Производные примеры и решения – Как найти производную функции, примеры решения

Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике — Элементы математического анализа

      Пример 1. Найти производную функции

y = cos 2x

      Решение. Воcпользовавшись формулой для производной сложной функции   y = cos (kx + b)   в случае, когда   = 2,   = 0,   получим

(cos 2x)’ = – 2sin 2x .

      Замечание. Очень часто школьники, а также и студенты, при решении примера 1 пишут:

(cos 2x)’ = – sin 2x .

      Это ошибка !!!

      Перепишем верный ответ еще раз:

(cos 2x)’ = – 2sin 2x .

      Приведем также верные ответы в похожих примерах:

      Пример 2. Найти производную функции

y = sin3x

      Решение. Воcпользовавшись формулой для производной сложной функции   y = f (x)) c   в случае, когда   (x) = sin x ,   а   = 3,   получим

Ответ:

      Пример 3. Найти производную функции

y = (3x – 7)5 .

      Решение. Воcпользовавшись формулой для производной сложной функции   y = (kx + b)c   в случае, когда   = 3,   = – 7,   а   = 5,   получим

y’ = 15(3x – 7)4 .

Ответ:

      Пример 4 . Найти производную функции

      Решение. Поскольку

,

то исходную функцию можно переписать в виде

      Воcпользовавшись формулой для производной сложной функции   y = f (x)) c   в случае, когда

,

а   = 8,   получим

Ответ:

      Пример 5 . Найти производную функции

      Решение. Воcпользовавшись правилом 5 для вычисления производной частного двух функций и формулой для производной сложной функции   y = arccos (kx + b)   в случае, когда   = 3,   = 0,   получим

Ответ:

.

      Пример 6. Найти производную функции

      Решение. Воcпользовавшись правилом 4 для вычисления производной произведения двух функций, формулой для производной сложной функции   y = arctg (kx + b)   в случае, когда   = 5,   = 0, и формулой для производной сложной функции   y = akx + b   в случае, когда   = 3,   = 2,   = 0,   получим

Ответ:

      Пример 7 . Найти производную функции

      Решение. Поскольку

то, воcпользовавшись формулой для производной сложной функции   y = e f (x)   в случае, когда   , и формулой для производной сложной функции   y = (kx + b)c   в случае, когда   с = – 1,   = 7,   = – 1,  получим

Ответ:

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Производные тригонометрических функций, примеры

Теория по производным тригонометрических функций

Производные тригонометрических функций равны соответственно:

   

Используя эти производные и правила дифференцирования, выведем формулу для нахождения производной функции . Представим эту функции как , тогда

   

Далее по правилу дифференцирования частного, получим

   

Учитывая, что в числителе у нас записано основное тригонометрическое тождество, окончательно получим:

   

Аналогично можно вывести формулу для котангенса

   

Примеры

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Решение производных

Для того чтобы понять определение производной рассмотрим следующий график функции.

Рис.1. Пример функции и ее производной.

Глядя на рисунок можно увидеть места, где функция растет быстрее, а где убывает. Например, с точки a до точки b график поднимается стремительнее, чем с точки b до точки c.

Если перенести точки с графика функции на новую систему координат таким образом, чтобы точки возрастания располагались выше по оси x, а точки убывания ниже оси x (соблюдая масштаб) и соединить эти точки, то получится новый график новой функции (нижний график на рис. 1). Данная функция и есть производная от основной функции. Данный график есть не что иное, как показатель скорости изменения функции. Другими словами, производная – показатель скорости изменения функции. На практике производные применяются для определения скорости изменения каких-нибудь процессов: физических, химических, экономических и т.д.

Если говорить более сложным языком, то производная – это предел, к которому стремится отношение приращения x к приращению y. В общем виде производная функция выглядит и определяется следующим образом:



Процесс вычисления производной функции называется дифференцированием.

Функций на практике встречается великое множество, но есть простые функции (элементарные), такие как, F(x)=sinx, F(x)=C (где С-константа), F(x)=lnx и т.д. Для этих элементарных функций уже определены производные, и достаточно выучить их наизусть. Производные простых (элементарных) функций приведены в таблице ниже.


Рис.2. Таблица производных простых (элементарных) функций.

Решение производных, говоря простым языком, заключается в превращении одной функции в другую, следуя определенным правилам (исключением, является экспоненциальная функция F(x)=e^x, которая не меняется).

Рассмотрим пример. Необходимо найти производную функции F(x)=х^3 + 3x^2 — 72x + 90
Для решения производной достаточно воспользоваться таблицей производных простых (элементарных) функций. В соответствии с данными из таблицы получим производную:
F’(x)= (х^3 + 3x^2 — 72x + 90)’=3x^2+6x-72

Решение сложных производных

На практике с решением производных сложных функций приходится сталкиваться значительно чаще, чем с простыми.

Правило определения производной сложной функции выглядит следующим образом:
(a(b))’=a’(b)*b’, где a-внешняя функция, b-внутренняя функция.

Рассмотрим пример

Необходимо найти производную функции F(x)=sin(3x-5)

Найти производную данной функции, воспользовавшись таблицей простых (элементарных) функций, не получится, так как под sin находится целое выражение, т.е. функция состоит из двух функций a=sin(x)(внешняя функция) и b=3x-5 (внутренняя функция).

Воспользуемся правилом определения производной сложной функции и получим:
F’(x)=(sin(3x-5))’=cos(3x-5)*(3x-5)’=3cos(3x-5).

заметка: деревянные окна (http://www.woodlan.ru/) и Продвижение товара и услуг в интернете недорого от частного специалиста подробнее на http://seoshnig.ru.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Добавить комментарий

Ваш адрес email не будет опубликован.