Разность натуральных логарифмов – Основные свойства логарифмов

Логарифмы | Все о логарифмах

Если перед логарифмом стоит число, как можно преобразовать это выражение? (далее…)

Чему равен логарифм частного? Это зависит от знаков делимого и делителя. (далее…)

Разность логарифмов с одинаковыми основаниями равна логарифму частного от деления выражения, стоящего под знаком логарифма уменьшаемого, на выражение под знаком логарифма вычитаемого.
(далее…)

Логарифм произведения — результат сложения логарифмов с одинаковыми основаниями. Если выражения, стоящие под знаками логарифмов, положительны, формула

   

является тождеством (далее…)

Сумма логарифмов с одинаковыми основаниями равна логарифму произведения выражений, стоящих под знаками логарифмов слагаемых:

   

(далее…)

Нулевая степень любого положительного числа равна единице:

   

 Из определения логарифма следует, что логарифм единицы по любому основанию равен нулю.

Таким образом, натуральный логарифм 1, десятичный логарифм 1 и логарифм по любому другому основанию равен нулю (далее…)

Число e — иррациональное число.

   

Определение

Натуральный логарифм — это логарифм по основанию e, то есть показатель степени, в который надо возвести основание e, чтобы получить число, стоящее под знаком логарифма.

Как и в случае десятичного логарифма, для натурального логарифма принята укороченная форма записи и чтения. (далее…)

www.logarifmy.ru

разность логарифмов — это… Что такое разность логарифмов?


разность логарифмов
мат. logistic difference

Большой англо-русский и русско-английский словарь. 2001.

  • разность квантилей
  • разность между средними

Смотреть что такое «разность логарифмов» в других словарях:

  • АРИФМЕТИКА — искусство вычислений, производимых с положительными действительными числами. Краткая история арифметики. С глубокой древности работа с числами подразделялась на две различные области: одна касалась непосредственно свойств чисел, другая была… …   Энциклопедия Кольера

  • затухание — 2.1.5 затухание; затухание звука: Уменьшение звукового давления при распространении волны в материале, вызванное процессами поглощения и рассеяния. Источник: ГОСТ Р ИСО 5577 2009: Контроль неразрушающий. Ультразвуковой контроль. Словарь …   Словарь-справочник терминов нормативно-технической документации

  • ЛОГАРИФМ — число, применение которого позволяет упростить многие сложные операции арифметики. Использование в вычислениях вместо чисел их логарифмов позволяет заменить умножение более простой операцией сложения, деление вычитанием, возведение в степень… …   Энциклопедия Кольера

  • звукоизоляция — 3.10. звукоизоляция: Создание герметичной преграды на пути распространения воздушного шума в воздухе. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ширина — 3.11 ширина (width): Размер самой длинной кромки карты. Источник: ГОСТ Р ИСО/МЭК 15457 1 2006: Карты идентификационные. Карты тонкие гибкие. Часть 1. Физические характеристики …   Словарь-справочник терминов нормативно-технической документации

  • Астрономия — (от греческих слов άστρον, светило, и νόμος, закон) наука о небесных светилах. В обширном значении этого слова А. включает в себе исследование всего того, что можно знать о небесных светилах: солнце, луне, планетах, кометах, падающих звездах,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Дифференциальное исчисление — Исчисление бесконечно малых, включающее так называемое Д. исчисление, а также ему обратное интегральное, принадлежит к числу наиболее плодотворных открытий человеческого ума и составило эпоху в истории точных наук. Ближайшим поводом к изобретению …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ГОСТ Р 52797.1-2007: Акустика. Рекомендуемые методы проектирования малошумных рабочих мест производственных помещений. Часть 1. Принципы защиты от шума — Терминология ГОСТ Р 52797.1 2007: Акустика. Рекомендуемые методы проектирования малошумных рабочих мест производственных помещений. Часть 1. Принципы защиты от шума оригинал документа: 3.4.4 вносимые потери Di, дБ (insertion loss): Разность… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 53188.1-2008: Шумомеры. Часть 1. Технические требования — Терминология ГОСТ Р 53188.1 2008: Шумомеры. Часть 1. Технические требования оригинал документа: 3.15 диапазон шкалы (level range), дБ: Интервал номинальных уровней звука, измеряемых при определенном положении элементов управления шумомера.… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 17187-2010: Шумомеры. Часть 1. Технические требования — Терминология ГОСТ 17187 2010: Шумомеры. Часть 1. Технические требования оригинал документа: 3.15 диапазон шкалы (level range), дБ: Интервал номинальных уровней звука, измеряемых при определенном положении элементов управления шумомера.… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 8.714-2010: Государственная система обеспечения единства измерений. Фильтры полосовые октавные и на доли октавы. Технические требования и методы испытаний — Терминология ГОСТ Р 8.714 2010: Государственная система обеспечения единства измерений. Фильтры полосовые октавные и на доли октавы. Технические требования и методы испытаний оригинал документа: 3.26 аналоговый фильтр (analogue filter): Фильтр,… …   Словарь-справочник терминов нормативно-технической документации

dic.academic.ru

Zero To Hero

Содержание:

Мы уже разобрались с экспоненциальной функцией в посвящённой ей статье, и нашей следующей целью становится натуральный логарифм.

В учебниках математики определение натурального логарифма такое, что ничего «натурального», естественного в нём нет: он определяется как действие, обратное функции ex, странной уже самой по себе.

Так что вот вам новое, упрощённое объяснение: Натуральный логарифм — это время, необходимое, чтобы вырасти до определённого уровня.

Представьте, что вы сделали инвестицию мишками Гамми (а кто так не делает?) с непрерывной доходностью 100% годовых. Если вы преследуете цель достичь десятикратного роста вклада, при условии «сложных процентов», вам пришлось бы ждать всего-то ln(10) = 2.3 года. Не можете понять, почему необходимо только пару лет, чтобы достичь 10х роста? Не понимаете, почему последовательность не 1, 2, 4, 8? Почитайте про число e.

Число e и натуральный логарифм — братья-близнецы:

  • ex — уровень, достигнутый при непрерывном росте за определённый промежуток времени.
  • натуральный логарифм (ln) — промежуток времени, необходимый для роста до определённого уровня.

Совсем неплохо, правда? Пока математики подбирают слова, чтобы дать вам длинное путанное определение, давайте поближе посмотрим на это простое и ясное.

Число e означает рост

Число e означает непрерывный рост. Как мы видели в прошлом примере, ex позволяет нам увязать процент и время: 3 года при росте 100% есть то же самое, что и 1 год при 300%, при условии «сложных процентов».

Можно подставлять любые значения процента и времени (50% на протяжении 4 лет), но лучше задать процент как 100% для удобства (получается 100% на протяжении 2 лет). За счёт перехода к 100% мы можем сфокусироваться исключительно на компоненте времени:

ex = eпроцент * время = e1.0 * время = eвремя

Очевидно, что ex означает:

  • насколько вырастет мой вклад через x единиц времени (при условии 100%-го непрерывного роста).
  • например, через 3 промежутка времени я получу в e3 = 20.08 раз больше «штуковин».

ex — это масштабирующий коэффициент, показывающий, до какого уровня мы вырастем за x отрезков времени.

Натуральный логарифм означает время

Натуральный логарифм — это инверсия числа e, такой причудливый термин для обозначения противоположности. Кстати, о причудах; по латыни он называется logarithmus naturali, отсюда и появилась аббревиатура ln.

И что эта инверсия или противоположность означает?

  • ex позволяет нам подставить время и получить рост.
  • ln(x) позволяет нам взять рост или доход и узнать время, необходимое для его получения.

Например:

  • e3 равняется 20.08. Через три отрезка времени у нас будет в 20.08 раз больше того, с чего мы начали.
  • ln(20.08) будет примерно 3. Если вас интересует рост в 20.08 раз, вам понадобится 3 промежутка времени (опять же, при условии стопроцентного непрерывного роста).

Всё ещё читаете? Натуральный логарифм показывает время, нужное, чтобы достичь желаемого уровня.

Этот нестандартный логарифмический счёт

Вы проходили логарифмы — это странные существа. Как им удалось превратить умножение в сложение? А деление в вычитание? Давайте посмотрим.

Чему равняется ln(1)? Интуитивно понятно, что вопрос стоит так: сколько нужно ждать, чтобы получить в 1 раз больше того, что у меня есть?

Ноль. Нуль. Нисколько. У вас уже это есть единожды. Не требуется нисколько времени, чтобы от уровня 1 дорости до уровня 1.

Хорошо, что насчёт дробного значения? Через сколько у нас останется 1/2 от имеющегося количества? Мы знаем, что при стопроцентном непрерывном росте ln(2) означает время, необходимое для удвоения. Если мы обратим время вспять (т.е. подождём отрицательное количество времени), то получим половину от того, что имеем.

  • ln(1/2) = —ln(2) = —0.693

Логично, правда? Если мы вернёмся назад (время вспять) на 0.693 секунды, то обнаружим половину имеющегося количества. Вообще можно переворачивать дробь и брать отрицательное значение: ln(1/3) = —ln(3) = —1.09. Это означает, что, если мы вернёмся в прошлое на 1.09 отрезков времени, то обнаружим только треть от нынешнего числа.

Ладно, а как насчёт логарифма отрицательного числа? Сколько времени нужно, чтобы «вырастить» колонию бактерий от 1 до —3?

Это невозможно! Нельзя получить отрицательное число бактерий, не так ли? Вы можете получить максимум (эээ… минимум) нуль, но вам никак не получить отрицательное число этих маленьких тварей. В отрицательном числе бактерий просто нет смысла.

  • ln(отрицательное число) = неопределено

«Неопределено» означает, что нет такого промежутка времени, который надо было бы прождать, чтобы получить отрицательное значение.

Логарифмическое умножение — просто умора

Сколько времени займёт четырёхкратный рост? Конечно, можно просто взять ln(4). Но это слишком просто, мы пойдём другим путём.

Можно представить четырёхкратный рост как удвоение (требующее ln(2) единиц времени) и затем снова удвоение (требующее ещё ln(2) единиц времени):

  • Время на 4х рост = ln(4) = Время на удвоится и затем ещё раз удвоится = ln(2) + ln(2)

Интересно. Любой показатель роста, скажем, 20, можно рассматривать как удвоение сразу после 10-кратного увеличения. Или роста в 4 раза, и затем в 5 раз. Либо же утроение и затем увеличение в 6.666 раз. Видите закономерность?

Логарифм от A, умноженного на B, есть log(A) + log(B). Это отношение сразу обретает смысл, если оперировать в терминах роста.

Если вас интересует 30-кратный рост, вы можете подождать ln(30) за один присест, либо же подождать ln(3) Для утроения, и затем ещё ln(10) для удесятирения. Конечный результат тот же самый, так что конечно время должно оставаться постоянным (и остаётся).

Что на счёт деления? В частности, ln(5/3) означает: сколько времени понадобится для того, чтобы вырасти в 5 раз, и затем получить 1/3 от этого?

Отлично, рост в 5 раз есть ln(5). Рост в 1/3 раза займёт -ln(3) единиц времени. Итак,

  • ln(5/3) = ln(5) – ln(3)

Сие означает: дайте вырасти в 5 раз, и затем «вернитесь во времени» к той отметке, где останется всего треть от того количества, так что у вас получится 5/3 рост. В общем получается

  • ln(a/b) = ln(a) – ln(b)

Я надеюсь, что странная арифметика логарифмов начинает обретать для вас смысл: умножение показателей роста становится сложением единиц времени роста, а деление превращается в вычитание единиц времени. Не надо запоминать правила, попробуйте осознать их.

Использование натурального логарифма при произвольном росте

— Ну конечно, — скажете вы, — это всё хорошо, если рост 100%-ный, а что в случае 5%, которые я получаю?»

Нет проблем. «Время», которое мы рассчитываем с помощью ln(), на самом деле является комбинацией процентной ставки и времени, тот самый Х из уравнения ex. Мы всего лишь решили задать процент как 100% для простоты, но мы вольны использовать любые числа.

Допустим, мы хотим достичь 30-кратного роста: берём ln(30) и получаем 3.4 Это означает:

Очевидно, это уравнение означает «100%-ная доходность на протяжении 3.4 лет даёт рост в 30 раз». Мы можем записать это уравнение в таком виде:

  • ex = eставка*время
  • e100% * 3.4 года = 30

Мы можем менять значения «ставки» и «времени», лишь бы ставка * время оставалось 3.4. Например, если нас интересует 30-кратный рост — сколько нам придётся ждать при процентной ставке 5%?

  • ln(30) = 3.4
  • ставка * время = 3.4
  • 0.05 * время = 3.4
  • время = 3.4 / 0.05 = 68 лет

Я рассуждаю так: «ln(30) = 3.4, значит, при 100%-ном росте это займёт 3.4 года. Если я удвою скорость роста, необходимое время уменьшится вдвое».

  • 100% за 3.4 года = 1.0 * 3.4 = 3.4
  • 200% за 1.7 года = 2.0 * 1.7 = 3.4 [200%-ный рост означает уменьшение времени вдвое]
  • 50% за 6.8 года = 0.5 * 6.8 = 3.4 [50%-ный рост означает, что понадобится в 2 раза больше времени]
  • 5% за 68 года = .05 * 68 = 3.4 [5%-ный рост означает, что понадобится в 20 раз больше времени].

Здорово, правда? Натуральный логарифм может использоваться с любыми значениями процентной ставки и времени, поскольку их произведение остаётся постоянным. Можете перемещать значения переменных сколько душе угодно.

Отпадный пример: Правило семидесяти двух

Правило семидесяти двух — математический приём, позволяющий оценить, сколько времени понадобится, чтобы ваши деньги удвоились. Сейчас мы его выведем (да!), и более того, мы попробуем уяснить его суть.

Сколько времени понадобится, чтобы удвоить ваши деньги при 100% ставке, нарастающей ежегодно?

Оп-па. Мы использовали натуральный логарифм для случая с непрерывным ростом, а теперь ты ведёшь речь о ежегодном начислении? Не станет ли это формула непригодной для такого случая? Да, станет, однако для реальных процентных ставок вроде 5%, 6% или даже 15%, разница между ежегодным начислением процентов и непрерывным ростом будет невелика. Так что грубая оценка работает, мм, грубо, так что мы сделаем вид, что у нас полностью непрерывное начисление.

Теперь вопрос прост: Как быстро можно удвоиться при 100%-ном росте? ln(2) = 0.693. Нужно 0.693 единиц времени (лет — в нашем случае), чтобы удвоить нашу сумму с непрерывным ростом 100%.

Так, а что если процентная ставка — не 100%, а скажем, 5% или 10%?

Легко! Поскольку ставка * время = 0.693, мы удвоим сумму:

  • ставка * время = 0.693
  • время = 0.693 / ставка

Получается, если рост 10%-ный, это займёт 0.693 / 0.10 = 6.93 лет на удвоение.

Чтобы упростить вычисления, давайте домножим обе части на 100, тогда можно будет говорить «10», а не «0.10»:

  • время на удвоение = 69.3 / ставка, где ставка выражена в процентах.

Теперь черёд удваиваться при ставке 5%, 69.3 / 5 = 13.86 лет. Однако 69.3 — не самое удобное делимое. Давайте выберем близкое число, 72, которое удобно делить на 2, 3, 4, 6, 8 и другие числа.

  • время на удвоение = 72 / ставка

что и является правилом семидесяти двух. Всё шито-крыто.

Если вам нужно найти время для утроения, можете использовать ln(3) ~ 109.8 и получить

  • время на утроение = 110 / ставка

Что является ещё одним полезным правилом. «Правило 72» применимо росту по процентным ставкам, росту населения, культур бактерий, и всего, что растёт экспоненциально.

Что дальше?

Надеюсь, натуральный логарифм теперь приобрёл для вас смысл — он показывает время, необходимое для роста любого числа при экспоненциальном росте. Я думаю, натуральным он называется потому, что e — универсальная мера роста, так что ln можно считать универсальным способом определения, сколько времени нужно для роста.

Каждый раз, когда вы видите ln(x), вспоминайте «время, нужное, чтобы вырасти в Х раз». В предстоящей статье я опишу e и ln в связке, так что свежий аромат математики заполнит воздух.

Дополнение: Натуральный логарифм от e

Быстрая викторина: сколько будет ln(e)?

  • математический робот скажет: поскольку они определены как инверсия одна другой, очевидно, что ln(e) = 1.
  • понимающий человек: ln(e) это число времени, чтобы вырасти в «е» раз (около 2.718). Однако число e само по себе является мерой роста в 1 раз, так что ln(e) = 1.

Мыслите ясно.

Перевод статьи «Demystifying the Natural Logarithm (ln)»

zero2hero.org

Сумма квадратов логарифмов | Логарифмы

Сначала выясним, как решать уравнение, в одной части которого — сумма квадратов логарифмов, а в другой — нуль.

Так как сумма неотрицательных функций равна нулю тогда и только тогда, когда каждая из функций равна нулю, сумма квадратов логарифмов равна нулю, если каждый из логарифмов равен нулю.

Поскольку логарифм единицы равен нулю, сумма квадратов логарифмов равна нулю при условии, что под знаком каждого из логарифмов стоит единица:

   

   

Например,

   

   

ОДЗ:

   

Из условия равенства суммы неотрицательных чисел следует, что

   

   

Из условия равенства нулю логарифма

   

   

Решаем каждое из квадратных уравнений:

   

Оба логарифма равны нулю при x=3.

Ответ: 3.

Обратите внимание, что ОДЗ в этом уравнении мы записали, но не искали. В процессе решения появляются новые уравнения, корни которых (если они есть) автоматически входят в ОДЗ исходного уравнения:

   

 

Аналогично рассуждаем при решении уравнений, содержащих логарифм в любой чётной степени, если в одной части уравнения стоит сумма неотрицательных чисел, а в другой — нуль.

Пример.

   

   

ОДЗ:

   

Левая часть уравнения — сумма неотрицательных функций, правая — нуль. Следовательно, данное уравнение равносильно системе

   

   

   

   

   

Каждое слагаемое обращается в нуль при x= -3. Этот корень входит в ОДЗ.

Ответ: -3.

Если сумма квадратов логарифмов равна положительному числу, преобразуем её, используя свойства логарифмов.

Пример.

   

ОДЗ: x>0.

Логарифм произведения равен сумме логарифмов, логарифм частного — разности логарифмов. Поскольку каждый логарифм в квадрате, сумму и разность также нужно возвести в квадрат:

   

   

   

Замена

   

приводит к уравнению

   

   

   

   

   

Обратная замена

   

По определению логарифма

   

   

   

Ответ: 0,2; 25.

Сумма квадратов логарифмов равной отрицательному числу быть не может.

www.logarifmy.ru

Добавить комментарий

Ваш адрес email не будет опубликован.