Является ли функция четной или нечетной – Четность и нечетность функции, с примерами

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение cos((5pi)/12)
3 Найти точное значение arctan(-1)
4 Найти точное значение sin(75)
5 Найти точное значение arcsin(-1)
6 Найти точное значение sin(60 град. )
7 Найти точное значение sin(pi/3)
8 Найти точное значение arctan(- квадратный корень 3)
9 Найти точное значение cos(pi/3)
10 Найти точное значение sin(0)
11 Найти точное значение cos(pi/12)
12 Найти точное значение sin(30 град. )
13 Найти точное значение cos(60 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение sin((2pi)/3)
16 Найти точное значение arcsin(1)
17 Найти точное значение sin(pi/2)
18 График f(x)=x^2
19 Найти точное значение sin(45 град. )
20 Найти точное значение sin(15)
21 Упростить квадратный корень x^2
22 Найти точное значение arccos(-1)
23 Найти точное значение tan(60 град. )
24 Найти точное значение cos(45 град. )
25 Вычислить логарифм по основанию 2 от 8
26 Упростить квадратный корень x^3
27 Найти точное значение arcsin(-1/2)
28 Найти точное значение cos(45)
29 Найти точное значение tan(30 град. )
30 Найти точное значение tan(30)
31 Найти точное значение arcsin(1)
32 Найти точное значение arctan( квадратный корень 3)
33 Найти точное значение sin(45)
34 Найти точное значение cos(0)
35 Найти точное значение tan(45 град. )
36 Найти точное значение arctan(0)
37 Преобразовать из радианов в градусы pi/3
38 График y=x^2
39 Вычислить натуральный логарифм 1
40 Вычислить логарифм по основанию 3 от 81
41 Найти точное значение cos(15)
42 Вычислить логарифм по основанию 5 от 125
43 Упростить кубический корень из квадратного корня 64x^6
44 Вычислить логарифм по основанию 3 от 81
45 Вычислить логарифм по основанию 2 от 8
46 Найти точное значение arcsin(-( квадратный корень 2)/2)
47 Найти точное значение cos(75)
48 Найти точное значение sin((3pi)/4)
49 Упростить (1/( квадратный корень x+h)-1/( квадратный корень x))/h
50 Упростить кубический корень x^3
51 Найти точное значение sin((5pi)/12)
52 Найти точное значение arcsin(-1/2)
53 Найти точное значение sin(30)
54 Найти точное значение sin(105)
55 Найти точное значение tan((3pi)/4)
56 Упростить квадратный корень s квадратный корень s^7
57 Упростить корень четвертой степени x^4y^2z^2
58 Найти точное значение sin(60)
59 Найти точное значение arccos(-( квадратный корень 2)/2)
60 Найти точное значение tan(0)
61 Найти точное значение sin((3pi)/2)
62 Вычислить логарифм по основанию 4 от 64
63 Упростить корень шестой степени 64a^6b^7
64 Вычислить квадратный корень 2
65 Найти точное значение arccos(1)
66 Найти точное значение arcsin(( квадратный корень 3)/2)
67 График f(x)=2^x
68 Найти точное значение sin((3pi)/4)
69 Преобразовать из радианов в градусы (3pi)/4
70 Вычислить логарифм по основанию 5 от 25
71 Найти точное значение tan(pi/2)
72 Найти точное значение cos((7pi)/12)
73 Упростить 1/( кубический корень от x^4)
74 Найти точное значение sin((5pi)/6)
75 Преобразовать из градусов в радианы 150
76 Найти точное значение tan(pi/2)
77 Множитель x^3-8
78 Упростить корень пятой степени 1/(x^3)
79 Упростить корень пятой степени 1/(x^3)
80 Найти точное значение sin(135)
81 Преобразовать из градусов в радианы 30
82 Преобразовать из градусов в радианы 60
83 Найти точное значение sin(120)
84 Найти точное значение tan((2pi)/3)
85 Вычислить -2^2
86 Найти точное значение tan(15)
87 Найти точное значение tan((7pi)/6)
88 Найти точное значение arcsin(( квадратный корень 3)/2)
89 Найти точное значение sin(pi/2)
90 Преобразовать из радианов в градусы (5pi)/6
91 Упростить кубический корень 8x^7y^9z^3
92 Упростить arccos(( квадратный корень 3)/2)
93 Упростить i^2
94 Вычислить кубический корень 24 кубический корень 18
95 Упростить квадратный корень 4x^2
96 Найти точное значение sin((3pi)/4)
97 Найти точное значение tan((7pi)/6)
98 Найти точное значение tan((3pi)/4)
99 Найти точное значение arccos(-1/2)
100 Упростить корень четвертой степени x^4

www.mathway.com

Четность-нечетность функции. Период функции

Способы задания функции

Пусть функция задается формулой: y=2x^{2}-3. Назначая любые значения независимой переменной x, можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y. Например, если x=-0,5, то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^{2}-3=-2,5.

Взяв любое значение, принимаемое аргументом x в формуле y=2x^{2}-3, можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

x−2−10123
y−4−3−2−101

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x. Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией, когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy.

Функция является нечетной функцией, когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0).

Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

f(x)=3x^{3}-7x^{7}

D(f)=(-\infty ; +\infty ) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^{3}-7 \cdot (-x)^{7}= -3x^{3}+7x^{7}= -(3x^{3}-7x^{7})= -f(x).

Значит, функция f(x)=3x^{3}-7x^{7} является нечетной.

Периодическая функция

Функция y=f(x), в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x), называется периодической функцией с периодом T \neq 0.

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T.

Промежутки, где функция положительная, то есть f(x) > 0 — отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_{1}; x_{2}) \cup (x_{3}; +\infty )

Промежутки, где функция отрицательная, то есть f(x) < 0 — отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

f(x) < 0 на (-\infty; x_{1} ) \cup (x_{2}; x_{3} )

Ограниченность функции

Ограниченной снизу принято называть функцию y=f(x), x \in X тогда, когда существует такое число A, для которого выполняется неравенство f(x) \geq A для любого x \in X.

Пример ограниченной снизу функции: y=\sqrt{1+x^{2}} так как y=\sqrt{1+x^{2}} \geq 1 для любого x.

Ограниченной сверху называется функция y=f(x), x \in X тогда, когда существует такое число B, для которого выполняется неравенство f(x) \neq B для любого x \in X.

Пример ограниченной снизу функции: y=\sqrt{1-x^{2}}, x \in [-1;1] так как y=\sqrt{1+x^{2}} \neq 1 для любого x \in [-1;1].

Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0, для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X.

Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1.

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x). Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2}, причем x_{1} > x_{2}, будет y(x_{1}) > y(x_{2}).

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x). Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2}, причем x_{1} > x_{2}, будет y(x_{1}) < y(x_{2}).

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0).

а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

г) Когда нечетная функция будет убывать при x > 0, то она будет убывать и при x < 0

Экстремумы функции

Точкой минимума функции y=f(x) принято называть такую точку x=x_{0}, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0}), и для них тогда будет выполняться неравенство f(x) > f(x_{0}). y_{min} — обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_{0}, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0}), и для них тогда будет выполняется неравенство f(x) < f(x^{0}). y_{max} — обозначение функции в точке max.

Необходимое условие

Согласно теореме Ферма: f'(x)=0 тогда, когда у функции f(x), что дифференцируема в точке x_{0}, появится экстремум в этой точке.

Достаточное условие

  1. Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
  2. x_{0} — будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0}.

Наибольшее и наименьшее значение функции на промежутке

Шаги вычислений:

  1. Ищется производная f'(x);
  2. Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку [a; b];
  3. Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являться наименьшим значением функции, а большее — наибольшим.

academyege.ru

Функции четные и нечетные

Понятия четной и нечетной функции вам хорошо знакомы, и, как правило, их определения даются с упоминанием области определения, например: функция у=f(x) называется четной, если ее область определения D(f) симметрична относительно начала координат, и для всех х из этой области определения выполняется равенство f(-x)=f(x).

Между тем, если равенство f(x)=f(-x) выполняется, то уж во всяком случае обе его части имеют смысл, так что если $x\in D(f)$, что прямо сказано в определении, то и $-x\in D(f)$, а это означает, что область определения D(f) симметрична относительно начала координат. Иными словами, условие, наложенное на D(f) в этом определении, — лишнее: его выполнение логически следует из главного условия f(x)=f(-x).

Это не значит, конечно, что данное определение не­правильное, оно лишь «неэкономное», и в учебниках определение четной функции дается в таком виде, для того чтобы лишний раз напомнить о симметричности области определения такой функции.

С терминами четная и нечетная также возникает языковой эффект, похожий на тот, о котором мы ранее уже говорили: свойства четности и нечетности для функций не являются отрицаниями друг друга, как можно подумать, исходя из четности и нечетности натуральных и целых чисел. Равенства f(-x)=f(x) и f(-x)=-f(x) не противоречат, как может показаться, друг другу, но могут выполняться одновременно — правда, только в случае, когда f(x)=f(-x)=0 («особое» число 0, как вы уже многократно убеждались в разных ситуациях, нередко «отравляет жизнь»).

Поэтому функция может быть одновременно и четной, и нечетной, и простейшим примером такой функции является постоянная функция — тождественный нуль, т.е. равная 0 при всех значениях аргумента. Можно и описать все функции, одновременно четные и нечетные — это, очевидно, такие функции, имеющие в качестве области определения произвольное симметричное относительно начала координат множество чисел, но принимающее на ней только нулевое значение.

При решении задач, где требуется выяснить, является ли заданная функция четной или нечетной, многие часто склонны судить только по внешнему виду главного равенства и считать, например, что функция $y=x^3+2x^2$ не является ни четной, ни нечетной, потому что, как обычно пишут,

$(-x)^3=-x^3, 2(-x)^2=2x^2, (-x)^3+2(-x)^2=-x^3+2x^2$

a $-x^3+2x^2\neq x^3+2x^2, -x^3+2x^2\neq –(x^3+2x^2)$.

Поэтому ниже мы приводим, можно сказать, хрестоматийный пример функции, где опора только на внешний вид выражения приводит к неверному выводу: это функция $y=f(x)=\log_{c}(x+\sqrt{x^2+1}$. Выражение $y=f(-x)=\log_{c}(-x+\sqrt{x^2+1}$ судя по его внешнему виду, не совпадает ни с f(x), ни с -f(x), а на самом деле $f(x)+f(-x)=\log_{c}(x+\sqrt{x^2+1}+\log_{c}(-x+\sqrt{x^2+1}=\log_{c}(x^2+1-x^2)=\log{c}1=0$ т.е. f(x)=-f(-x), так что функция $y=f(x)=\log_{c}(x+\sqrt{x^2+1}$ — нечетная.

Поэтому для доказательства того, что заданная функция не является ни четной, ни нечетной, надо приводить подтверждающие этот факт примеры. Обычно это очень просто: например, для рассмотренной выше функции $y=x^3+2x^2$, взяв 1 и -1, получим, что f(-1)=1, f(1)=3, так что f(-1) не равно ни f(1), ни f(-1). Это рассуждение есть приведение контрпримера.

Материалы по теме:

Поделиться с друзьями:

Загрузка…

matemonline.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *