Теория вероятности формулы и определения – Глава I. Основные понятия и формулы теории вероятностей.

Содержание

Основные формулы теории вероятности / Теория вероятности [Калинин В.М., Тихомиров С.Р.] / 3dstroyproekt.ru

№№

п/п

Понятия,
обозначения

Содержание, формула

1

Множество

Множество $A-$ совокупность каких-либо объектов $a$, называемых элементами множества: $a\in A$

2

Дополнение $\overline A $ 
{ не $A$ }

$\overline A $ содержит все элементы, не принадлежащие $A$

3

Равенство
множеств $A=B$

Два множества $A$ и $B$ равны между собой, если они состоят из одних и тех же элементов

4

Объединение { сумма } множеств $C=A+B$

Множество $C$ состоит из всех элементов, принадлежащих или множеству $A$, или множеству $B$ или и $A$ и $B$ одновременно

5

Пересечение
{ произведение }
множеств $C=A\cdot B$

Множество $C$ состоит из элементов, принадлежащих одновременно и множеству $A$ и множеству $B$

6

Разность двух
множеств $C=A-B$

$C$ состоит из элементов множества $A$, которые не являются элементами множества $B$

7

Эквивалентные
множества

Два множества называются эквивалентными, если между ними установлено взаимно-однозначное соответствие.

8

Счетные
множества

Бесконечные множества, эквивалентные множеству натуральных чисел $\mathbb { N } $

9

Перестановки. Число
перестановок

Соединения, отличающиеся только порядком элементов, называются перестановками. Число перестановок из $n$ элементов $P_n =n!$, где

$n!=1\cdot 2\cdot 3\cdot 4\cdot \ldots \cdot n$

$0!=1$ 

10

Размещения.
Число размещений

Соединения из $n$ различных элементов по $m$, отличающихся друг от друга составом элементов либо их порядком, называются размещениями. Число размещений из $n$ по $m$

$A_n^m =\frac { n! } { (n-m)! } $ 

11

Сочетания.
Число сочетаний

Соединения из $n$ различных элементов по $m$, отличающихся друг от друга хотя бы одним элементом, называются сочетаниями. Число сочетаний из $n$ по $m$

$C_n^m =\frac { n! } { (n-m)!m! } $

$C_n^m =C_n^ { n-m } ;$

$C_n^0 =1; C_ { n+1 } ^ { m+1 } =C_n^m +C_n^ { m+1 } ;$ 

$C_n^0 +C_n^1 +C_n^2 +\ldots +C_n^ { n-1 } +C_n^n =2^n$

12

Стохастический эксперимент

Это опыт { испытание } , результат которого заранее не определен

13

Достоверное
событие

Результат, который обязательно наступает при осуществлении данного комплекса условий { опыта, эксперимента } называется достоверным событием

14

Случайное
событие

Это событие, которое может произойти, а может и не произойти в данном испытании

15

Невозможное
событие

Это событие, которое не может произойти при данном комплексе условий

16

Относительная частота события $A$

Отношение $\nu (A)=\frac { m } { n } $ числа экспериментов $m$, завершившихся событием $A$, к общему числу $n$ проведенных экспериментов

17

Статистическое определение
вероятности

Если при неограниченном увеличении числа экспериментов относительная частота события $\nu (A)$ стремится к некоторому фиксированному числу, то событие $A$ стохастически устойчиво и это число $p(A)$ называют вероятностью события $A$

18

Определение
вероятности в классической
схеме

$P(A)=\frac { m } { n } $, где $m$ – число исходов стохастического эксперимента, благоприятствующих наступлению события $A$, $n$ – общее число всех равновозможных исходов

19

Вероятность
суммы
{ объединения } , двух событий $A$ и $B$

$P(A+B)=P(A)+P(B)-P(AB)$

20

Вероятность
произведения двух зависимых
событий $A$ и $B$

$P(AB)=P(A)\cdot P(B/A)=P(B)\cdot P(A\vert B)$,

где $P(B\vert A)$ – условная вероятность события $B$ при условии, что событие $A$ с ненулевой вероятностью произошло

21

Независимые
события $A$ и $B$

Это такие события, для которых $P(B\vert A)=P(B)$ и $P(A\vert B)=P(A)$.

Следовательно, $P(AB)=P(A)\cdot P(B)$ 

22

Схема Бернулли

Стохастический эксперимент состоит из последовательности $n$ независимых и одинаковых испытаний, в каждом из которых может произойти событие $A$ или событие, ему противоположное $\overline A $  с вероятностями соответственно равными $p$ и $q=1-p$

23

Формула Бернулли

Вероятность того, что в серии из $n$ испытаний событие $A$ появится ровно $m$ раз $P_n (m)=C_n^m \cdot p^m\cdot q^ { n-m } $ 

Вероятность того, что при $n$ испытаниях $A$ появляется не менее $m_1 $ и не более $m_2 $  раз вычисляется по формуле:

$P_n (m_1 \leqslant m\leqslant m_2 )=\sum\limits_ { m=m_1 } ^ { m_2 } { C_n^m \cdot p^m\cdot q^ { n-m } } $

24

Формула Пуассона

При достаточно большом $n$ и малом $p$, если $a=np\lt 10\rightarrow P_n (m)\approx \frac { a^m } { m! } e^ { -a } $  { таблица 1 }

$P_n (m\leqslant k)\approx e^ { -a } \sum\limits_ { m=0 } ^k { \frac { a^m } { m! } } $  { таблица 2)

25

Локальная формула Муавра-Лапласа

При достаточно большом $n$ и не слишком малых $p$ и $q$

$P_n (m)\approx \frac { 1 } { \sqrt { npq } } \phi (x)$, где $\varphi (x)=\frac { 1 } { \sqrt { 2\pi } } e^ { \frac { -x^2 } { 2 } } $ и $x=\frac { m-np } { \sqrt { npq } } $; $\phi (-x)=\phi (x)$  { таблица 3)

26

Интегральная
формула
Муавра – Лапласа

$P_n (m_1 \leqslant m\leqslant m_2 )=\Phi (x_2 )-\Phi (x_1 )$,

где $x_1 =\frac { m_1 -np } { \sqrt { npq } } $; $x_2 =\frac { m_2 -np } { \sqrt { npq } } $; $\Phi (x)=\frac { 1 } { \sqrt { 2\pi } } \int\limits_0^x { e^ { \frac { -t^2 } { 2 } } } dt$; $\Phi (-x)=-\Phi (x)$  { таблица 4 }

27

Понятие
случайной
величины

Случайной величиной называют переменную величину, которая принимает числовые значения в зависимости от исходов испытания случайным образом.

28

Понятие
дискретной
случайной
величины { ДСВ $X$ }

ДСВ $X$ – случайная величина, принимающая различные значения, которые можно записать в виде конечной или бесконечной последовательности, то есть численные значения которой образуют конечное или счетное множество.

29

Закон
распределения
дискретной
случайной
величины

Соответствие между значениями $x_1, x_2, \cdots $ дискретной случайной величины и их вероятностями $p_1, p_2, \cdots $ называется законом распределения и может быть задан таблично или аналитически { то есть с помощью формул } . Если ДСВ $X$ принимает конечное множество значений $x_1 ,x_2 ,x_3 ...$  соответственно с вероятностями $p_1 ,p_2 ,...,p_n $, то ее закон распределения  определяется формулами

$P(X=x_k )=p_k , ~k=1,2,...,n$ и $\sum\limits_ { k=1 } ^n { p_k =1 } $

Если ДСВ $X$ принимает бесконечную последовательность значений $x_1 ,x_2 ,x_3 ...$ соответственно с вероятностями $p_1 ,p_2 ,p_3 ,...$, то ее закон распределения определяется формулами

$P(X=x_k )=p_k, ~k=1,2,...,n$ и $\sum\limits_ { k=1 } ^\infty { p_k =1 } $

30

Понятие
непрерывной
случайной
величины { НСВ $X$ }

НСВ $X$ – случайная величина, которая может принимать любые значения из некоторого промежутка, то есть множество значений непрерывной случайной величины несчетно.

31

Функция
распределения. Свойства функции распределения

Функцией распределения случайной величины $X$ называется функция действительного переменного $x$, определяемая равенством $F(x)=P(X\lt x)$, где $P(X\lt x)$ - вероятность того, что случайная величина $X$ принимает значение, меньше $x$

Функция распределения $F(x)$ для ДСВ $X$, которая может принимать значения $x_1 ,x_2 ,...x_n $ c соответствующими вероятностями $p_1 ,p_2 ,...,p_n$  имеет вид $F(x)=\sum\limits_ { x_k \lt x } { P(X\lt x_k ) } $, где символ $x_k \lt x$ означает, что суммируются вероятности $p_k $ тех значений, которые меньше $x$.

Функция является разрывной.

Случайная величина $X$ называется непрерывной, если ее функция распределения $F(x)$ является непрерывно дифференцируемой.

Вероятность того, что СВХ примет значение из промежутка $\left[ { \alpha ;\beta }\right)$, равна разности значений ее функции распределения на концах этого полуинтервала:

$P(\alpha \leqslant X\lt \beta )=F(\beta )-F(\alpha )$

Свойства функции распределения

1. $0\leqslant F(x)\leqslant 1$ 

2. Если $x_1 \lt x_2 $, то $F(x_1 )\leqslant F(x_2 )$, то есть функция распределения является неубывающей.

 

31

Функция
распределения. Свойства функции распределения

3. Функция $F(x)$ в точке $x_0 $  непрерывна слева, то есть $\mathop { \lim } \limits_ { x\to x_0 -0 } F(x)=F(x_0 )$; $F(x_0 -0)=F(x_0 )$

4. Если все возможные значения  СВХ принадлежат интервалу $(a;b)$, то $F(x)=0$ при $x\leqslant a$, $F(x)=1$ при $x\geqslant b$ 

5. Если все возможные значения СВХ принадлежат бесконечному интервалу $\left( { -\infty ;+\infty }\right)$, то $\mathop { \lim } \limits_ { x\to -\infty } F(x)=0;\mathop { \lim } \limits_ { x\to +\infty } F(x)=1;$

Если $X$ – непрерывная случайная величина, то вероятность того, что она примет одно заданное определенное значение, равна нулю:

$P(X=\alpha )=0$

Отсюда следует, что для непрерывной случайной величины выполняются равенства:

$P(\alpha \lt X\lt \beta )=P(\alpha \leqslant X\leqslant \beta )=P(\alpha \leqslant X\lt \beta )=$

$=P(\alpha \lt X\leqslant \beta )=F(\beta )-F(\alpha )$

32

Плотность
распределения
вероятностей
непрерывной
случайной
величины.
Свойства функции плотности
распределения.

Плотностью распределения { дифференциальной функцией распределения } вероятностей НСВ $X$ в точке $x$ называют предел отношения вероятности попадания значений этой величины в интервал $\left( { x;x+\Delta x }\right)$ к длине $\Delta x$ этого интервала, когда последняя стремится к нулю:

$f(x)=\mathop { \lim } \limits_ { \Delta x\to 0 } \frac { P(x\lt X\lt x+\Delta x) } { \Delta x } $

Следовательно, $f(x)= { F } '(x)$, то есть плотность распределения есть первая производная от функции распределения НСВХ.

Вероятность того, что НСВХ примет значение, принадлежащее интервалу $(a;b)$, определяется равенством $P(a\lt X\lt b)=\int\limits_a^b { f(x)dx } $

32

Плотность
распределения
вероятностей
непрерывной
случайной
величины.
Свойства функции плотности
распределения.

Зная плотность распределения, можно найти функцию распределения $F(x)=\int\limits_ { -\infty } ^x { f(x)dx } $

Свойства функции плотности

1. Плотность распределения $f(x)$ - неотрицательная функция, то есть $f(x)\geqslant 0$ 

2. Несобственный интеграл по бесконечному промежутку $\left( { -\infty ;+\infty }\right)$ от функции плотности вероятностей равен единице: $\int\limits_ { -\infty } ^ { +\infty } { f(x)dx=1 } $

3. Если все возможные значения случайной величины принадлежат отрезку $\left[ { \alpha ;\beta }\right]$, то $\int\limits_\alpha ^\beta { f(x)dx=1 } $, так как вне этого промежутка $f(x)=0$

33

Математическое ожидание

Для ДСВ $X$ равно сумме произведений всех ее значений на соответствующие вероятности: $M(X)=\sum\limits_ { i=1 } ^n { x_i p_i } $

Для НСВ $X:\;M(X)=\int\limits_ { -\infty } ^ { +\infty } { xf(x)dx } $,

где $f(x)=F'(x)$ – функция плотности распределения вероятности.

34

Свойства
математического ожидания

1. $M(C)=C$, если $C=const,$

2. $M(CX)=CM(X),$

3. $M(X+Y)=M(X)+M(Y),$

4. Если $X$ и $Y$ – независимые случайные величины, то $M(XY)=M(X)\cdot M(Y)$

35

Дисперсия
случайной
величины

Разность $X-M(X)$ называется отклонением случайной величины $X$ от ее математического ожидания $M(X)=a$.

Математическое ожидание отклонения равно нулю: $M(X-a)=0$ 

Дисперсией, или рассеянием случайной величины $X$ называется математическое ожидание квадрата ее отклонения:

$D(X)=M((X-a)^2)$ Следовательно, для любой случайной величины $X:\;\;D(X)\geqslant 0$

36

Свойства
дисперсии

1. $D(C)=0$, $C=const,$

2. $D(CX)=C^2D(X)$, $C=const,$

3. Если случайные величины $X$ и $Y$ независимы, то $D(X\pm Y)=D(X)+D(Y),$

4. $D(XY)=D(X)\cdot D(Y),$ 

5. $D(X)=M(X^2)-(M(X))^2.$

37

Среднее
квадратическое
отклонение

Среднеквадратическим отклонением, или стандартным отклонением, случайной величины $X$ называется корень квадратный из ее дисперсии:

$\sigma (X)=\sqrt { D(X) } \Leftrightarrow D(X)=\sigma ^2.$

38

Биномиальное
распределение

Закон распределения дискретной случайной величины, определяемой формулой Бернулли

$p_k =P_n (k)=C_n^k \cdot p^k\cdot q^ { n-k } (k=0,1,2,...,n)$

называется биномиальным. Постоянные $n,~p$ называются параметрами биномиального распределения $\left( { q=1-p }\right)$.

$M(X)=np;\;D(X)=npq;\;\sigma (X)=\sqrt { npq } $

39

Распределение
Пуассона

Распределением Пуассона называется  распределение вероятностей дискретной случайной величины, определяемое формулой Пуассона $P_n (k)=\frac { a^ke^ { -a } } { k! } $, где $a=np$ – параметр распределения.

$M(X)=a;D(X)=a$

40

Равномерное распределение на интервале $\left( { a;b }\right)$

Если значения случайной величины, которые она принимает в конечном промежутке $(a;b)$, возможны в одинаковой степени, то плотность распределения вероятностей этой величины постоянна на данном промежутке и равна нулю вне этого промежутка, то есть

$f(x)=\left\{ { \begin{array} { l } C\;\mbox { на } \;\left[ { a,b }\right], \\ 0\;\mbox { вне } \;(a,b). \\ \end{array} }\right.$

Доказано, что $C=\frac { 1 } { b-a } .$ 

$M(X)=\frac { a+b } { 2 } ; ~ D(X)=\frac { (b-a)^2 } { 12 } ; ~ \sigma (X)=\frac { b-a } { 2\sqrt 3 } $

41

Геометрическое распределение

Геометрическим называется распределение дискретной случайной величины $X$, определяемое формулой

$P(X=m)=(1-p)^ { m-1 } \cdot p,$, где $0\lt p\lt 1$, и $m=1,2,3...$  { Вероятности образуют бесконечно убывающую геометрическую прогрессию со знаменателем $q=1-p$ } .

$M(X)=\frac { 1 } { p } ; ~ D(X)=\frac { 1-p } { p^2 } $

42

Показательное
распределение

Показательным называется распределение с плотностью вероятностей, определяемой по формуле  $f(x)=\left\{ { \begin{array} { l } 0\mbox { при } \;x\lt 0, \\ \lambda e^ { -\lambda x } \mbox { } \;\mbox { при } \;x\geqslant 0, \\ \end{array} }\right.$

где  $\lambda >0$ - параметр распределения.

$M(X)=\frac { 1 } { \lambda } ; ~ D(X)=\frac { 1 } { \lambda ^2 } \quad ; ~ \sigma (X)=\frac { 1 } { \lambda } .$ 

Замечание. Если $T$ – время безотказной работы элемента, $\lambda $ - интенсивность отказов, то случайная величина $T$ распределена по экспоненциальному закону с функцией распределения $F(t)=P(T\lt t)=1-e^ { -\lambda t } ,_ { } $ где $\lambda \gt 0$. $F(t)$ определяет вероятность отказа элемента за время $t$. Вероятность безотказной работы элемента за время $t$ равна $e^ { -\lambda t } $. Функция $R(t)=e^ { -\lambda t } $ называется функцией надежности.

43

Нормальное распределение $N(a;\sigma )$

Нормальным распределением, или распределением Гаусса, называется распределение с плотностью вероятностей 

$f(x)=\frac { 1 } { \sigma \sqrt { 2\pi } } e^ { \frac { -(x-a)^2 } { 2\sigma ^2 } } $

Постоянные $a$ и $\sigma \quad (\sigma \gt 0)$  называются параметрами нормального распределения.

$M(X)=a; ~ D(X)=\sigma ^2; ~ \sigma =\sqrt { D(X) } $

Вероятность попадания значений нормальной случайной величины $X$ в интервале $(\alpha ;\beta )$  определяется формулой

$P(\alpha \lt X\lt \beta )=\Phi (\frac { \beta -\alpha } { \sigma } )-\Phi (\frac { \alpha -a } { \sigma } ),$

где $\Phi (x)$ – функция Лапласа.

$M(X)=a; D(X)=\sigma ^2.$

44

Нормированное распределение $N(0;1)$

Нормированным или стандартным называется такое нормальное распределение непрерывной случайной величины, когда функция плотности вероятностей $f(x)=\frac { 1 } { \sqrt { 2\pi } } e^ { \frac { -x^2 } { 2 } } .$

$M(X)=a=0; ~ \sigma (X)=\sigma =1.$ 

45

Мода случайной величины $\overline M $

Модой ДСВ $X$ называется ее наиболее вероятное значение.

Модой НСВ $X$ называется то ее значение, при котором плотность распределения вероятностей максимальна.

46

Медиана $M_e $

Медианой непрерывной случайной величины $X$ называется такое ее значение $M_e $, для которого одинаково вероятно, окажется ли случайная величина меньше или больше $M_e $, то есть $P(x\lt M_e )=P(x>M_e )=0,5$.

Если прямая $x=a$ является осью симметрии кривой распределения $f(x)$, то

$\overline M =M_e =M(X)=a$.

47

Начальные
моменты $\nu _k $

Начальным моментом $\nu _k ~ k$ -го порядка случайной величины $X$ называется математическое ожидание $k$-ой степени этой случайной величины: $\nu _k =M(X^k)$.

Для ДСВ $X:_ { } \nu _k =\sum\limits_ { i=1 } ^n { x_i^k \cdot p_i } $,  где $\sum\limits_ { i=1 } ^\infty { p_i =1 } $.

Начальный момент $k$-го порядка НСВ $X$ с плотностью распределения $f(x)$ определяется формулой :

$\nu _k =\int\limits_ { -\infty } ^ { +\infty } { x^kf(x)dx } $,   где $\int\limits_ { -\infty } ^ { +\infty } { f(x)dx=1 } $.

48

Центральные моменты  $\mu _k $

Центральным моментом $\mu _k ~ k$-го порядка случайной величины $X$ называется математическое ожидание $k$-ой степени отклонения этой величины от ее математического ожидания. Если обозначить $M(X)=a$, то $\mu _k =M((X-a)^k)$ 

Для ДСВ $X: \quad \mu _k =\sum\limits_ { i=1 } ^n { (x_i -a)^k\cdot p_i } $,

если множество этой величины конечно, а если – счетно, то $\mu _k =\sum\limits_ { i=1 } ^\infty { (x_i -a)^k\cdot p_i } .$

Для НСВ $X$ с плотностью распределения $f(x)$ центральный момент $k$-го порядка определяется формулой: $\mu _k =\int\limits_ { -\infty } ^ { +\infty } { (x_i -a)^k\cdot f(x)dx } .$

49

Некоторые
свойства
начальных
и центральных
моментов

$\nu _0 =1;~ \nu _1 =M(X),$ 

$\mu _0 =1;~ \mu _1 =0;~ ~ \mu _2 =D\left( X \right),$

$\mu _2 =\nu _2 -\nu _1^2 ,$

$\mu _3 =\nu _3 -3\nu _1 \nu _2 +2\nu _1^3 ,$

$\mu _4 =\nu _4 -4\nu _1 \nu _3 +6\nu _1^2 \nu _2 -3\nu _1^4 .$

50

Асимметрия

Отношение центрального момента 3-го порядка к кубу среднеквадратического отклонения случайной величины называется асимметрией: $A(X)=\frac { \mu _3 } { \sigma ^3 } $.

Если распределение случайной величины симметрично относительно ее математического ожидания, то асимметрия равна нулю.

51

Эксцесс

Эксцессом случайной величины называется величина $Э_x =\frac { \mu _4 } { \sigma ^4 } -3.$

Для нормального распределения $Э_x =0$.

Кривые, более островершинные по сравнению с нормальной кривой Гаусса, имеют $Э_x \gt 0$.
У более плосковершинных кривых $Э_x \lt 0.$

3dstroyproekt.ru

Теория вероятностей, определения и свойства вероятностей

Возникновение теории вероятностей относится к середине XVII века, когда математики заинтересовались задачами, поставленными азартными игроками и до сих пор не изучавшимися в математике. В процессе решения этих задач выкристаллизовались такие понятия, как вероятность и математическое ожидание. При этом ученые того времени – Гюйгенс (1629-1695), Паскаль (1623-1662), Ферма (1601-1665) и Бернулли (1654-1705) были убеждены, что на базе массовых случайных событий могут возникать четкие закономерности. И только состояние естествознания привело к тому, что азартные игры еще долго продолжали оставаться тем почти единственным конкретным материалом, на базе которого создавались понятия и методы теории вероятностей. Это обстоятельство накладывало отпечаток и на формально-математический аппарат, посредством которого решались возникавшие в теории вероятностей задачи: он сводился исключительно к элементарно-арифметическим и комбинаторным методам.

Серьезные требования со стороны естествознания и общественной практики (теория ошибок наблюдения, задачи теории стрельбы, проблемы статистики, в первую очередь статистики народонаселения) привели к необходимости дальнейшего развития теории вероятностей и привлечения более развитого аналитического аппарата. Особенно значительную роль в развитии аналитических методов теории вероятностей сыграли Муавр (1667-1754), Лаплас (1749-1827), Гаусс (1777-1855), Пуассон (1781-1840). С формально-аналитической стороны к этому же направлению примыкает работа создателя неевклидовой геометрии Лобачевского (1792-1856), посвященная теории ошибок при измерениях на сфере и выполненная целью установления геометрической системы, господствующей во вселенной.

Теория вероятностей, подобно другим разделам математики, развилась из потребностей практики: в абстрактной форме она отражает закономерности, присущие случайным событиям массового характера. Эти закономерности играют исключительно важную роль в физике и других областях естествознания, разнообразнейших технических дисциплинах, экономике, социологии, биологии. В связи с широким развитием предприятий, производящих массовую продукцию, результаты теории вероятностей стали использоваться не только для браковки уже изготовленной продукции, но и для организации самого процесса производства (статистический контроль в производстве).

Теория вероятностей объясняет и исследует различные закономерности, которым подчинены случайные события и случайные величины. Событием является любой факт, который можно констатировать в результате наблюдения или опыта. Наблюдением или опытом называют реализацию определенных условий, в которых событие может состояться.

Опыт означает, что упомянутый комплекс обстоятельств создан сознательно. В ходе наблюдения сам наблюдающий комплекс этих условий не создает и не влияет на него. Его создают или силы природы или другие люди.

Что нужно знать, чтобы определять вероятности событий

Все события, за которыми люди наблюдают или сами создают их, делятся на:

  • достоверные события;
  • невозможные события;
  • случайные события.

Достоверные события наступают всегда, когда создан определенный комплекс обстоятельств. Например, если работаем, то получаем за это вознаграждение, если сдали экзамены и выдержали конкурс, то достоверно можем рассчитывать на то, что включены в число студентов. Достоверные события можно наблюдать в физике и химии. В экономике достоверные события связаны с существующим общественным устройством и законодательством. Например, если мы вложили деньги в банк на депозит и выразили желание в определенный срок их получить, то деньги получим. На это можно рассчитывать как на достоверное событие.

Невозможные события определенно не наступают, если создался определенный комплекс условий. Например, вода не замерзает, если температура составляет плюс 15 градусов по Цельсию, производство не ведется без электроэнергии.

Случайные события при реализации определенного комплекса условий могут наступить и могут не наступить. Например, если мы один раз подбрасываем монету, герб может выпасть, а может не выпасть, по лотерейному билету можно выиграть, а можно не выиграть, произведенное изделие может быть годным, а может быть бракованным. Появление бракованного изделия является случайным событием, более редким, чем производство годных изделий.

Ожидаемая частота наступления случайных событий тесно связана с понятием вероятности. Закономерности наступления и ненаступления случайных событий исследует теория вероятностей.

Если комплекс нужных условий реализован лишь один раз, то получаем недостаточно информации о случайном событии, поскольку оно может наступить, а может не наступить. Если комплекс условий реализован много раз, то появляются известные закономерности. Например, никогда невозможно узнать, какой кофейный аппарат в магазине потребует очередной покупатель, но если известны марки наиболее востребованных в течение длительного времени кофейных аппаратов, то на основе этих данных возможно организовать производство или поставки, чтобы удовлетворить спрос.

Знание закономерностей, которым подчинены массовые случайные события, позволяет прогнозировать, когда эти события наступят. Например, как уже ранее отмечено, заранее нельзя предусмотреть результат бросания монеты, но если монета брошена много раз, то можно предусмотреть выпадение герба. Ошибка может быть небольшой.

Методы теории вероятностей широко используются в различных отраслях естествознания, теоретической физике, геодезии, астрономии, теории автоматизированного управления, теории наблюдения ошибок, и во многих других теоретических и практических науках. Теория вероятностей широко используется в планировании и организации производства, анализе качества продукции, анализе технологических процессов, страховании, статистике населения, биологии, баллистике и других отраслях.

Случайные события обычно обозначают большими буквами латинского алфавита A, B, C и т.д.

Случайные события могут быть:

  • несовместными;
  • совместными.

События A, B, C … называют несовместными, если в результате одного испытания может наступить одно из этих событий, но невозможно наступление двух или более событий.

Если наступление одного случайного события не исключает наступление другого события, то такие события называют совместными. Например, если с ленты конвейера снимают очередную деталь и событие А означает «деталь соответствует стандарту», а событие B означает «деталь не соответствует стандарту», то A и B – несовместные события. Если событие C означает «взята деталь II сорта», то это событие совместно с событием A, но несовместно с событием B.

Если в каждом наблюдении (испытании) должно произойти одно и только одно из несовместных случайных событий, то эти события составляют полное множество (систему) событий.

Достоверным событием является наступление хотя бы одного события из полного множества событий.

Если события, образующие полное множество событий, попарно несовместны, то в результате наблюдения может наступить только одно из этих событий. Например, студент должен решить две задачи контрольной работы. Определенно произойдет одно и только одно из следующих событий:

  • будет решена первая задача и не будет решена вторая задача;
  • будет решена вторая задача и не будет решена первая задача;
  • будут решены обе задачи;
  • не будет решена ни одна из задач.

Эти события образуют полное множество несовместных событий.

Если полное множество событий состоит только из двух несовместных событий, то их называют взаимно противоположными или альтернативными событиями.

Событие, противоположное событию , обозначают . Например, в случае одного подбрасывания монеты может выпасть номинал () или герб ().

События называют равновозможными, если ни у одного из них нет объективных преимуществ. Такие события также составляют полное множество событий. Это значит, что в результате наблюдения или испытания определенно должно наступить по меньшей мере одно из равновозможных событий.

Например, полную группу событий образуют выпадение номинала и герба при одном подбрасывании монеты, наличие на одной печатной странице текста 0, 1, 2, 3 и более 3 ошибок.

Классическое определение вероятности. Возможностью или благоприятным случаем называют случай, когда при реализации определённого комплекса обстоятельств события А  происходят. Классическое определение вероятности предполагает напрямую вычислить число благоприятных случаев или возможностей.

Классическая и статистическая вероятности. Формулы вероятностей: классической и статистической

Вероятностью события А называют отношение числа благоприятных этому событию возможностей к числу всех равновозможных несовместных событий N, которые могут произойти в результате одного испытания или наблюдения. Формула вероятности события А:

                             (1)

Если совершенно понятно, о вероятности какого события идёт речь, то тогда вероятность обозначают маленькой буквой

p, не указывая обозначения события.

Чтобы вычислить вероятность по классическому определению, необходимо найти число всех равновозможных несовместных событий и определить, сколько из них благоприятны определению события А.


Пример 1. Найти вероятность выпадения числа 5 в результате бросания игральной кости.

Решение. Известно, что у всех шести граней одинаковая возможность оказаться наверху. Число 5 отмечено только на одной грани. Число всех равновозможных несовместных событий насчитывается 6, из них только одна благоприятная возможность выпадения числа 5 (М = 1). Это означает, что искомая вероятность выпадения числа 5

Пример 2. В ящике находятся 3 красных и 12 белых одинаковых по размеру мячиков. Не глядя взят один мячик. Найти вероятность, что взят красный мячик.

Решение. Искомая вероятность

Найти вероятности самостоятельно, а затем посмотреть решение

Пример 5. В урне 5 белых и 7 чёрных шаров. Случайно вытаскивается 1 шар. Событие

A - вытянут белый шар. Событие B - вытянут чёрный шар. Вычислить вероятности этих событий.

Посмотреть правильное решение и ответ.


Классическую вероятность называют также априорной вероятностью, так как её рассчитывают перед началом испытания или наблюдения. Из априорного характера классической вероятности вытекает её главный недостаток: только в редких случаях уже перед началом наблюдения можно вычислить все равновозможные несовместные события и в том числе благоприятные события. Такие возможности обычно возникают в ситуациях, родственных играм.

Сочетания. Если последовательность событий не важна, число возможных событий вычисляют как число сочетаний:

                    (2)


Пример 6. В группе 30 студентов. Трём студентам следует направиться на кафедру информатики, чтобы взять и принести компьютер и проектор. Вычислить вероятность того, что это сделают три определённых студента.

Решение. Число возможных событий рассчитываем, используя формулу (2):

Вероятность того, что на кафедру отправятся три определённых студента:


Пример 7. Продаются 10 мобильных телефонов. Их них у 3 есть дефекты. Покупатель выбрал 2 телефона. Вычислить вероятность того, что оба выбранных телефона будут с дефектами.

Решение. Число всех равновозможных событий находим по формуле (2):

По той же формуле находим число благоприятных событию возможностей:

Искомая вероятность того, что оба выбранных телефона будут с дефектами:

Найти вероятность самостоятельно, а затем посмотреть решение

Пример 8. В экзаменационных билетах 40 вопросов, которые не повторяются. Студент подготовил ответы на 30 из них. В каждом билете 2 вопроса. Какова вероятность того, что студент знает ответы на оба вопроса в билете?

Посмотреть правильное решение и ответ.

Свойства вероятностей

Свойство 1. Если можно вычислить возможности возникновения события А и их число совпадает общим числом равновозможных событий, то вероятность события А равна 1.

Например, при бросании игральной кости число возможностей выпадения чисел 1, 2, 3, 4, 5, 6 равно 6. Насчитывается также 6 равновозможных несовместимых событий. Таким образом, M = N  и

Свойство 2. Вероятность невозможного события равна 0. Если число возможностей события А равна 0, то и

Например, при бросании игральной кости не может выпасть число 9, потому что такого числа нет на гранях игральной кости.

Свойство 3. Вероятность случайного события всегда больше 0 и меньше 1:

или

Определение статистической вероятности. В определении статистической вероятности используется понятие относительно частоты события А. Относительной частотой события А называют отношение числа наблюдений, в которых наблюдается А, к числу всех наблюдений. Относительную частоту обычно обозначают буквой W. Если в n наблюдениях событие А наблюдается m раз, то относительная частота события А:

Например, баскетболист у штрафной линии готовится совершить бросок. Из собранной тренером статистической информации известно, что у этого баскетболиста из 100 штрафных бросков успешны 70. Вероятность того, что баскетболист реализует штрафной бросок:

Длительные наблюдения показали, что с увеличением числа наблюдений относительная частота события А становится всё более стабильной. Число, около которого при серии наблюдений колеблется относительная частота, называется статистической вероятностью события А. Формула статистической вероятности события А:

если .

Вычислить точную статистическую вероятность невозможно, так как невозможно выбрать бесконечно большое число наблюдений.

Преимущество статистического определения вероятности в том, что оно не требует априорных знаний об исследуемом объекте. Классическую вероятность можно вычислить до наблюдения или испытания, а статистическую – после наблюдения или испытания.

function-x.ru

формулы и примеры решения задач :: SYL.ru

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности – это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1: Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А1В1С1.

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А1ВС1υ АВ1С1 υ А1В1С.

А1ВС1 – это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события – это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

Р обозначает вероятность события А.

А – собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А1.

m – количество возможных благоприятных случаев.

n – все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить Wn(A). Формула ничем не отличается от классической:

Wn(A)=m/n.

Если классическая формула вычисляется для прогнозирования, то статистическая – согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

Wn(A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт – это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m – элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

Anm=n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Рn = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

Anm=n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

Pn(m)=Cnm×pm×qn-m.

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

q=1-p

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица – это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q – число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P6(0)=C06×p0×q6=q6=(0,8)6=0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

Cnm=n!/m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P6(2)=C62×p2×q4 = (6×5×4×3×2×1)/(2×1×4×3×2×1)×(0,2)2×(0,8)4=15×0,04×0,4096=0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

Pn(m)=λm/m!×e(-λ).

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3: На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р100000(5) = 105/5! Х е-10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е= lim n->∞(1-λ/n)n.

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Рn(m)= 1/√npq x ϕ(Xm).

Xm = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Задание 4: Рекламный агент раздает 800 листовок. Согласно статистическим исследованиям, каждая третья листовка находит своего потребителя. Какова вероятность того, что сработает ровно 267 рекламных листовок?

n = 800;

m = 267;

p = 1/3;

q = 2/3.

Сначала найдем Xm, подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р800(267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) – условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) – условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5: На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором – 60%, на третьем – 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй – 4%, и у третьей – 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В1 – телефон, который изготовила первая фабрика. Соответственно, появятся вводные В2 и В3 (для второй и третьей фабрик).

В итоге получим:

Р (В1) = 25%/100% = 0,25; Р(В2) = 0,6; Р (В3) = 0,15 – таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В1) = 2%/100% = 0,02;

Р(А/В2) = 0,04;

Р (А/В3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

www.syl.ru

Репетитор по математике.Теория вероятности формулы и примеры решения задач

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. .
  2. Вероятность невозможного события равна 0, т.е. .
  3. Вероятность достоверного события равна 1, т.e. .
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные  из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

   

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов  В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

   

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

   

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

 

 

 

 

 

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

repetitor-mathematics.ru

Формулы для вычисления вероятности событий

1.3.1. Последовательность независимых испытаний (схема Бернулли)

Предположим, что некоторый эксперимент можно проводить неоднократно при одних и тех же условиях. Пусть этот опыт производится n раз, т. е. проводится последовательность из n испытаний.

Определение. Последовательность n испытаний называют взаимно независимой, если любое событие, связанное с данным испытанием, не зависит от любых событий, относящихся к остальным испытаниям.

Допустим, что некоторое событие A может произойти с вероятностью p в результате одного испытания или не произойти с вероятностью q=1-p.

Определение. Последовательность из n испытаний образует схему Бернулли, если выполняются следующие условия:

  1. последовательность n испытаний взаимно независима,

2) вероятность события A не изменяется от испытания к испытанию и не зависит от результата в других испытаниях.

Событие A называют “ успехом” испытания, а противоположное событие - “неудачей”. Рассмотрим событие

={ в n испытаниях произошло ровно m “успехов”}.

Для вычисления вероятности этого события справедлива формула Бернулли

p() = , m = 1, 2, …, n , (1.6)

где - число сочетаний из n элементов по m :

= =.

Пример 1.16. Три раза подбрасывают кубик. Найти:

а) вероятность того, что 6 очков выпадет два раза;

б) вероятность того, что число шестерок не появится более двух раз.

Решение. “Успехом” испытания будем считать выпадение на кубике грани с изображением 6 очков.

а) Общее число испытаний – n =3, число “успехов” – m = 2. Вероятность “успеха” - p=, а вероятность “неудачи” - q= 1 - =. Тогда по формуле Бернулли вероятность того, что результате трехразового бросания кубика два раза выпадет сторона с шестью очками, будет равна

.

б) Обозначим через А событие, которое заключается в том, что грань с числом очков 6 появится не более двух раз. Тогда событие можно представить в виде суммы трех несовместных событий А= ,

где В30 – событие, когда интересующая грань ни разу не появится,

В31 - событие, когда интересующая грань появится один раз,

В32 - событие, когда интересующая грань появится два раза.

По формуле Бернулли (1.6) найдем

p(А) = р () = p()=++=

=.

1.3.2. Условная вероятность события

Условная вероятность отражает влияние одного события на вероятность другого. Изменение условий, в которых проводится эксперимент, также влияет

на вероятность появления интересующего события.

Определение. Пусть A и B – некоторые события, и вероятность p(B)>0.

Условной вероятностью события A при условии, что “событие B уже произошло” называется отношение вероятности произведения данных событий к вероятности события, которое произошло раньше, чем событие, вероятность которого требуется найти. Условная вероятность обозначается как p(AB). Тогда по определению

p (A B) = . (1.7)

Пример 1.17. Подбрасывают два кубика. Пространство элементарных событий состоит из упорядоченных пар чисел

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

В примере 1.16 было установлено, что событие A ={число очков на первом кубике > 4} и событие C ={сумма очков равна 8} зависимы. Составим отношение

.

Это отношение можно интерпретировать следующим образом. Допустим, что о результате первого бросания известно, что число очков на первом кубике > 4. Отсюда следует, что бросание второго кубика может привести к одному из 12 исходов, составляющих событие A:

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) .

При этом событию C могут соответствовать только два из них (5,3) (6,2). В этом случае вероятность события C будет равна . Таким образом, информация о наступлении событияA оказала влияние на вероятность события C.

      1. Вероятность произведения событий

Теорема умножения

Вероятность произведения событий A1 A2 An определяется формулой

p(A1 A2 An) = p(A1) p(A2 A1))p(An A1A2An-1). (1.8)

Для произведения двух событий отсюда следует, что

p(AB) = p(A B) p{B) = p(B A) p{A). (1.9)

Пример 1.18. В партии из 25 изделий 5 изделий бракованных. Последовательно наугад выбирают 3 изделия. Определить вероятность того, что все выбранные изделия бракованные.

Решение. Обозначим события:

A1 = {первое изделие бракованное},

A2 = {второе изделие бракованное},

A3 = {третье изделие бракованное},

A = {все изделия бракованные}.

Событие А есть произведение трех событий A = A1 A2 A3 .

Из теоремы умножения (1.6) получим

p(A) = р( A1 A2 A3 ) =p(A1) p(A2 A1))p(A3 A1A2).

Классическое определение вероятности позволяет найти p(A1) – это отношение числа бракованных изделий к общему количеству изделий:

p(A1)=;

p(A2)это отношение числа бракованных изделий, оставшихся после изъятия одного, к общему числу оставшихся изделий:

p(A2 A1))=;

p(A3 ) – это отношение числа бракованных изделий, оставшихся после изъятия двух бракованных, к общему числу оставшихся изделий:

p(A3 A1A2)=.

Тогда вероятность события A будет равна

p(A) ==.

studfiles.net

Теория вероятностей

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Под случайными явлениями пони-маются явления с неопределенным исходом, происходящие при неоднократном воспроизведении определенного комплекса условий.

Например, при бросании монеты нельзя предсказать, какой стороной она упадет. Результат бросания монеты случаен. Но при дос-таточно большом числе бросаний монеты существует определенная закономерность (герб и решетка выпадут примерно одинаковое число раз).

Основные понятия теории вероятностей

Испытание (опыт, эксперимент) - осуществление некоторого определенного комплекса условий, в которых наблюдается то или иное явление, фиксируется тот или иной результат.

Например: подбрасывание игральной кости с выпадением числа очков; перепад температуры воздуха; метод лечения заболевания; некоторый период жизни человека.

Случайное событие (или просто событие) – исход испытания.

Примеры случайных событий:

  • выпадение одного очка при подбрасывании игральной кости;

  • обострение ишемической болезни сердца при резком повышении температуры воздуха летом;

  • развитие осложнений заболевания при неправильном выборе метода лечения;

  • поступление в вуз при успешной учебе в школе.

События обозначают прописными буквами латинского алфа-вита: A, B, C,

Событие называется достоверным, если в результате испытания оно обязательно должно произойти.

Событие называется невозможным, если в результате испы-тания оно вообще не может произойти.

Например,если в партии все изделия стандартные, то извлечение из неё стандартного изделия - событие достоверное, а извлечение при тех же условиях бракованного изделия – событие невозможное.

КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

Вероятность является одним из основных понятий теории вероятностей.

Классической вероятностью события называется отношение числа случаев, благоприятствующих событию , к общему числу случаев, т.е.

, (5.1)

где - вероятность события ,

- число случаев, благоприятствующих событию ,

- общее число случаев.

Свойства вероятности события

  1. Вероятность любого события заключена между нулем и единицей, т.е.

  1. Вероятность достоверного события равна единице, т.е.

.

  1. Вероятность невозможного события равна нулю, т.е.

.

(Предложить решить несколько простых задач устно).

СТАТИСТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

На практике часто при оценке вероятностей событий основываются на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определение вероятности.

Статистической вероятностью события называется предел относительной частоты (отношение числа случаев m , благоприятствующих появлению события , к общему числу произведенных испытаний), когда число испытаний стремится к бесконечности, т.е.

где - статистическая вероятность события , - число испытаний, в которых появилось событие , - общее число испытаний.

В отличие от классической вероятности, статистическая вероятность является характеристикой опытной. Классическая вероятность служит для теоретического вычисления вероятности события по заданным условиям и не требует, чтобы испытания проводились в действительности. Формула статистической вероятности служит для экспериментального определения вероятности события, т.е. предполагается, что испытания были проведены фактически.

Статистическая вероятность приблизительно равна относительной частоте случайного события, поэтому на практике за статистическую вероятность берут относительную частоту, т.к. статистическую вероятность практически найти нельзя.

Статистическое определение вероятности применимо к случайным событиям, которые обладают следующими свойствами:

  1. Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий. Нельзя ставить вопрос об определении вероятностей возникновения войн, появления гениальных произведений искусства.

  2. События должны обладать статистической устойчивостью, т.е. в различных сериях испытаний относительная частота события изменяется незначительно.

  3. Число испытаний, в результате которых появляется событие , должно быть достаточно велико.

Теоремы сложения и умножения вероятностей

Основные понятия

а) Единственно возможные события

События называют единственно возможными, если в результате каждого испытания хотя бы одно из них наверняка наступит.

Эти события образуют полную группу событий.

Например, при подбрасывании игрального кубика, единственно возможными являются события выпадения граней с одним, двумя, тремя, четырьмя, пятью и шестью очками. Они образуют полную группу событий.

б) События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае их называют совместными.

в) Противоположными называют два единственно возможных события, образующих полную группу. Обозначают и .

г) События называют независимыми, если вероятность наступления одного из них не зависит от совершения или несовершения других.

Действия над событиями

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из данных событий.

Если и – совместные события, то их сумма или обозначает наступление или события A, или события B, или обоих событий вместе.

Если и – несовместные события, то их сумма означает наступление или события , или события .

Сумму событий обозначают:

Произведением (пересечением) нескольких событий называется событие, состоящее в совместном наступлении всех этих событий.

Произведение двух событий обозначают или .

Произведение событий обозначают

Теорема сложения вероятностей несовместных событий

Вероятность суммы двух или нескольких несовместных событий равна сумме вероятностей этих событий:

- для двух событий;

- для событий.

Следствия:

а) Сумма вероятностей противоположных событий и равна единице:

Вероятность противоположного события обозначают : .

б) Сумма вероятностей событий, образующих полную группу событий, равна единице: или .

Теорема сложения вероятностей совместных событий

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятностей их пересечения, т.е.

Теорема умножения вероятностей

а) Для двух независимых событий:

б) Для двух зависимых событий

,

где – условная вероятность события , т.е. вероятность события , вычисленная при условии, что событие произошло.

в) Для независимых событий:

.

г) Вероятность наступления хотя бы одного из событий ,образующих полную группу независимых событий:

или

Условная вероятность

Вероятность события , вычисленная при условии, что произошло событие , называется условной вероятностью события и обозначается или .

При вычислении условной вероятности по формуле клас-сической вероятности число исходов и подсчитывается с учетом того, что до совершения события произошло событие .

studfiles.net

Теория вероятностей, все формулы и определения

Определение и формулы теории вероятностей

Эксперимент (опыт, испытание) называется стохастическим, если при выполнении определенной совокупности условий его можно повторять неограниченной количество раз и результат его нельзя предугадать. Результатом стохастического эксперимента является событие.

Событие называется случайным, если при выполнении определенных условий (в результате стохастического эксперимента) оно может или произойти, или не произойти. Событие называется достоверным, если оно обязательно произойдет в результате испытания и событие называется невозможным, если оно точно не произойдет.

Обозначаются события заглавными латинскими буквами: .

Центральным понятием теории вероятностей есть понятие вероятности события как числовой характеристики возможности появления случайной величины.

Вероятностью называется отношение благоприятных исходов к общему количеству равновозможных. Обозначается вероятность события A или , или .

Вероятность достоверного и невозможного события

Вероятность достоверного события равна 1, невозможного — 0, а вероятность случайного события может принимать значение из интервала .

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *