Обозначение в математике вероятности – Таблица математических символов. Сокращённая запись математического текста, математические обозначения. Математический алфавит. Математическая скоропись. Негламурный эксклюзив от Проекта DPVA.info

Классическое определение вероятности случайного события

Под вероятностью случайного события в математике понимают меру возможности осуществления данного события в конкретных условиях эксперимента (испытания).

Рассмотрим некоторую конечную полную группу равновоз-можных элементарных событий (исходов) В,, В2, …, Вп, т. е. со­вокупность всех единственно возможных, несовместных и вместе с тем равновозможных результатов некоторого испытания, при­чем пусть интересующее нас случайное событие А осуществляет­ся тогда и только тогда, когда наступают некоторые из элемен­тарных событий указанной полной группы. Пусть таких событий, благоприятствующих для события А, насчитывается т (естественно, т<п). Тогда вероятность события А определяют следующим образом:

Определение. Вероятностью Р(А) случайного события А называется отношение количества т элементарных событий, благо-приятствующих событию А,

к общему количеству элементарных событий п:

P*(A)=m/n

Поскольку в общем случае 0 < т < п, то из этого определения, называемого классическим определением вероятности случайного события, следует, что вероятность произвольного случайного события принадлежит отрезку [0,1], т.е.

0≤ Р(А)≤1

Пример 8.1. Найти вероятность того, что при извлечении наугад одного шара из корзины, в которой находятся 2 белых, 3 зеленых и 5 красных шаров, извлеченный шар окажется зеленым.

Решение. Поскольку общее количество элементарных событий (исходов) для данного испытания образует полную группу из n=10 равновозможных событий (по общему количеству шаров в корзине), из которых только т = 3 элементарных события (по количеству зеленых шаров) являются благоприятствующими для интересующего нас события (обозначим это событие через

А), по формуле (8.1) получим:

Р(А)=3/10

Основные свойства вероятности случайного события

1. Вероятность невозможного события равна нулю. Действительно, поскольку количество т элементарных событий, благоприятствующих невозможному событию А, равно нулю, получаем:

Р(А) = 0/п=0

2. Вероятность достоверного события равна единице. Действительно, поскольку количество т элементарных событий, благоприятствующих достоверному событию А, равно общему количе­ству п этих элементарных событий, получаем:

Р(А) = п/ п=1

Лекция 1.

Цели, задачи и структура медицинской и биологической физики. Ее место и роль в системе медицинского образования, межпредметные связи с другими медико-биологическими и клиническими дисциплинами.

Вероятностный характер медико-биологических процессов. Элементы теории вероятностей. Вероятность случайного события. Закон сложения и умножения вероятностей.

Принципы вероятностных подходов к задачам диагностики и прогно­зирования заболеваний.

Теория вероятностей

В теории вероятностей исследуются закономерности, относя­щиеся к случайным событиям, величинам, процессам. Врачи редко задумываются, что постановка диагноза имеет вероятно­стный характер и, как остроумно замечено, лишь патологоанатомическое исследование может достоверно определить ди­агноз умершего человека.

§2.1. Случайное событие. Вероятность

Наблюдая различные явления, можно заметить, что существу­ет два типа связей между условиями S и наступлением или ненас­туплением некоторого события

А. В одних случаях осуществление комплекса условийS(испытание) непременно вызывает событиеА. Так, например, материальная точка массойт0 под воздействи­ем силы F (условие S) приобретает ускорение а = F/m0 (событие А). В других случаях многократное повторение испытания можетпривести или не привести к появлению события А. Такие события принято называть случайными: к ним можно отнести появление в кабинете врача больного с данной болезнью, выпадение опреде­ленной стороны монеты при ее бросании и др.

Не следует думать о случайных явлениях как о беспричинных, ничем не обусловленных. Известно, что многие явления связаны между собой, отдельное явление представляет следствие како­го-то другого и само служит причиной последующего. Однако проследить количественно эту связь между условиями и событи­ем часто затруднительно или даже невозможно. Так, при броса­нии игральной кости (однородный кубик с пронумерованнымишестью гранями: 1, 2, 3, 4, 5 и 6) окончательное положение куби­ка зависит от движения руки в момент бросания, сопротивления воздуха, положения кубика при попадании на поверхность, осо­бенности поверхности, на которую упал кубик, и других факто­ров, которые в отдельности учесть невозможно.

В быту применительно к таким случайным событиям употреб­ляют слова «возможно», «вероятно», «маловероятно», «невероятно». В некоторых случаях такая оценка больше характеризует желание говорящего, чем истинную степень возможности или не­возможности события. Однако и случайные события, если их чис­ло достаточно велико, подчиняются определенным закономернос­тям. Количественная оценка закономерностей, относящихся к случайным событиям, дается в разделе математики, называемом

теорией вероятностей.

Теория вероятностей изучает закономерности, присущие мас­совым (статистическим) случайным событиям.

Отдельные исторические факты, «неожиданности», «катастро­фы» являются единичными, как бы неповторимыми, событиями, и количественные вероятностные суждения относительно них сделать невозможно. Исторически теория вероятностей появи­лась в связи с попытками подсчета возможности различных исхо­дов в азартных играх. В настоящее же время она применяется в науке, в том числе биологии и медицине, для оценки вероятности практически важных событий. От игр остались лишь наглядные примеры, которые удобно использовать для иллюстрации теоре­тических положений.

Статистическое определение вероятности. ВероятностьР(А) в теории вероятностей выступает как числовая характеристика сте­пени возможности появления какого-либо определенного случай­ного события А при многократном повторении испытаний.

Допустим, при 1000 бросаний игральной кости цифра 4 выпа­дает 160 раз. Отношение 160/1000 = 0,16 показывает относитель­ную частоту выпадания цифры 4 в данной серии испытаний. В бо­лее общем случае, когда случайное событие А происходитт раз в сериип независимых испытаний,относительной частотой со­бытия в данной серии испытаний или просто частотой события А называют отношение

(2.1)

При большом числе испытаний частота события примерно по­стоянна: увеличение числа испытаний уменьшает колебание час­тоты события около постоянной величины.

Вероятностью случайного события назовем предел, к ко­торому стремится частота события при неограниченном увеличении числа испытаний:

(2.2)

Естественно, что никто и никогда не сможет проделать неогра­ниченное число испытаний для того, чтобы определить вероят­ность. В этом нет и надобности. Практически за вероятность [см. (2.2)] можно принять относительную частоту события при боль­шом числе испытаний. Так, например, из статистических законо­мерностей рождения, установленных за много лет наблюдений, вероятность того события, что новорожденный будет мальчиком, оценивают в 0,515.

Классическое определение вероятности. Если при испыта­ниях нет каких-либо причин, вследствие которых одно случайноесобытие появлялось бы чаще других (равновозможные собы­тия), можно определить вероятность исходя из теоретических со­ображений. Например, выясним в случае бросания монеты часто­ту выпадания герба (событие

А). Разными экспериментаторамипри нескольких тысячах испытаний было показано, что относи­тельная частота такого события принимает значения, близкие к0,5. Учитывая, что появление герба и противоположной стороны монеты (событие В) являются событиями равновозможными, ес­ли монета симметрична, суждение Р(А) = Р(В) = 0,5 можно было бы сделать и без определения частоты этих событий. На основе по­нятия «равновозможности» событий формулируется другое опре­деление вероятности.

Допустим, что в результате испытания должно произойти только одно изп равновозможных несовместных событий(несов­местными называют события, если их одновременное осуществ­ление невозможно). Пусть рассматриваемое событие А происхо­дит вт случаях, которые называются благоприятствующими А, ине происходит при остальных п — т, неблагоприятствующих

А. Тогдавероятностью можно назвать отношение благоприят­ствующих случаев к общему числу равновозможных несов­местных событий:

Р(А) = m/n . (2.3)

Это классическое определение вероятности.

Рассмотрим не­сколько примеров.

1. В урне находится 40 шаров: 10 черных и 30 белых. Найти вероят­ность того, что вынутый наугад один шар будет черным.

Число благоприятствующих случаев равно числу черных шаров в урне: т = 10. Общее число равновозможных событий (вынимание одного шара) равно полному числу шаров в урне: п = 40. Эти события несовмест­ны, так как вынимается один и только один шар. По формуле (2.3) имеем:

Р(А)

= 10/40 = 1/4.

2. Найти вероятность выпадания четного числа при бросании играль­ной кости.

При бросании кости реализуются шесть равновозможных несов­местных событий: появление одной цифры 1, 2, 3, 4, 5 или 6, т. е. п = 6.Благоприятствующими случаями являются выпадания одной из цифр 2, 4 или 6: т = 3. Искомая вероятность:

Р(А) = m/n – 3/6 = 1/2.

Как видно из определений вероятности события (2.2) и (2.3), для всех событий 0 Р(А) 1.

События, которые при данных испытаниях не могут про­изойти, называются невозможными: их вероятность равна нулю.

Так, например, невозможно из урны с белыми и черными ша­рами вытащить красный шар, невозможно на игральной кости получить цифру 7.

Событие, которое при данном испытании обязательно произойдет, называется достоверным, его вероятность рав­на 1.

Примером достоверного события является извлечение белого шара из урны, в которой находятся только белые шары.

В ряде случаев вычислить вероятность события оказывается проще, если представить его в виде комбинации более простых со­бытий. Этой цели служат некоторые теоремы теории вероятнос­тей.

Теорема сложения вероятностей: вероятность появления одного (безразлично какого) события из нескольких несов­местных событий равна сумме их вероятностей. Для двух несовместных событий

Р(А илиВ) = Р(А) + Р(В).(2.4)

Докажем эту теорему. Пусть п — общее число испытаний, т1

— число случаев, благоприятствующих событию А,т2 — число слу­чаев, благоприятствующих событию В. Число случаев, благопри­ятствующих наступлению либо события А, либо события В, равно m1 +m2. ТогдаР(А илиВ) = (т1 + т2)/п = т1/п + т2/п. Отсюда, учитывая (2.3), имеем

Р(А илиВ) = Р(А) + Р(В).

* Найти вероятность выпадания 1 или 6 при бросании игральной кости.

События А (выпадание 1) иВ (выпадание 6) являются равновозможными: Р(А) = Р(В) = 1/6, поэтому из (2.4) находимР(А илиВ) =1/6 + 1/6 = 1/3.

Сложение вероятностей справедливо не только для двух, но и для любого числа несовместных событий.

* В урне находится 50 шаров: 10 белых, 20 черных, 5 красных и 15 си­них. Найти вероятность появления белого, или черного, или красного шара при однократной операции изъятия шара из урны.

Вероятность вынимания белого шара (событие А) равна Р(А) = 10/50 = 1/5, черного шара (событие В) — Р(В) = 20/50 = 2/5 и крас­ного (событие С) — Р(С) = 5/50 = 1/10. Отсюда по формуле сложения ве­роятностей получим Р(А или В или С) = Р(А) + Р(В) + Р(С) = 1/5 + 2/5 + + 1/10= 7/10.

Если два события единственно возможны и несовместны, то их называют противоположными.

Такие события принято обозначать, например, А и .

Сумма вероятностей двух противоположных событий, как следует из теоремы сложения вероятностей, равна еди­нице:

(2.5)

*Проиллюстрируем справедливость (2.5) на предыдущем примере. Пусть вынимание белого, или черного, или красного шара будет событи­емА1 , Р(А1) = 7/10.Противоположным событиемявляется доставание синего шара. Так как синих шаров 15, а общее количество шаров 50, то получаемР() = 15/50 = 3/10 иР(А1) + Р() = 7/10 + 3/10 = = 1.

*В урне находятся белые, черные и красные шары. Вероятность доставания черного или красного шара равна 0,4. Найти вероятность доставания из урны белого шара.

Обозначим А событие вынимания черного или красного шара, Р(А) = 0,4; противоположным событием будет изъятие белого ша­ра, тогда на основании (2.5) вероятность этого события Р() = 1 — Р(А) = = 1 — 0,4 = 0,6.

Систему событий (А1, А2, … Ak) называют полной, если при испытаниях наступит одно и только одно из этих собы­тий. Сумма вероятностей событий, образующих полную сис­тему, равна единице.

* В урне имеется 40 шаров: 20 белых, 15 черных и 5 красных. Вероят­ность появления белого шара (событие А) равна Р(А) = 20/40 = 1/2, для черного шара (событие В) — Р(В) = 15/40 = 3/8 и для красного шара (со­бытиеС) — Р(С) = 5/40 = 1/8. В этом случае система событийА1, А2, А3 является полной; можно убедиться, что Р(А) + Р(В) + Р(С) = 1/2 + 3/8 + + 1/8 = 1.

Теорема умножения вероятностей: вероятность совместно­го появления независимых событий равна произведению их вероятностей. Для двух событий

Р(А и В) = Р(А) • Р(В). (2.6)

Докажем эту теорему. Так как события А и В независимы, то каждому из т1 случаев, благоприятствующих А, соответствуют т2 случаев, благоприятствующих В. Таким образом, общее число случаев, благоприятствующих совместному появлению событий А и В, равно т1 т2. Аналогично, общее число равновозможных собы­тий равно п1 п2, где п1 и п2 — числа равновозможных событий со­ответственно для А и В. Имеем

(2.7)

* В одной урне находится 5 черных и 10 белых шаров, в другой 3 чер­ных и 17 белых. Найти вероятность того, что при первом вынимании ша­ров из каждой урны оба шара окажутся:

1) черными; 2) белыми; 3) в пер­вой урне будет вынут черный шар, а во второй — белый; 4) в первой урне будет вынут белый шар, а во второй — черный.

Вероятность вытаскивания черного шара из первой урны (событие А)равна Р(А) =

= 5/15 = 1/3, черного шара из второй урны (событие В) — Р(В) = 3/20, белого шара из первой урны (событие А’) Р(А’) = 10/15 = 2/3 и белого шара из первой урны (событиеВ’) Р(В’) = 17/20. Нахо­дим вероятность совместного появления двух независимых событий по формуле (2.6):

1) Р(А и В) = Р(А) • Р(В) = (1/3) (3/20) = 3/60 — оба шара черные;

2) Р(А’ и В’) = Р(А’) • Р(В’) = (2/3) (17/20) = 17/30 — оба шара белые;

3) Р(А’ и В’) = Р(А) • Р(В’) = (1/3) (17/20)= 17/60 — в первой урне бу­дет вынут черный шар, а во второй — белый;

4) Р(А’ и В) = Р(А’) • Р(В) = (2/3) (3/20) = 1/10 — в первой урне будет вынут белый шар, а во второй — черный.

Все четыре возможных случая А и В, А’ и В’, А и В’, А’ и В образуют полную систему событий, поэтому

Р(А и В) + Р(А’ и В’) + Р(А и В’) + Р(А’ и В)= 3/60 + 17/30 + 17/60 + 1/10 = 1.

* Найти вероятность того, что в семье с тремя детьми все трое сыновья. Считать, что вероятность рождения мальчика равна 0,515 и по каждого последующего ребенка не зависит от пола предыдущих детей.

По теореме умножения вероятностей, Р(А и В иС) = 0,515 0,515 0,515  0,14.

Теорема умножения вероятностей усложняется, если оп­ределяется вероятность события, состоящего из совместно­го появления двух зависимых между собой событий. В том случае, когда событие В выполняется при условии, что собы­тие А имело место, вероятность совместного появления двух этих событий равна

Р(А и В) = Р(А) • Р(В/А), (2.8)

где Р(В/А) условная вероятность, т. е. вероятность событияВ при условии, что событиеА состоялось.

* В урне 5 шаров: 3 белых и 2 черных. Найти вероятность того, что по­следовательно один за другим будут вынуты черный и белый шары.

Вероятность того, что первым будет изъят черный шар (событие А),равна Р(А) = т/п = 2/5. После удаления черного шара в урне остается 4 шара: 3 белых и 1 черный. В этом случае вероятность вынимания белогошара (событие В после выполнения события А) равна Р(В/А) = 3/4. Ис­пользуя (2.8), получаем

Р(А и В) = (2/5) • (3/4) = 3/10.

studfiles.net

Основные понятия теории вероятностей | LAMPA

Как считать вероятность события

Само понятие вероятность кажется интуитивно понятным: например, если идёт снег, то гораздо вероятнее, что на улице зима, чем лето. Но как выразить эту вероятность числом? И по какой шкале её мерить? Нередко говорят «вероятность этого 50%50\%50%» — но что это значит? И что будет означать «стопроцентная» или «нулевая» вероятность ? Чтобы ответить на этот вопрос, мы дадим классическое определение вероятности, которое будет применимо во всех школьных задачах. Для этого нам понадобится вспомогательное определение.

Исходы, входящие в событие, называются благоприятными для этого события.

Прежде чем перейти к классическому определению вероятности, заметим, что для его применения требуется выполнение определённого условия — равновозможности всех исходов. Это условие может быть недостаточно строго определено, но интуитивно оно понятно. Например, если в качестве исходов при бросании монеты выбрать «орёл», «решка» и «ребро», то классическое определение вероятности применять нельзя, так как шансы на последний исход меньше, чем на первые два. А если выбрать только «орёл» и «решка», то можно — ведь нет никаких оснований считать один исход более частым, чем другой.

Итак, пусть у нас есть испытание с определённым набором равновозможных исходов. Вероятностью некоторого случайного события называется отношение количества благоприятных исходов к общему количеству исходов испытания.
P{Событие A}=Число исходов, благоприятных для AОбщее число исходовP\{\text{Событие }A\}=\frac{\text{Число исходов, благоприятных для } A}{\text{Общее число исходов}}P{Событие A}=Общее число исходовЧисло исходов, благоприятных для A​

Из классического определения видно, что вероятность — числовая величина, принимающая значения от 000 до 111. Вероятность никогда не бывает отрицательной и никогда не бывает больше 111. На практике вероятность иногда выражают в процентах, в этом случае 100%100\%100% соответствуют вероятности 111.

Конечно, «в жизни» в основном встречаются ситуации, когда одни исходы встречаются чаще других, и тогда нужно использовать скорректированное определение вероятности. Но в школьных задачах исходы всегда одинаково ожидаемы, так что для нахождения вероятности нужно только правильно посчитать количество исходов, входящих в событие, и общее количество исходов испытания, после чего поделить одно на другое.

Рассмотрим пример. Из стандартной колоды карт (от двойки до туза) наугад вытащили одну карту. Какова вероятность, что эта карта — с цифрой?

Для начала нужно определить набор равновозможных исходов. В данном случае естественно будет взять его совпадающим с набором карт. Тогда всего исходов будет 52,52,52, и никаких оснований считать какие-либо более вероятными, чем другие, у нас нет. Осталось узнать число благоприятных исходов, то есть карт с цифрами. Всего таких карт в каждой масти девять: 222, 333, 444, 555, 666, 777, 888, 999 и 101010. Мастей в свою очередь четыре, значит всего карт с цифрами 363636. Следовательно, искомая вероятность равна 3652=913\frac{36}{52}=\frac{9}{13}5236​=139​.

Отметим, что вероятность невозможного события будет равна нулю, поскольку числитель дроби (число благоприятных исходов) будет равен 000.

lampa.io

Таблица научных, математических, физических символов и сокращений. Сокращённая и символьная запись физического, математического, химического и, в целом, научного текста, математические обозначения. Математический алфавит. Математическая скоропись.

Знак (символ, сокращение)

Пояснения (расшифровка, легенда)

  • следовательно,
  • таким образом,
  • поэтому

т.о.

  • следовательно,
  • таким образом,
  • поэтому
  • потому что
  • из-за того что
  • вследствие того, что
  • поскольку
  • в результате того, что
ЧТД QED Конец доказательства = «Что и требовалось доказать» = quod erat demonstrandum
Что и требовалось доказать = окончание доказательства
Что и требовалось доказать = окончание доказательства
Что и требовалось доказать = окончание доказательства

=

Равенство
  • приблизительно равно (везде)
  • изоморфно (теория групп)
По определению равно
  По определению равно
  По определению равно
По определению равно
По определению равно
 
  • По определению равно
  • Равенство по модулю
Записывается ab (mod n), читается a равно b по модулю n.
  По определению логически эквивалентно
  • эквивалентность матриц (т.е. одна сводится к другой с помощью элементарных операций над строками)
  • Случайная величина имеет распределение вероятности …
  • числа одного порядка
  • эквивалентность функций при определенной базе, т.е. одинаковое ассимптотическое поведение
  • отношение эквивалентности , используется, когда 2 элемента принадлежат одному и тому же классу эквивалентности
  • Конгруэнтность в геометрии
Неравенство
Меньше
Больше
Много меньше
Много больше
<= Меньше или равно
>= Больше или равно
Сведение по Карпу (Karp reduction) — теория сложности, левое сводимо по Карпу к правому, левое «не сложнее правого», естественно возможно и использование знака острием вправо (но нам лень было рисовать)
  • пропорциональность — основной символ
  • !иногда! сведение по Карпу (Karp reduction) — теория сложности, левое сводимо по Карпу к правому, левое «не сложнее правого», естественно возможно и использование знака острием вправо (но нам лень было рисовать)
  • Несвязное объединение = несвязная сумма = дизъюнктное объединение — теория множеств
  • Противоположный
  • Отрицательный
  • !иногда!Разность множеств — теория множеств

dpva.ru

Основы теории вероятностей для актуариев

Вероятность: основные правила

Формула полной вероятности

Формула Байеса

Случайные величины и их характеристики

Время жизни как случайная величина

Функция выживания

Характеристики продолжительности жизни

Аналитические законы смертности

 

Все на свете происходит детерминировано или случайно…
Аристотель


Вероятность: основные правила

Теория вероятностей вычисляет вероятности различных событий. Основным в теории вероятностей является понятие случайного события.

Например, вы бросаете монету, она случайным образом падает на герб или решку. Заранее вы не знаете, на какую сторону монета упадет. Вы заключаете договор страхования, заранее вы не знаете, будут или нет проводиться выплаты.

В актуарных расчетах нужно уметь оценивать вероятность различных событий, поэтому теория вероятностей играет ключевую роль. Ни одна другая область математики не может оперировать с вероятностями событий.

Рассмотрим более подробно подбрасывание монеты. Имеется 2 взаимно исключающих исхода: выпадение герба или выпадение решки. Исход бросания является случайным, так как наблюдатель не может проанализировать и учесть все факторы, которые влияют на результат. Какова вероятность выпадения герба? Большинство ответит ½, но почему?

Пусть формально А обозначает выпадение герба. Пусть монета бросается n раз. Тогда вероятность события А можно определить как долю тех бросков, в результате которых выпадает герб:

(1)

где n общее количество бросков, n(A) число выпадений герба.

Отношение (1) называется частотой события А в длинной серии испытаний.

Оказывается, в различных сериях испытаний соответствующая частота при больших n группируется около некоторой постоянной величины Р(А). Эта величина называется вероятностью события А и обозначается буквой Р – сокращение от английского слова probability – вероятность.

Формально имеем:

(2)

Этот закон называется законом больших чисел.

Если монета правильная (симметричная), то вероятность выпадения герба равняется вероятности выпадения решки и равняется ½.

Пусть А и В некоторые события, например, произошел или нет страховой случай. Объединением двух событий называется событие, состоящее в выполнении события А, события В, или обоих событий вместе. Пересечением двух событий А и В называется событие, состоящее в осуществлении как события А, так и события В.

Основные правила исчисления вероятностей событий следующие:

1. Вероятность любого события заключена между нулем и единицей:

2. Пусть А и В два события, тогда:

(3)

Читается так: вероятность объединения двух событий равна сумме вероятностей этих событий минус вероятность пересечения событий. Если события являются несовместными или непересекающимися, то вероятность объединения (суммы) двух событий равна сумме вероятностей. Этот закон называется законом сложения вероятностей.

Мы говорим, что события является достоверным, если его вероятность равна 1. При анализе тех или иных явлений возникает вопрос, как влияет наступление события В на наступление события А. Для этого вводится условная вероятность:

(4)

Читается так: вероятность наступления А при условии В равняется вероятности пересечения А и В, деленной на вероятность события В.
В формуле (4) предполагается, что вероятность события В больше нуля.

Формулу (4) можно записать также в виде:

(5)

Это формула умножения вероятностей.

Условную вероятность называют также апостериорной вероятностью события А – вероятность наступления А после наступления В.

В этом случае саму вероятность называют априорной вероятностью. Имеется еще несколько важных формул, которые интенсивно используются в актуарных расчетах.

Формула полной вероятности

Допустим, что проводится опыт, об условиях которого можно заранее сделать взаимно исключающие друг друга предположения (гипотезы):

Мы предполагаем, что имеет место либо гипотеза , либо … либо. Вероятности этих гипотез известны и равны:

Тогда имеет место формула полной вероятности:

(6)

Вероятность наступления события А равна сумме произведений вероятности наступления А при каждой гипотезе на вероятность этой гипотезы.


Формула Байеса

Формула Байеса позволяет пересчитывать вероятность гипотез в свете новой информации, которую дал результат А.

Формула Байеса в известном смысле является обратной к формуле полной вероятности.

(7)

Рассмотрим следующую практическую задачу.

Задача 1

Предположим, произошла авиакатастрофа и эксперты заняты исследованием ее причин. Заранее известны 4 причины, по которым произошла катастрофа: либо причина, либо , либо , либо . По имеющейся статистике эти причины имеют следующие вероятности:



При осмотре места катастрофы найдены следы воспламенения горючего, согласно статистике вероятность этого события при тех или иных причинах такая:




Вопрос: какая причина катастрофы наиболее вероятна?

Вычислим вероятности причин при условия наступления события А.




Отсюда видно, что наиболее вероятной является первая причина, так как ее вероятность максимальна.

Задача 2

Рассмотрим посадку самолета на аэродром.

При посадке погодные условия могут быть такими: низкой облачности нет (), низкая облачность есть (). В первом случае вероятность благополучной посадки равна P1. Во втором случае – Р2. Ясно, что P1>P2.

Приборы, обеспечивающие слепую посадку, имеют вероятность безотказной работы Р. Если есть низкая облачность и приборы слепой посадки отказали, вероятность удачного приземления равна Р3, причем Р3<Р2. Известно, что для данного аэродрома доля дней в году с низкой облачностью равна .

Найти вероятность благополучной посадки самолета.

Имеем:

Нужно найти вероятность .

Имеются два взаимно исключающих варианта: приборы слепой посадки действуют, приборы слепой посадки отказали, поэтому имеем:

Отсюда по формуле полной вероятности:

Задача 3

Страховая компания занимается страхованием жизни. 10% застрахованных в этой компании являются курильщиками. Если застрахованный не курит, вероятность его смерти на протяжении года равна 0.01 Если же он курильщик, то эта вероятность равна 0.05.

Какова доля курильщиков среди тех застрахованных, которые умерли в течение года?

Варианты ответов: (А) 5%, (Б) 20%, (В) 36 %, (Г) 56%, (Д) 90%.

Решение

Введём события:

  1. = {застрахованный – курильщик}

  2. = {застрахованный – не курильщик}

  3. = {застрахованный умер в течение года}

Условие задачи означает, что

Кроме того, поскольку события и образуют полную группу попарно несовместимых событий, то .
Интересующая нас вероятность – это .

Используя формулу Байеса, мы имеем:

поэтому верным является вариант (В).

Задача 4

Страховая компания продаёт договора страхования жизни трёх категорий: стандартные, привилегированные и ультрапривилегированные.

50% всех застрахованных являются стандартными, 40% — привилегированными и 10% — ультрапривилегированными.

Вероятность смерти в течение года для стандартного застрахованного равна 0.010, для привилегированного – 0.005, а для ультра привилегированного – 0.001.

Чему равна вероятность того, что умерший застрахованный является ультрапривилегированным?

Решение

Введем в рассмотрение следующие события:

  1. = {застрахованный является стандартным}

  2. = {застрахованный является привилегированным}

  3. = {застрахованный является ультрапривилегированным}

  4. = {застрахованный умер в течение года}

В терминах этих событий интересующая нас вероятность – это . По условию:

Поскольку события , , образуют полную группу попарно несовместимых событий, используя формулу Байеса мы имеем:

Случайные величины и их характеристики

Пусть некоторая случайная величина, например, ущерб от пожара или величина страховых выплат.
Случайная величина полностью характеризуется своей функцией распределения.

Определение. Функция называется функцией распределения случайной величины ξ.

Определение. Если существует такая функция , что для произвольных a<b выполнено

,

то говорят, что случайная величина ξ имеет плотность распределения вероятности f(x).

Определение. Пусть . Для непрерывной функции распределения F теоретической α-квантилью называется решение уравнения .

Такое решение может быть не единственным.

Квантиль уровня ½ называется теоретической медианой, квантили уровней ¼ и ¾ нижней и верхней квартилями соответственно.

В актуарных приложениях важную роль играет неравенство Чебышева:

при любом

— символ математического ожидания.

Читается так: вероятность того, что модуль больше меньше или равняется математическому ожиданию величины модуль , деленному на .

Время жизни как случайная величина

Неопределенность момента смерти является основным фактором риска при страховании жизни.

Относительно момента смерти отдельного человека нельзя сказать ничего определенного. Однако если мы имеем дело с большой однородной группой людей и не интересуемся судьбой отдельных людей из этой группы, то мы находимся в рамках теории вероятностей как науки о массовых случайных явлениях, обладающих свойством устойчивости частот.

Соответственно, мы можем говорить о продолжительности жизни как о случайной величине Т.

Функция выживания

В теории вероятностей описывают стохастическую природу любой случайной величины Т функцией распределения F (x), которая определяется как вероятность того, что случайная величина Т меньше, чем число x:

.

В актуарной математике приятно работать не с функцией распределения, а с дополнительной функцией распределения . Применительно к продолжительной жизни – это вероятность того, что человек доживет до возраста x лет.

Функция

называется функцией выживания (survival function):

Функция выживания обладает следующими свойствами:

  1. убывает при ;
  2. ;
  3. ;
  4. непрерывна.

В таблицах продолжительности жизни обычно считают, что существует некоторый предельный возраст (limiting age) (как правило, лет) и соответственно при x >.

При описании смертности аналитическими законами обычно считают, что время жизни неограниченно, однако подбирают вид и параметры законов так, чтобы вероятность жизни свыше некоторого возраста была пренебрежимо мала.

Функция выживания имеет простой статистический смысл.

Допустим, что мы наблюдаем за группой из новорожденных (как правило, ), которых мы наблюдаем и можем фиксировать моменты их смерти.

Обозначим число живых представителей этой группы в возрасте через . Тогда:

.

Символ E здесь и ниже используется для обозначения математического ожидания.

Итак, функция выживания равна средней доле доживших до возраста из некоторой фиксированной группы новорожденных.

В актуарной математике часто работают не с функцией выживания , а с только что введенной величиной (зафиксировав начальный размер группы ).

Функция выживания может быть восстановлена по плотности:

Характеристики продолжительности жизни

С практической точки зрения важны следующие характеристики:

1. Среднее время жизни

,
2. Дисперсия времени жизни

,
где
,

Корень квадратный из дисперсии называется стандартным отклонением (standard deviation). Это более удобная величина, чем дисперсия, так как имеет ту же размерность, что исходные данные.

3. Медиана времени жизни , которая определяется как корень уравнения
.

Медиана времени жизни – это возраст, до которого доживает ровно половина представителей исходной группы новорожденных.

Аналитические законы смертности

Для упрощения расчетов, теоретического анализа и т.д. естественно попытаться описать получаемые эмпирическим путем данные о функции выживания или интенсивности смертности с помощью простых аналитических формул.

Простейшее приближение было введено в 1729 году де Муавром (de Moivre), который предложил считать, что время жизни равномерно распределено на интервале , где — предельный возраст.

В модели де Муавра при 0<x<

Сравнение графиков этих функций с реальными графиками функции выживания , функции смертей , интенсивности смертности , показывает, что закон де Муавра является не очень хорошим приближением.

Например, первая формула означает, что кривая смертей является горизонтальной линией, в то время как эмпирические данные указывают на пик в районе 80 лет.

В модели, которую предложил в 1825 году Гомпертц (Gompertz), интенсивность смертности приближается показательной функцией вида , где >0 и B>0 – некоторые параметры. Соответствующая функция выживания имеет вид

,

а кривая смертей:

.

Мэйкхам (Makeham) в 1860 году обобщил предыдущую модель, приблизив интенсивность смертности функцией вида .

Постоянное слагаемое позволяет учесть риски для жизни, связанные с несчастными случаями (которые мало зависят от возраста), в то время как член учитывает влияние возраста на смертность.

В этой модели
,
.

Второй закон Мэйкхама, введенный в 1889 году, приближает интенсивность смертности функцией вида . В этой модели
,
.

Вейбулл (Weibull) в 1939 году предложил приближать интенсивность смертности более простой степенной функцией вида . В этой модели
, .

В практике страхования эти параметры неизвестны и оцениваются по реальным данным.

Связанные определения:
Вероятность события
Независимые повторные испытания Бернулли
Независимые события

В начало

Содержание портала

statistica.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *