тождества.

Пример 1

Доказать тождество: .

Доказательство:

В первую очередь при преобразовании рациональных выражений необходимо определиться с порядком действий. Напомним, что в первую очередь выполняются действия в скобках, затем умножение и деление, а затем уже сложение и вычитание. Поэтому в данном примере порядок действий будет таким: сначала выполним действие в первых скобках, затем во вторых скобках, затем поделим полученные результаты, а затем к полученному выражению добавим дробь. В результате этих действий, а также упрощения, должно получиться выражение .

Действие №1:         

Действие №2:         

Действие №3:         

Действие №4:         

Доказано

Рассмотрим теперь пример на упрощение рационального выражения.

Пример 2

Упростить выражение: .

Решение:

И снова нам необходимо определить порядок действий данного примера. Сначала необходимо выполнить действие в скобках. Затем полученное выражение поделить на дробь, которая стоит за скобками.

Действие №1:         

Действие №2:         

Ответ: .

Итак, мы рассмотрели более сложные случаи преобразования рациональных выражений. Все рассмотренные примеры и методы в дальнейшем нам очень пригодятся. Особенно полезны они будут при изучении рациональных уравнений, которые мы рассмотрим на следующем уроке.

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Портал Естественных Наук (Источник).

2. Фестиваль педагогических идей «Открытый урок» (Источник).

3. Интернет-портал xenoid.ru (Источник).

4. Прикладная математика (Источник).

 

Домашнее задание

1. №№102-104. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Выполнить действия: а), б) .

3. Выполнить действия: а) , б) .

4. Найти сумму: .

interneturok.ru

Преобразование рациональных выражений. Видеоурок. Алгебра 8 Класс

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Преобразование рациональных выражений

Вспомним сначала определение рационального выражения.

Определение. Рациональное выражение – алгебраическое выражение, не содержащее корней и включающее только действия сложения, вычитания, умножения и деления (возведения в степень).

Под понятием «преобразовать рациональное выражение» мы имеем в виду, прежде всего, его упрощение. А это осуществляется в известном нам порядке действий: сначала действия в скобках, затем произведение чисел (возведение в степень), деление чисел, а затем действия сложения/вычитания.

Основной целью сегодняшнего урока будет приобретение опыта при решении более сложных задач на упрощение рациональных выражений.

Пример 1. Упростить рациональное выражение .

Решение. Сначала может показаться, что указанные дроби можно сократить, т. к. выражения в числителях дробей очень похожи на формулы полных квадратов соответствующих им знаменателей. В данном случае важно не спешить, а отдельно проверить, так ли это.

Проверим числитель первой дроби: . Теперь числитель второй: .

Как видно, наши ожидания не оправдались, и выражения в числителях не являются полными квадратами, т. к. у них отсутствует удвоение произведения. Такие выражения, если вспомнить курс 7 класса, называют неполными квадратами. Следует быть очень внимательными в таких случаях, т. к. перепутывание формулы полного квадрата с неполным – очень частая ошибка, а подобные примеры проверяют внимательность учащегося.

Поскольку сокращение невозможно, то выполним сложение дробей. У знаменателей нет общих множителей, поэтому они просто перемножаются для получения наименьшего общего знаменателя, а дополнительным множителем для каждой из дробей является знаменатель другой дроби.

 

Конечно же, далее можно раскрыть скобки и привести затем подобные слагаемые, однако, в данном случае можно обойтись меньшими затратами сил и заметить, что в числителе первое слагаемое является формулой суммы кубов, а второе – разности кубов. Для удобства вспомним эти формулы в общем виде:

 и .

В нашем же случае выражения в числителе сворачиваются следующим образом:

, второе выражение аналогично. Имеем:

.

Ответ. .

Пример 2. Упростить рациональное выражение .

Решение. Данный пример похож на предыдущий, но здесь сразу видно, что в числителях дробей находятся неполные квадраты, поэтому сокращение на начальном этапе решения невозможно. Аналогично предыдущему примеру складываем дроби:

, здесь мы аналогично способу, указанному выше, заметили и свернули выражения по формулам суммы и разности кубов.

Ответ. .

Пример 3. Упростить рациональное выражение .

Решение. Можно заметить, что знаменатель второй дроби раскладывается на множители по формуле суммы кубов. Как мы уже знаем, разложение знаменателей на множители является полезным для дальнейшего поиска наименьшего общего знаменателя дробей.

.

Укажем наименьший общий знаменатель дробей, он равен: , т. к. делится на знаменатель третьей дроби, а первое выражение вообще является целым, и для него подойдет любой знаменатель. Указав очевидные дополнительные множители, запишем:

.

Ответ.

Рассмотрим более сложный пример с «многоэтажными» дробями.

Пример 4. Доказать тождество  при всех допустимых значениях переменной.

Доказательство. Для доказательства указанного тождества постараемся упростить его левую часть (сложную) до того простого вида, который от нас требуется. Для этого выполним все действия с дробями в числителе и знаменателе, а затем разделим дроби и упростим результат.

. Доказано при всех допустимых значениях переменной.

Доказано.

На следующем уроке мы подробно рассмотрим более сложные примеры на преобразование рациональных выражений.

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Учимся вместе (Источник).

2. Разработки уроков, презентации, конспекты занятий (Источник).

3. Интернет-портал roman.by (Источник).

 

Домашнее задание

1. №96-101. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Упростите выражение .

3. Упростите выражение .

4. Докажите тождество .

interneturok.ru

8 класс. Алгебра. Алгебраические дроби. — Преобразование рациональных выражений.

Комментарии преподавателя

Урок: Пре­об­ра­зо­ва­ние ра­ци­о­наль­ных вы­ра­же­ний

Вспом­ним сна­ча­ла опре­де­ле­ние ра­ци­о­наль­но­го вы­ра­же­ния.

Опре­де­ле­ние. Ра­ци­о­наль­ное вы­ра­же­ние – ал­геб­ра­и­че­ское вы­ра­же­ние, не со­дер­жа­щее кор­ней и вклю­ча­ю­щее толь­ко дей­ствия сло­же­ния, вы­чи­та­ния, умно­же­ния и де­ле­ния (воз­ве­де­ния в сте­пень).

Под по­ня­ти­ем «пре­об­ра­зо­вать ра­ци­о­наль­ное вы­ра­же­ние» мы имеем в виду, пре­жде всего, его упро­ще­ние. А это осу­ществ­ля­ет­ся в из­вест­ном нам по­ряд­ке дей­ствий: сна­ча­ла дей­ствия в скоб­ках, затем про­из­ве­де­ние чисел (воз­ве­де­ние в сте­пень), де­ле­ние чисел, а затем дей­ствия сло­же­ния/вы­чи­та­ния.

Ос­нов­ной целью се­го­дняш­не­го урока будет при­об­ре­те­ние опыта при ре­ше­нии более слож­ных задач на упро­ще­ние ра­ци­о­наль­ных вы­ра­же­ний.

При­мер 1. Упро­стить ра­ци­о­наль­ное вы­ра­же­ние .

Ре­ше­ние. Сна­ча­ла может по­ка­зать­ся, что ука­зан­ные дроби можно со­кра­тить, т. к. вы­ра­же­ния в чис­ли­те­лях дро­бей очень по­хо­жи на фор­му­лы пол­ных квад­ра­тов со­от­вет­ству­ю­щих им зна­ме­на­те­лей. В дан­ном слу­чае важно не спе­шить, а от­дель­но про­ве­рить, так ли это.

Про­ве­рим чис­ли­тель пер­вой дроби: . Те­перь чис­ли­тель вто­рой: .

Как видно, наши ожи­да­ния не оправ­да­лись, и вы­ра­же­ния в чис­ли­те­лях не яв­ля­ют­ся пол­ны­ми квад­ра­та­ми, т. к. у них от­сут­ству­ет удво­е­ние про­из­ве­де­ния. Такие вы­ра­же­ния, если вспом­нить курс 7 клас­са, на­зы­ва­ют непол­ны­ми квад­ра­та­ми. Сле­ду­ет быть очень вни­ма­тель­ны­ми в таких слу­ча­ях, т. к. пе­ре­пу­ты­ва­ние фор­му­лы пол­но­го квад­ра­та с непол­ным – очень частая ошиб­ка, а по­доб­ные при­ме­ры про­ве­ря­ют вни­ма­тель­ность уча­ще­го­ся.

По­сколь­ку со­кра­ще­ние невоз­мож­но, то вы­пол­ним сло­же­ние дро­бей. У зна­ме­на­те­лей нет общих мно­жи­те­лей, по­это­му они про­сто пе­ре­мно­жа­ют­ся для по­лу­че­ния наи­мень­ше­го об­ще­го зна­ме­на­те­ля, а до­пол­ни­тель­ным мно­жи­те­лем для каж­дой из дро­бей яв­ля­ет­ся зна­ме­на­тель дру­гой дроби.

 

Ко­неч­но же, далее можно рас­крыть скоб­ки и при­ве­сти затем по­доб­ные сла­га­е­мые, од­на­ко, в дан­ном слу­чае можно обой­тись мень­ши­ми за­тра­та­ми сил и за­ме­тить, что в чис­ли­те­ле пер­вое сла­га­е­мое яв­ля­ет­ся фор­му­лой суммы кубов, а вто­рое – раз­но­сти кубов. Для удоб­ства вспом­ним эт

www.kursoteka.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *