Производная что это такое для чайников – как найти, вычислить и понять с нуля

Содержание

О производных / Habr


Когда-то в школе я не понимал производных. Не подумайте, что я был совсем уж дураком — я знал определение, умел их брать (в рамках простеньких школьных примеров) и оценки по математике имел неплохие. Но вот смысл этого понятия от меня ускользал. Я понимал насколько важен график некоторой функции — по нему легком можно увидеть зависимость функции от аргумента. Глянул в какую-нибудь точку — и сразу ясно положение дел в данном конкретном месте. А что мне с производной? Ну, знаю я «предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует» — и что? В общем, не понимал я это дело. И не любил.
И только значительно позже, уже в ВУЗе, когда оказалось, что ни одна мало-мальски важная задача по физике, электротехнике, системам автоматического управления, мат.анализу и многим другим предметам без производных не решается — я понял, какая это важная вещь — знание не только текущего положения дел, но и динамики их изменения. Казалось бы, и что статья с таким началом может делать в этом блоге?

А вот что. Представьте себе двух людей. Пусть их будут звать Коля и Петя.

Коля и Петя — одного возраста, пола, с одинаковым образованием и работают в одной и той же фирме, на должностях одного уровня и получают одинаковую зарплату.

Какие на основании данной вводной можно сделать выводы? Можно ли сказать, что их жизнь складывается одинаково? Можно ли утверждать, что они одинаково довольны в финансовом и личном плане? Можно ли сказать, что их карьеры строятся схожим образом?
Конечно же, нифига подобного!
Дело в том что Коля — всегда был очень умён, трудолюбив и раньше, до наблюдаемого нами момента, его карьера шла очень хорошо. Он был начальником начальника Пети и зарабатывал раз в 25 больше. Но потом в его жизни что-то поменялось — может жена ушла, может в секту попал, а может пить начал. Или всё вместе. Блеск в глазах пропал, после двух сорванных проектов в должности его понизили и на горизонте замаячил злорадный силуэт увольнения.

А вот Петя — гением никогда не был. Он был обычным неглупым трудягой, который честно работал. Без героических свершений и позорных провалов. Его карьера медленно и плавно двигалась в гору и кресло начальника отдела уже, в принципе, было готово принять в себя его попу.

Вот это и есть важность понимания динамики процесса. Глянем для закрепления материала на еще одну ситуацию.
У нас есть Маша, Даша и Наташа.

Они, как и их друзья Коля и Петя, полностью идентичны в своём текущем состоянии (возраст, работа, зарплата, семейное положение ну и т.д.). Более того, мы даже кое-что знаем об их прошлом. Никто из них никогда не забирался выше текущего места в жизни, никаких форс-мажоров у них не было, и у нас есть еще одна важная вещь — информация о некотором моменте в прошлом (скажем, год назад). И согласно этой информации — опять таки, все объективные параметры этих девушек были равны. Вернёмся к нашим вопросам. Как на счёт оценки положения дел у этих дам? Можно ли говорить об одном уровне карьерного роста, амбициях, достижениях и о том, где каждая из них будет через 5 лет?

И, конечно же, опять — нифига подобного!

Глянем вот на этот график:

Даша — стабильный середнячок. Она растет в меру своих сил, этих сил на все хватает и будет хватать.
Наташа — пока еще справляется, но уже без былого энтузиазма. Большего, чем сейчас, ей не хочется и не светит. Это почти её предел.

Маша — сильная и амбициозная личность. Текущая точка — просто досадное недоразумение, первая ступенька в лестнице её карьеры. Ну просто времени еще было мало и выше забраться пока не удалось. Но обязательно удастся и на это будут брошены все силы.

К чему это я?

1. Частенько в разговорах между давно не встречавшимися или только познакомившимися людьми проскакивают фразы в духе:
  • А где работаешь?
  • А кем?
  • Сколько получаешь?
и т.д.
Люди получают ответы на эти вопросы и судят по ним о собеседнике. А ведь это всего лишь «положение дел в данной точке», которое, как мы уже выяснили, информации несёт мало. Не судите поспешно.

2. Иногда человек смотрит сам на себя со стороны и приходит к выводу, что, мол «я ничтожество, нищий и убогий, а еще дурак и бездарь» или наоборот «я всего добился, я крут, бел и пушист». В первом случае люди зря ставят на себе крест и лезут в петлю, хотя вполне еще можно выбраться, во втором — слишком рано расслабляются и почивают на лаврах, хотя из-за какого-нибудь угла легко может подкрасться кризис, капец и конец света.

3. Посмотрите на графики сверху. Где Ваш? А Вы уверены? А почему? А Вы по нему двигаетесь? А на Вашей должности и в Вашей компании вообще по нему можно двигаться? Что Вас останавливает? Хотите ли Вы через 5 лет быть в той же точке? А на том же графике?

Каков знак Вашей производной?

habr.com

Объясните, что такое производная, чтобы понял школьник : Вопросы преподавания

Что такое производная в данной точке :
1)для простоты начертите параболу , её производная ;
2)возьмите точку на положительной части параболы, т.е. справа от нуля,
3)теперь через эту точку прочертите касательную к параболе и
4)обозначьте точку пересечения касательной с осью как ;
5)теперь опустите перпендикуляр из точки на ось ;
6)Вы должны наблюдать прямоугольный треугольник ;
7)обозначьте угол ;
8)так вот производная в точке , т.е. будет тангенсом .

, иначе говоря производная — это тангенс угла наклона касательной,
ведь косательная — это по сути прямая, т.е. имеет формулу , а это и есть .

dxdy.ru

Как брать производную? Высшая математика, производная.

На самом деле брать производную не так уж и трудно, главное хорошенько проработать алгоритм.
Кстати если после просмотра материала у вас будут трудности пишите МНЕ, я дешево помогу вам решить примеры.
Итак, без чего мы не сможем обойтись? Конечно же таблица производных!

Таблица производных

в данной таблице указаны значения производной простейших функций, внимательно изучите таблицу производных, после чего можно приступать к решению заданий.

Данная таблица поможет нам брать производные от тригонометрических и логарифмических функций.
Теперь разберем поэтапно как брать производную, начиная с самых простых и элементарных функций.
Сперва разберем самые простые производные.

Если вы еще не поняли смотрим более легкие уроки.






matematikaprosta.ru

Что такое производная. Практический смысл производной

Геометрический смысл производной

ОПРЕДЕЛЕНИЕ КАСАТЕЛЬНОЙ К КРИВОЙ

Касательной к кривой y=ƒ(x) в точке М называется предельное положение секущей, проведенной через точку М и соседнюю с ней точку М1 кривой, при условии, что точка М1 неограниченно приближается вдоль кривой к точке М.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

Производная функции y=ƒ(x) в точке х0 численно равна тангенсу угла наклона к оси

Ох касательной, проведенной к кривой y=ƒ(x) в точке М (х0; ƒ(x0)).

ВИЗНАЧЕННЯ ДОТИЧНОЇ ДО КРИВОЇ

Дотичною до кривої y=ƒ(x) в точці М називається граничне положення січної, проведеної через точку М і сусідню з нею точку М1 кривої, за умови, що точка М1 необмежено наближається вздовж кривої до точки М.

ГЕОМЕТРИЧНИЙ ЗМІСТ ПОХІДНОЇ

Похідна функції y=ƒ(x) в точці х0 чисельно дорівнює тангенсу кута нахилу до осі Ох дотичної, проведеної до кривої y=ƒ(x) в точці М (х0; ƒ(x0)).

Практический смысл производной

Рассмотрим, что практически означает величина, найденная нами как производная от некоторой функции.

Прежде всего, производная — это основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке.

Что такое «скорость изменения»? Представим себе функцию f(x) = 5. Вне зависимости от значения аргумента (х) ее значение никак не изменяется. То есть, скорость ее изменения равна нулю.

Теперь рассмотрим функцию f(x) = x. Производная х равна единице. Действительно, легко заметить, что на каждое изменение аргумента (х) на единицу, значение функции прирастает также на единицу. 

С точки зрения полученной информации теперь посмотрим в таблицу производных простых функций. Исходя из этого сразу же становится понятен физический смысл нахождения производной функции. Такое понимание должно облегчить решение практических задач.

Соответственно, если производная показывает скорость изменения функции, то двойная производная показывает ускорение.

 Дифференциальное исчисление | Описание курса | Правила дифференцирования 

   

profmeter.com.ua

Ответы@Mail.Ru: Объясните производную по-человечески, пожалуйста!

Производная — это скорость: движения, старения, глупения, выздоровления, ожирения и т. д. Начнём с функции. Так: Функция — это любая зависимость чего-нибудь от чего-нибудь. Например, вес портфеля зависит от количества учебников в нём. Тяжесть похмелья по утрам зависит от объёма выпитого. Количество волос на голове зависит от возраста. Величина, которая зависит, называется функцией, а то, от чего она зависит, называется аргументом. Т. е. возраст — аргумент (и довольно часто) , а количество волос на голове — функция. Любому значению аргумента соответствует своё значение функции — так, например, в 25 лет у человека 100 тысяч волос, а в 55 лет (у того же человека) — их всего 100. Понятно, что функция (пышность шевелюры) должна как-то изменяться при изменении её аргумента (число подаренных на 23 февраля галстуков, дезодорантов и бритв с носками) . Волосы у человека выпадают каждый день по десятку штук. Вот эта скорость изменения функции — минус 10 штук в день — и есть производная. У разных людей своя собственная функция, заложенная природой, — волосы выпадают по-разному, кто-то лысеет в двадцать, а кто-то не лысеет в семьдесят, поэтому очевидно, что производная зависит от функции — у каждой функции она своя. В математике значением производной в данной точке считается отношение изменения функции к изменению аргумента. Причём изменения аргумента должно быть как можно меньше (стремиться к нулю) . Именно это записывается формулой: <img src=»//content.foto.my.mail.ru/list/roga_i_kopyta/_answers/i-72.jpg» > Производная тоже может меняться в разных точках. Например, испугался человек — и быстро облысел, или, наоборот, витаминов налопался — лишние волосы повылазили. В первом случае производная (одной и той же функции) отрицательная (число волос убывает) и большая (выпало много) , а во втором — положительная (растут новые волосы) и маленькая (выросло мало) . Поэтому, в принципе, производная — это тоже функция. Кроме механического смысла (скорость) у производной есть геометрический смысл — касательная к графику функции. Если мы нарисуем график изменения числа волос у человека во времени, то получим что-то вроде этого (по горизонтальной оси время, по вертикальной — мохнатость) : <img src=»//content.foto.my.mail.ru/list/roga_i_kopyta/_answers/i-71.jpg» > Человек родился с каким-то количеством волос, потом они у него растут (производная положительна — количество волос увеличивается) , затем почему-то выпадают (наверное, попал под кислотный дождь) , а потом снова отрастают, а к старости уже выпадают. Видно, что производная меняется. Если мы проведём касательную к этому графику в какой-то точке, то получим график производной в этой точке (вернее, получим прямую, тангенс угла наклона которой численно равен значению производной в точке касания). <img src=»//content.foto.my.mail.ru/list/roga_i_kopyta/_answers/i-73.jpg» >

Производная — обратное первообразной.

<a rel=»nofollow» href=»http://mgyie.ru/index.php?option=com_remository&Itemid=30&func=fileinfo&id=1370″ target=»_blank»>http://mgyie.ru/index.php?option=com_remository&Itemid=30&func=fileinfo&id=1370</a> Основы высшей математики для чайников

Скорость изменения чего-то. На графике это будет наклоном кривой, изображающей процесс, в заданной точке времени. Поэтому для графика любой функции можно нарисовать график ее производной, то есть график скорости, с которой меняется значение функции в каждой точке, а в алгебраической записи — по определенным правилам получить из формулы для функции формулу для скорости ее изменения, то есть производной.

touch.otvet.mail.ru

Производная функции — это… Что такое Производная функции?

У этого термина существуют и другие значения, см. Производная. Иллюстрация понятия производной

Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование.

История

В классическом дифференциальном исчислении производная чаще всего определяется через понятия теории пределов, однако исторически теория пределов появилась позже дифференциального исчисления.

Русский термин «производная функции» впервые употребил В. И. Висковатов.[1]

Определение

Пусть в некоторой окрестности точки определена функция Производной функции называется такое число , что функцию в окрестности можно представить в виде

если существует.

Определение производной функции через предел

Пусть в некоторой окрестности точки определена функция Производной функции в точке называется предел, если он существует,

Общепринятые обозначения производной функции в точке

Заметим, что последнее обычно обозначает производную по времени (в теоретической механике).

Дифференцируемость

Производная функции в точке , будучи пределом, может не существовать или существовать и быть конечной или бесконечной. Функция является дифференцируемой в точке тогда и только тогда, когда её производная в этой точке существует и конечна:

Для дифференцируемой в функции в окрестности справедливо представление

при

Замечания

Геометрический и физический смысл производной

Тангенс угла наклона касательной прямой

Геометрический смысл производной. На графике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точки x0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло-серая линия C5). Расстояние Δx = x — x0 устремляется к нулю, в результате секущая переходит в касательную (постепенно темнеющие линии C5 — C1). Тангенс угла α наклона этой касательной — и есть производная в точке x0.

Если функция имеет конечную производную в точке то в окрестности её можно приблизить линейной функцией

Функция называется касательной к в точке Число является угловым коэффициентом или тангенсом угла наклона касательной прямой.

Скорость изменения функции

Пусть  — закон прямолинейного движения. Тогда выражает мгновенную скорость движения в момент времени Вторая производная выражает мгновенное ускорение в момент времени

Вообще производная функции в точке выражает скорость изменения функции в точке , то есть скорость протекания процесса, описанного зависимостью

Производные высших порядков

Понятие производной произвольного порядка задаётся рекуррентно. Полагаем

Если функция дифференцируема в , то производная первого порядка определяется соотношением

Пусть теперь производная -го порядка определена в некоторой окрестности точки и дифференцируема. Тогда

Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от   может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).

  или  
  или  

Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,

Способы записи производных

В зависимости от целей, области применения и используемого математического аппарата используют различные способы записи производных. Так, производная n-го порядка может быть записана в нотациях:

  • Лагранжа , при этом для малых n часто используют штрихи и римские цифры:
и т. д.

Такая запись удобна своей краткостью и широко распространена; однако штрихами разрешается обозначать не выше третьей производной.

  • Лейбница, удобная наглядной записью отношения бесконечно малых (только в случае, если  — независимая переменная; в противном случае обозначение верно лишь для производной первого порядка):
  • Ньютона, которая часто используется в механике для производной по времени функции координаты (для пространственной производной чаще используют запись Лагранжа). Порядок производной обозначается числом точек над функцией, например:
 — производная первого порядка по при , или  — вторая производная по в точке и т. д.
, или иногда .
  • В вариационном исчислении и математической физике часто применяется обозначение , ; для значения производной в точке — . Для частных производных обозначение то же, поэтому смысл обозначения определяют из контекста.

Конечно, при этом необходимо не забывать, что служат все они для обозначения одних и тех же объектов:

Примеры

  • Пусть . Тогда
  • Пусть . Тогда если то

где обозначает функцию знака. Если то а следовательно не существует.

Правила дифференцирования

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C — постоянное число и f=f(x), g=g(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

, то

  • Формулы производной произведения и отношения обобщаются на случай n-кратного дифференцирования (формула Лейбница):
где  — биномиальные коэффициенты.

Следующие свойства производной служат дополнением к правилам дифференцирования:

Доказательство  

Таблица производных некоторых функций

Производная вектор-функции по параметру

Определим производную вектор-функции по параметру:

.

Если производная в точке существует, вектор-функция называется дифференцируемой в этой точке. Координатными функциями для производной будут .

Свойства производной вектор-функции (всюду предполагается, что производные существуют):

См. также

Примечания

Литература

  • В. Г. Болтянский, Что такое дифференцирование?, «Популярные лекции по математике», Выпуск 17, Гостехиздат 1955 г., 64 стр.
  • В. А. Гусев, А. Г. Мордкович «Математика»
  • Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления», том 1
  • В. М. Бородихин, Высшая математика, учеб. пособие, ISBN 5-7782-0422-1

dic.academic.ru

Что такое производная?

Производной функции называется базовый элемент в дифференциальном исчислении. Этот элемент и является определенным результатом применения какой-то определенной операции дифференцирования по отношению к исходной функции.

Определение производной

Для того, чтобы понять, что такое производная, необходимо знать, что название функции происходит непосредственно от слова «произведенная», то есть образовавшаяся от другой какой-либо величины. При этом сам процесс определения производной какой-то определенной функции имеет название — «дифференцирование». 

Наиболее распространенный метод представления и определения, при использовании теории пределов, несмотря на то, что она появилась гораздо позже дифференциальных исчислений. По определению данной теории, производной называется предел в отношении приращения функций к приращению аргумента, в случае если таковой предел имеется, и при условии, что данный аргумент стремится к нулевому значению. 

Принято считать, что, впервые, термин и понятие «производная» употребил в своих трудах известный русский математик по имени В.И.Висковатов.

Рассмотренный ниже небольшой пример поможет наглядно понять, что такое производная.

  1. Для поиска производной функции f в точке х, нам нужно определить значения данной функции непосредственно в точке х, а так же в точке х+Δх. Причем Δx – это приращения аргумента х.
  2. Найти приращение для функции у приравненное к f(х+Δх) – f(х).
  3. Записать производную при помощи предела отношения f’ = lim(f(x+Δх) – f(x))/Δх, исчислить при Δх → 0.

Обычно производная обозначается знаком апострофа — «’» непосредственно над дифференцируемой функцией. Обозначение в виде одного апострофа обозначает первую производную, в виде двух – вторую. Производную наивысшего порядка принято задавать соответствующей цифрой, к примеру f^(n) – что означает производную n-го порядка, где буква «n» – целое число , которое ? 0. Производная нулевого порядка — это и есть сама дифференцируемая функция.

С целью облегчения дифференцирования усложненных функций, были разработаны и приняты определен

elhow.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *