Векторы и действия над векторами
Оглавление:
- Сложение векторов
- Вычитание векторов
- Умножение вектора на число
- Скалярное произведение векторов
- Онлайн-курс «Математика 10+11 100 баллов»
Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?
А в самом деле, что такое векторы и зачем они?
Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».
Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.
Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с2. Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.
Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:
Вот другой пример.
Автомобиль движется из A в B. Конечный результат — его перемещение из точки A в точку B, то есть перемещение на вектор .
Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или .
До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.
Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.
Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.
А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1. Нулевым — вектор, длина которого равна нулю, то есть его начало совпадает с концом.
Удобнее всего работать с векторами в прямоугольной системе координат — той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа — ее координаты по x и y, абсцисса и ордината.
Вектор также задается двумя координатами: .
Здесь в скобках записаны координаты вектора — по x и по y.
Находятся они просто: координата конца вектора минус координата его начала.
Если координаты вектора заданы, его длина находится по формуле
к оглавлению ▴
Сложение векторов
Для сложения векторов есть два способа.
1. Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов. и
Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.
2. Второй способ сложения векторов — правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .
По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.
Представьте, что вы идете из пункта А в пункт В, из В в С, из С в D, затем в Е и в F. Конечный результат этих действий — перемещение из А в F.
При сложении векторов и получаем:
;
.
к оглавлению ▴
Вычитание векторов
Вектор направлен противоположно вектору . Длины векторов и равны.
Теперь понятно, что такое вычитание векторов. Разность векторов и — это сумма вектора и вектора .
к оглавлению ▴
Умножение вектора на число
При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.
к оглавлению ▴
Скалярное произведение векторов
Векторы можно умножать не только на числа, но и друг на друга.
Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.
Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:
.
Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :
.
Из формулы для скалярного произведения можно найти угол между векторами:
.
Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.
В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.
Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе вуза.
к оглавлению ▴
Онлайн-курс «Математика 10+11 100 баллов»
— Теория: учебник Анны Малковой + 70 ч. видеоразборов.
— 144 ч. мастер-классов: 8 онлайн мастер-классов с Анной Малковой в месяц.
— Тренажер для отработки задач ЕГЭ (800+ задач): автоматическая + ручная проверки.
— Связь с Анной Малковой (чаты и почта).
— 9 репетиционных ЕГЭ: ежемесячно.
— Контроль: страница личных достижений учащегося, отчеты родителям.
— Личный кабинет.
ПОДРОБНЕЕ
Спасибо за то, что пользуйтесь нашими публикациями. Информация на странице «Векторы наu0026nbsp;ЕГЭ поu0026nbsp;математике. Действия над векторами» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена: 08.04.2023
умножение, сложение векторов по правилу многоугольника
Прежде чем приступить к тематике статьи, напомним основные понятия.
Определение 1Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. При наличии конкретных точек границ обозначение вектора выглядит как две прописные латинские буквы (маркирующие границы вектора) также со стрелкой сверху.
Определение 2Нулевой вектор – любая точка плоскости, обозначается как нуль со стрелкой сверху.
Определение 3Длина вектора – величина, равная или большая нуля, определяющая длину отрезка, составляющего вектор.
Определение 4Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых. Не выполняющие это условие векторы называют неколлинеарными.
Сложение двух векторов
Определение 5Исходные данные: векторы a→ и b→ . Для выполнения над ними операции сложения необходимо из произвольной точки отложить вектор AB→, равный вектору а→; из полученной точки undefined – вектор ВС→, равный вектору b→. Соединив точки undefined и C, получаем отрезок (вектор) АС→, который и будет являться суммой исходных данных. Иначе описанную схему сложения векторов называют правилом треугольника.
Геометрически сложение векторов выглядит так:
— для неколлинеарных векторов:
— для коллинеарных (сонаправленных или противоположнонаправленных) векторов:
Сложение нескольких векторов
Взяв за основу описанную выше схему, мы получаем возможность произвести операцию сложения векторов в количестве более 2: поочередно прибавляя каждый последующий вектор.
Определение 6Исходные данные: векторы a→ , b→, c→,d→. Из произвольной точки А на плоскости необходимо отложить отрезок (вектор), равный вектору a→; затем от конца полученного вектора откладывается вектор, равный вектору b→; далее – по тому же принципу откладываются последующие векторы. Конечной точкой последнего отложенного вектора будет точка B, а полученный отрезок (вектор) AB→ – суммой всех исходных данных. Описанную схему сложения нескольких векторов называют также правилом многоугольника .
Геометрически оно выглядит следующим образом:
Определение 7Отдельной схемы действия по вычитанию векторов нет, т.к. по сути разность векторов a→и b→есть сумма векторов a→ и — b→.
Умножение вектора на число
Определение 8Чтобы произвести действие умножения вектора на некое число k, необходимо учитывать следующие правила:
— еслиk>1, то это число приведет к растяжению вектора в k раз;
— если 0<k<1, то это число приведет к сжатию вектора в 1k раз;
— если k<0, то это число приведет к смене направления вектора при одновременном выполнении одного из первых двух правил;
— если k=1, то вектор остается прежним;
— если одно из множителей – нулевой вектор или число, равное нулю, результатом умножения будет нулевой вектор.
Исходные данные:
1) вектор a→и число k=2;
2) вектор b→и число k=-13.
Геометрически результат умножения в соответствии с указанными выше правилами будет выглядеть следующим образом:
Свойства операций над векторамиОписанным выше операциям над векторами присущи свойства, некоторые из которых очевидны, а прочие можно обосновать геометрически.
Исходные данные: векторы a→, b→, c→и произвольные действительные числа λ и μ.
- Свойство коммутативности: a⇀+b→=b→+a→ .
- Свойство ассоциативности: (a→+b→)+c→=a→+(b→+c→) .
- Свойство использования нейтрального элемента по сложению (нулевой вектор 0→ ⃗). Это очевидное свойство: a→+0→=a→
- Свойство использования нейтрального элемента по умножению (число, равное единице): 1·a→=a→. Это очевидное свойство, не предполагающее никаких геометрических преобразований.
- Любой ненулевой вектор a→ имеет противоположный вектор -a→ и верным является равенство: a→+(-a→)=0→. Указанное свойство — очевидное.
- Сочетательное свойство операции умножения: ( λ · µ ) · a→ = λ · ( µ·a→ ). Например, растяжение вектора при умножении на число 10 можно произвести, сначала растянув вектор в 2 раза, а затем полученный результат еще в 5 раз. Также возможен вариант умножения на число 10 при сжатии вектора в 5 раз и последующего растяжения полученного результата в 50 раз.
- Первое распределительное свойство (очевидно): ( λ + µ ) · a→ = λ ·a→ + µ · a→.
- Второе распределительное свойство: λ · (a→ +b→) = λ ·a→ + λ · b→ .
Геометрически это свойство определяется подобием треугольников:
Свойства коммутативности и ассоциативности дают возможность складывать векторы в произвольном порядке.
Перечисленные свойства операций позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым. Рассмотрим это на примере.
Пример 1Задача: упростить выражение a→-2·(b→+3·a→)
— используя второе распределительное свойство, получим: a→-2·(b→+3·a→)=a→-2·b→-2·(3·a→)
— задействуем сочетательное свойство умножения, выражение приобретет следующий вид: a→-2·b→-2·(3·a→)=a→-2·b→-(2·3)·a→=a→-2·b→-6·a→
— используя свойство коммутативности, меняем местами слагаемые:a→-2·b→-6·a→=a→-6·a→-2·b→
— затем по первому распределительному свойству получаем:a→-6·a→-2·b→=(1-6)·a→-2·b→=-5·a→-2·b→Краткая запись решения будет выглядеть так:a→-2·(b→+3·a→)=a→-2·b→-2·3·a→=5·a→-2·b→
Ответ: a→-2·(b→+3·a→)=-5·a→-2·b→
Автор: Ирина Мальцевская
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Навигация по статьям
Предыдущая статья
Операции над n-мерными векторами
Следующая статья
Векторное пространство
- Векторное произведение
- Векторное пространство
- Векторы на плоскости и в пространстве
- Геометрическая фигура угол
- Деление отрезка в заданном соотношении
- Все темы по математике
- Дипломные работы
- Курсовые работы
- Рефераты
- Контрольные работы
- Отчет по практике
- Все предметы
Узнать подробнее
задача обьемная Электротехника
Вид работы:
Контрольная работа
Выполнена:
26 декабря 2022 г.
Стоимость:
800 руб
Заказать такую же работу
Теория вероятностей
Вид работы:
Онлайн-помощь
Выполнена:
23 декабря 2022 г.
Стоимость:
2 600 руб
Заказать такую же работу
Расчет электропривода ленточного конвейера
Вид работы:
Курсовая работа
Выполнена:
16 декабря 2022 г.
Стоимость:
12 000 руб
Заказать такую же работу
Раскрыть выполнение трудовых действий согласно Профессионального стандарта Работник по исследованию скважин
Вид работы:
Доклад
Выполнена:
29 октября 2022 г.
Стоимость:
2 100 руб
Заказать такую же работу
Электротехника задач там где дано задачи делать только те которые указаны напротив таблицы с моими данными
Вид работы:
Контрольная работа
Выполнена:
26 октября 2022 г.
Стоимость:
3 400 руб
Заказать такую же работу
Техническое обслуживание и ремонт стен перекрытий перегородок крыш
Вид работы:
Реферат
Выполнена:
18 сентября 2022 г.
Стоимость:
1 800 руб
Заказать такую же работу
Смотреть все работы по электротехнике
Линейная алгебра. Почему действие группы в векторном пространстве полиномов естественно является левым действием?
Задавать вопрос
спросил
Изменено 11 лет, 1 месяц назад
Просмотрено 2к раз 9{-1}г)$). *).$ Может быть, этот функтор двойного пространства что-то объясняет?
- линейная алгебра
- теория групп
- теория представлений
$\endgroup$
2
$\begingroup$
Действие, определенное здесь, относится к функциям , то есть к $P$, а не к векторам $z$. Напишите $R=g_2\cdot P$. Тогда $(g_1\cdot R)(z)=R(zg_1)$. Добавьте к этому тот факт, что $R(x)=P(xg_2)$ для любого вектора $x$. Здесь $x=zg_1$, поэтому мы получаем, что $$ (g_1\cdot(g_2\cdot P))(z)=(g_1\cdot R)(z)=R(zg_1)=(g_2\cdot P)(zg_1)=P((zg_1)g_2). $$
Другой способ увидеть это состоит в том, чтобы понять, что $g\cdot P$ — это функция, полученная путем составления $\rho_g:z\mapsto zg$ с $P$ справа (т. е. впереди $P$). Так $$ g\cdot P = P \circ \rho_g. $$ Поэтому $$ g_1\cdot(g_2\cdot P)=g_1\cdot(P\circ\rho_{g_2})=(P\circ\rho_{g_2})\circ\rho_{g_1}. $$ В силу ассоциативности композиции эта последняя композиция тогда $$ P\circ(\rho_{g_2}\circ\rho_{g_1})=P\circ\rho_{g_1g_2}=(g_1g_2)\cdot P. $$ Здесь $\rho_{g_2}\circ\rho_{g_1}=\rho_{g_1g_2}$, потому что $$(\rho_{g_2}\circ\rho_{g_1})(z)=\rho_{g_2}(\rho_{g_1}(z))=\rho_{g_2}(zg_1)=(zg_1)g_2= z(g_1g_2)=\rho_{g_1g_2}(z). $$ 9*)$ из $G$-представления $V$, что дает интересующее вас действие на кольце многочленов.
$\endgroup$
8
общая теория относительности — действие 1-формы на продвижение вперед и назад вектора
Задавать вопрос
спросил 9{‘v}}\omega_{\mu}$.
Чтобы прояснить ситуацию, пожалуйста, найдите отрывок из заметок, которые я читаю: [отрывок]
- общая теория относительности
- дифференциальная геометрия
$\endgroup$
3
$\begingroup$
Я не уверен, что вы подразумеваете под «доказательством» определения.