A x b найти x: Умножение матриц онлайн

Mathway | Популярные задачи

Популярные задачи

Элемент. математикаОсновы алгебрыАлгебраТригонометрияОсновы мат. анализаМатематический анализКонечная математикаЛинейная алгебраХимияPhysics

РейтингТемаЗадачаФорматированная задача
1Решить, используя обратную матрицуx+2y=1 , 4x+5y=13 ,
2Перемножить матрицы[[1/( квадратный корень из 17),-4/( квадратный корень из 17)]][[1/( квадратный корень из 17)],[-4/( квадратный корень из 17)]]
3Найти область определенияx+y=3
4Найти область определенияx-y=3
5Найти область определенияy=-2x+3
6Найти область определенияy=2x+1
7Записать в виде векторного равенстваx=x^2+9x+3 , x=x+2 ,
8Найти область определенияy=2x
9Найти область определенияy=-3x
10Найти область определенияy=3x-2
11Найти область определенияy=4x
12Найти область определения3x+2y=6
13Trovare la 5×5 Matrice Identità5
14Trovare la 6×6 Matrice Identità6
15Trovare la 4×4 Matrice Identità4
16Решить, используя обратную матрицу2x+y=-2 , x+2y=2 ,
17Решить, используя обратную матрицу4x+4=y , y=6x ,
18Решить, используя обратную матрицу4x+2=5y-3 , y=3x-1 ,
19Найти степенное множество(3,4)
20Вычислитькубический корень из 216
21Найти степенное множество (1,3)
22Найти область определения3x-2y=12
23Найти область определенияy=5x+2
24Найти область определенияy=2x-3
25Найти область определенияy=2x-4
26Найти область определенияy=2x+5
27Найти область определенияy=1/2x
28Найти область определенияy=1/2x-3
29Найти область определенияy=2/3x-2
30Найти область определенияx=2y
31Найти область определенияx-2y=2
32Найти область определенияx-2y=6
33Найти область определения2y+x
34Найти область определения2x+y=0
35Найти область определенияy=5x+6
36Найти область определенияy=x+3
37Solve Using a Matrix by Eliminationy=4x+3x-2 , y=6 ,
38Проверить линейную зависимостьB={[[-10,2],[5,-2. 5]]}
39Сложение[[2,4],[6,-4]]+[[-3,-7],[20,10]]
40Проверить линейную зависимостьB={[[-1,2],[0,-2.5]]}
41Перемножить матрицы[[0,0,1,1],[1,0,1,0],[0,0,0,1],[0,1,0,0]][[0,0,1,1],[1,0,1,0],[0,0,0,1],[0,1,0,0]]
42Найти область определенияy=5x
43Найти область определенияy=7x
44Найти область определенияy=-x-2
45Найти область определенияy=x-2
46Найти область определенияy=x-3
47Привести матрицу к ступенчатому виду по строкам[[4,-3,1,0],[1,0,-2,0],[-2,1,1,0]]
48Записать в виде векторного равенстваx+y+z=2 , 4x+5y+z=12 , 2x=-4 , ,
49Найти определитель[[0,-1,a],[3,-a,1],[1,-2,3]]
50Найти область определенияy=-x+2
51Найти определитель[[2,5,0],[1,0,-3],[2,-1,2]]
52Найти определитель[[7,5,0],[4,5,8],[0,-1,5]]
53Найти обратный элемент[[1,-3,0,-2],[3,-12,-2,-6],[-2,10,2,5],[-1,6,1,3]]
54Найти обратный элемент[[1,2,3],[2,5,7],[3,7,9]]
55Привести матрицу к ступенчатому виду по строкам[[0,1,5,-4],[1,4,3,-2],[2,7,1,-2]]
56Привести матрицу к ступенчатому виду по строкам[[1,1,0],[1,0,1],[1,0,1],[2,1,0],[2,1,0]]
57Привести матрицу к ступенчатому виду по строкам[[1,2,3],[4,5,6],[7,8,9]]
58Привести матрицу к ступенчатому виду по строкам[[7,8]]
59Найти область определения2x+y=1
60Записать в виде векторного равенства2x+y=-2 , x+2y=2 ,
61Найти область определенияx-2y=4
62Найти область определенияx-y=-1
63Найти область определенияx+y=5
64Найти область определенияx=-3y-8
65Найти область определенияx=-2y-8
66Найти область определенияx+y=6
67Найти область определенияx+y=4
68
Найти область определения
x+2y=4
69Найти область определенияx+y
70Найти область определенияy=7x+9
71Найти область определенияy=1/2x-5
72Найти область определенияy=1/2x+2
73Найти область определенияy=1/2x+3
74Найти область определенияx-y=-3
75Найти область определения x-y=4
76Найти область определенияy=-2x
77Найти область определенияy=-2x+1
78Найти область определенияy=2^(x+9)
79Найти область определенияy=10-x^2
80Найти область определенияy=2x-6
81Найти область определенияy=-2x-3
82Найти область определенияy=3x-8
83Найти область определенияy=3x
84Найти область определенияy=-3x+1
85Найти область определенияy=4x+3
86Найти область определенияy=3x-4
87Найти область определенияy=4x-2
88Найти область определенияy=-6x
89Найти область определенияy=x-4
90Найти область определения7 корень четвертой степени из 567y^4
91Найти область определенияc=5/9*(f-32)
92Найти область определенияf=9/5c+32
93Вычислитьквадратный корень из 4
94Привести матрицу к ступенчатому виду по строкам[[-6,7],[2,6],[-4,1]]
95Найти собственные значения[[2,1],[3,2]]
96Найти собственные значения[[4,0,1],[2,3,2],[49,0,4]]
97Найти степенное множествоA=(2,3,4,5)
98Найти мощность(2,1)
99Решить, используя обратную матрицу-3x-4y=2 , 8y=-6x-4 ,
100Решить, используя обратную матрицу2x-5y=4 , 3x-2y=-5 ,

Как найти векторное произведение векторов? Ответ на webmath.

ru

Содержание:

  • Формула
  • Примеры вычисления векторного произведения векторов

Формула

Для того чтобы найти векторное произведение $[\bar{a}, \bar{b}]$ двух векторов, заданных своими координатами $\bar{a}=\left(a_{x} ; a_{y} ; a_{z}\right)$ и $\bar{b}=\left(b_{x} ; b_{y} ; b_{z}\right)$ соответственно, необходимо вычислить следующий определитель

$$[\bar{a}, \bar{b}]=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|$$

Обычно такой определитель вычисляют разложением по первой строке. Отметим также, что результатом векторного произведения является вектор.

Примеры вычисления векторного произведения векторов

Пример

Задание. Найти векторное произведение векторов $\bar{a}=(1 ; 0 ; 0)$ и $\bar{b}=(0 ; 1 ; 0)$

Решение. Для вычисления векторного произведения заданных векторов воспользуемся формулой

$$[\bar{a}, \bar{b}]=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|$$

Подставляя координаты заданных векторов, получим:

$$[\bar{a}, \bar{b}]=\left|\begin{array}{lll}\bar{i} & \bar{j} & \bar{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right|$$

Раскладываем определитель по первой строке:

$$[\bar{a}, \bar{b}]=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right|=$$ $$=\bar{i} \cdot\left|\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right|-\bar{j} \cdot\left|\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right|+\bar{k} \cdot\left|\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right|=$$ $$=0 \cdot \bar{i}-0 \cdot \bar{j}+1 \cdot k$$

Первые два определителя равны нулю, так как они содержат нулевой столбец, а третий определитель вычисляем как определитель второго порядка: от произведения элементов главной диагонали отнимаем произведение элементов побочной.

Итак, координаты искомого вектора равны коэффициентам при ортах, то есть

$$[\bar{a}, \bar{b}]=(0 ; 0 ; 1)$$

Ответ. $[\bar{a}, \bar{b}]=(0 ; 0 ; 1)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Даны векторы $\bar{a}=(5 ; 3 ;-4)$ и $\bar{b}=(6 ; 7 ;-8)$ . Найти координаты векторного произведения $[\bar{a}, \bar{b}]$

Решение. Координаты векторного произведения $[\bar{a}, \bar{b}]$ вычисляются по формуле

$$[\bar{a}, \bar{b}]=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|$$

Подставляя координаты заданных векторов, получим:

$$[\bar{a}, \bar{b}]=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ 5 & 3 & -4 \\ 6 & 7 & -8\end{array}\right|$$

Раскладываем полученный определитель по первой строке:

$$=\bar{i} \cdot\left|\begin{array}{cc}3 & -4 \\ 7 & -8\end{array}\right|-\bar{j} \cdot\left|\begin{array}{cc}5 & -4 \\ 6 & -8\end{array}\right|+\bar{k} \cdot\left|\begin{array}{cc}5 & 3 \\ 6 & 7\end{array}\right|=$$ $$=[3 \cdot(-8)-7 \cdot(-4)] \cdot \bar{i}-[5 \cdot(-8)-6 \cdot(-4)] \cdot \bar{j}+$$ $$+[5 \cdot 7-6 \cdot 3] \cdot \bar{k}=(-24+28) \bar{i}-(-40+24) \bar{j}+(35-18) \bar{k}=$$ $$=4 \cdot \bar{i}+16 \cdot \bar{j}+17 \cdot \bar{k}$$

Тогда

$$[\bar{a}, \bar{b}]=(4 ; 16 ; 17)$$

Ответ. $[\bar{a}, \bar{b}]=(4 ; 16 ; 17)$

Читать дальше: как найти смешанное произведение векторов.

линейная алгебра — $AX=B$ решить для $X$ ……. в MATRIX

Задавать вопрос

спросил

Изменено 9 лет, 3 месяца назад

Просмотрено 7к раз

$\begingroup$

$$ 2x — 3y + 4z = -19\\ 6х+4у — 2з=8\ х + 5у + 4г = 23 $$ что я сделал до сих пор, так это поместил число и $x, y$ и $z$ в матричную форму: $$ \begin{bматрица} 2 и -3 и 4\\ 6 и 4 &-2\\ 1 и 5 и 4 \end{bmatrix} \begin{bmatrix} Икс\\ у\\ г \end{bmatrix}= \begin{bматрица} -19\\ 8\\ 23 \end{bmatrix} $$ шаг 2: я не знаю, куда идти дальше

  • линейная алгебра
  • системы уравнений

$\endgroup$

8

$\begingroup$

Вы можете использовать исключение Гаусса для расширенной матрицы коэффициентов, чтобы найти $x, y, z$, представив матрицу в виде сокращенных ступенчатых строк.

$$\begin{bmatrix} 2 и -3 и 4 &\середина&19\\ 6 и 4 &-2&\середина и 8\\ 1 и 5 и 4&\середина &23 \end{bmatrix}$$

Если вы сделаете это правильно, вы должны получить следующее: $$\begin{bmatrix} 1 & 0 & 0 &\середина&20/9\\ 0 и 1 & 0 & \ середина & 7/9 \\ 0 & 0 & 1 & \ середина & 38/9 \end{bmatrix}$$ Это означает, что $$\begin{bmatrix} x\\y\\z\end{bmatrix} = \begin{bmatrix} 20/9 \\ 7/9\\38/9\end{bmatrix} $$

$\endgroup$

1

$\begingroup$

Вы также можете использовать правило Крамера: $$ x=\frac{\left|\begin{array}{r}\color{#C00000}{-19}&-3&4\\\color{#C00000}{8}&4&-2\\\color{#C00000 }{23}&5&4\end{массив}\right|}{\left|\begin{array}{r}2&-3&4\\6&4&-2\\1&5&4\end{массив}\right|}=-2 $$ $$ y=\frac{\left|\begin{array}{r}2&\color{#C00000}{-19}&4\\6&\color{#C00000}{8}&-2\\1&\color{#C00000}{23}&4\end{array}\right|}{\left|\begin{array}{r }2&-3&4\\6&4&-2\\1&5&4\конец{массив}\справа|}=5 $$ $$ z=\frac{\left|\begin{array}{r}2&-3&\color{#C00000}{-19}\\6&4&\color{#C00000}{8}\\1&5&\color{#C00000} {23}\end{массив}\right|}{\left|\begin{массив}{r}2&-3&4\\6&4&-2\\1&5&4\end{массив}\right|}=0 $$ В числителе заменить столбец матрицы, соответствующий данной переменной, на столбец результатов. Обратите внимание, что столбцы обозначают определитель матрицы. 9{-1}\cdot Б $$ Поскольку я ленив, я использовал компьютер, чтобы решить эту проблему. Ваш результат $$ 20/9, 7/9, 38/9 $$

$\endgroup$

линейная алгебра — Решение $Ax=b$, когда заданы $x$ и $b$.

спросил

Изменено 8 лет, 1 месяц назад

Просмотрено 9Для полной спецификации {n}$ требуется $n$ линейно независимых уравнений. Это означает, что вам потребуется $n$ уравнений $Ax_1=b_1,Ax_2=b_2,…,Ax_n=b_n$ (или проще $AX=B$, где $X$ и $B$ равны $n\times n$ матрицы), чтобы получить уникальный ответ.

$\endgroup$

$\begingroup$

Если $x$ равно нулю, $A$ существует (если и) только тогда, когда $b=0$ и в этом случае $A$ может быть выбран произвольно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *