14 разделить на икс равно 2: кубических, тригонометрических, логарифмических и др. уравнений · Калькулятор Онлайн для чайников 🫖🤓

2
Функция — Квадрат x
ctg(x)
Функция — Котангенс от x
arcctg(x)
Функция — Арккотангенс от x
arcctgh(x)
Функция — Гиперболический арккотангенс от x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x
DiracDelta(x)
Дельта-функция Дирака
Heaviside(x)
Функция Хевисайда

Интегральные функции:

Si(x)
Интегральный синус от x
Ci(x)
Интегральный косинус от x
Shi(x)
Интегральный гиперболический синус от x
Chi(x)
Интегральный гиперболический косинус от x

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7. 3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание
15/7
— дробь

Другие функции:

asec(x)
Функция — арксеканс от x
acsc(x)
Функция — арккосеканс от x
sec(x)
Функция — секанс от
x
csc(x)
Функция — косеканс от x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция — гиперболический арксеканс от x
csch(x)
Функция — гиперболический косеканс от x
sech(x)
Функция — гиперболический секанс от x
acsch(x)
Функция — гиперболический арккосеканс от x

Постоянные:

pi
Число «Пи», которое примерно равно ~3. 2
Функция — Квадрат x
ctg(x)
Функция — Котангенс от x
arcctg(x)
Функция — Арккотангенс от x
arcctgh(x)
Функция — Гиперболический арккотангенс от x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x
DiracDelta(x)
Дельта-функция Дирака
Heaviside(x)
Функция Хевисайда

Интегральные функции:

Si(x)
Интегральный синус от x
Ci(x)
Интегральный косинус от x
Shi(x)
Интегральный гиперболический синус от x
Chi(x)
Интегральный гиперболический косинус от x

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7. 3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание
15/7
— дробь

Другие функции:

asec(x)
Функция — арксеканс от x
acsc(x)
Функция — арккосеканс от x
sec(x)
Функция — секанс от x
csc(x)
Функция — косеканс от x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция — гиперболический арксеканс от x
csch(x)
Функция — гиперболический косеканс от
x
sech(x)
Функция — гиперболический секанс от x
acsch(x)
Функция — гиперболический арккосеканс от x

Постоянные:

pi
Число «Пи», которое примерно равно ~3. 14159..
e
Число e — основание натурального логарифма, примерно равно ~2,7183..
i
Комплексная единица
oo
Символ бесконечности — знак для бесконечности

Сколько 14 разделить на 2 с использованием длинного деления?

Запутались в длинном делении? К концу этой статьи вы сможете разделить 14 на 2, используя деление в длинную сторону, и сможете применить ту же технику к любой другой задаче на деление в длинную сторону! Давайте взглянем.

Хотите быстро научиться или показать учащимся, как решить деление 14 на 2 с помощью деления в большую сторону? Включи это очень быстрое и веселое видео прямо сейчас!

Итак, первое, что нам нужно сделать, это уточнить термины, чтобы вы знали, что представляет собой каждая часть деления:

  • Первое число, 14, называется делимым.
  • Второе число 2 называется делителем.

Здесь мы разберем каждый шаг процесса деления на 14, разделенный на 2, и объясним каждый из них, чтобы вы точно поняли, что происходит.

14 разделить на 2 пошаговое руководство

Шаг 1

Первый шаг — поставить задачу деления с делителем слева и делимым справа, как показано ниже:

Шаг 2

Мы можем выяснить, что делитель (2) входит в первую цифру делимого (1), 0 раз. Теперь мы это знаем, мы можем поставить 0 вверху:

Шаг 3

Если мы умножим делитель на результат на предыдущем шаге (2 x 0 = 0), мы теперь можем добавить этот ответ под делимым:

Шаг 4

Далее из второй цифры делимого (1 — 0 = 1) вычтем результат предыдущего шага и запишем этот ответ ниже:

0
2 1 4 —5
39 0
1

Шаг 5

Сдвиньте вторую цифру делимого (4) вниз следующим образом:

002 Делитель (2) входит в нижнее число (14) 7 раз, поэтому мы можем положить 7 сверху:

0
2

904
1

8
0
1 4
0 7
2 3 900
0
1 4

Шаг 7

Если мы умножим делитель на результат предыдущего шага (2 x 7 = 14), то теперь мы можем добавить этот ответ под делимым:

9 0 0
7
2 1 4
1 4
1 4

Шаг 8

Далее мы вычтем результат предыдущего шага из третьей цифры делимого (14 — 14 = 0) и запишем этот ответ ниже:

— 9 0

2 2?

Если вы дочитали до этого урока, молодец! Больше не осталось цифр, чтобы двигаться вниз от делимого, а это значит, что мы решили задачу деления в длинную сторону.

Ваш ответ — это верхнее число, а любой остаток будет нижним числом. Итак, для 14, разделенных на 2, окончательное решение:

7

Остаток 0

Процитируйте, дайте ссылку или ссылку на эту страницу

Если вы нашли этот контент полезным в своем исследовании, пожалуйста, сделайте нам большую услугу и используйте инструмент ниже, чтобы убедиться, что вы правильно ссылаетесь на нас, где бы вы ни использовали это. Мы очень ценим вашу поддержку!

Дополнительные вычисления для вас

Теперь вы изучили метод деления 14 на 2, вот несколько других способов, которыми вы можете выполнить вычисление:

  • С помощью калькулятора, если вы набрали 14 разделить на 2 , вы получите 7.
  • Вы также можете представить 14/2 в виде смешанной дроби: 7 0/2
  • Если вы посмотрите на смешанную дробь 7 0/2, вы увидите, что числитель совпадает с остатком (0), знаменатель — это наш первоначальный делитель (2), а целое число — это наш окончательный ответ (7 ).

Калькулятор деления на длинное деление

Введите еще одну задачу на деление на длинное деление

Следующая задача на деление на длинное деление

Хотите еще больше деления на длинное деление, но не хотите вводить два числа в калькулятор выше? Не беспокойся.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта

0 7
2 1 4
— 9 9
1 4
1 4
0