Двойной факториал | это… Что такое Двойной факториал?
Факториа́л числа n (обозначается n!, произносится эн факториа́л) — произведение всех натуральных чисел до n включительно:
- .
По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел.
Эта функция часто используется в комбинаторике, теории чисел и функциональном анализе.
Иногда словом «факториал» неформально называют восклицательный знак.
Содержание
|
Свойства
Комбинаторное определение
В комбинаторике факториал определяется как количество перестановок множества из n элементов. Например, элементы множества {A,B,C,D} можно линейно упорядочить 4!=24 способами:
ABCD BACD CABD DABC ABDC BADC CADB DACB ACBD BCAD CBAD DBAC ACDB BCDA CBDA DBCA ADBC BDAC CDAB DCAB ADCB BDCA CDBA DCBA
Связь с гамма-функцией
Факториал связан с гамма-функцией от целочисленного аргумента соотношением:
- n! = Γ(n + 1)
Таким образом, гамма-функцию рассматривают как обобщение факториала для положительных вещественных чисел. Путём аналитического продолжения её также расширяют и на всю комплексную плоскость, исключая особые точки при .
Формула Стирлинга
Формула Стирлинга — асимптотическая формула для вычисления факториала:
см. O-большое. Коэффициенты этого разложения дают последовательность A001163 в OEIS (числители) и последовательность A001164 в OEIS (знаменатели).
Во многих случаях для приближенного значения факториала достаточно рассматривать только главный член формулы Стирлинга:
При этом можно утверждать, что
Разложение на простые числа
Каждое простое число p входит в разложение n! на простые в степени
Таким образом,
- ,
где произведение берется по всем простым числам.
Другие свойства
- x!2 > xx > x! > = x, при x>1
Обобщения
Двойной факториал
Двойной факториал числа n обозначается n!! и определяется как произведение всех натуральных чисел в отрезке [1,n], имеющих ту же чётность что и n. Таким образом,
По определению полагают 0!! = 1.
Убывающий факториал
Убывающий факториал дает число размещений из n по k.
Возрастающий факториал
Возрастающим факториалом называется выражение
Праймориал или примориал
Примориал (англ. Primorial) числа n обозначается n# и определяется как произведение простых чисел, не превышающих n. Например,
Последовательность праймориалов начинается так:
- 2, 6, 30, 210, 2310, 30030, 510510, 9699690, … (последовательность A002110 в OEIS)
Суперфакториалы
Основная статья: Большие числа
Нейл Слоан и Саймон Плоуф (англ.) в 1995 году определили суперфакториал как произведение первых n факториалов. Согласно этому определению суперфакториал четырёх равен (поскольку устоявшегося обозначения нет, используется функциональное)
В общем
Последовательность суперфакториалов начинается (с n = 0) с
- 1, 1, 2, 12, 288, 34560, 24883200, … (последовательность A000178 в OEIS)
Идея была обобщена в 2000 Генри Боттомли (англ. ), что привело к гиперфакториалам (англ. Super-duper-factorial), которые являются произведением первых n суперфакториалов. Первые члены (с n = 0) равны:
- 1, 1, 2, 24, 6912, 238878720, 5944066965504000, … (последовательность A055462 в OEIS)
Продолжая рекуррентно, можно определить факториал кратного уровня, где m-уровневый факториал n — произведение первых n (m − 1)-уровневых факториалов, то есть
где для n > 0 и .
Субфакториал
Основная статья: Субфакториал
Субфакториал определяется как количество беспорядков порядка , то есть перестановок -элементного множества без неподвижных точек.
Ссылки
- Онлайн Калькулятор Факториалов
См. также
- Факторион
Операция факториалов и история появления его в положительных рядах Выполнил: Павлов В. А. Проверила: Хлынова Т.
В.Вы можете ознакомиться и скачать Операция факториалов и история появления его в положительных рядах Выполнил: Павлов В. А. Проверила: Хлынова Т. В.. Презентация содержит 9 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.
Слайды и текст этой презентации
Слайд 1
Описание слайда:
Операция факториалов и история появления его в положительных рядах Выполнил: Павлов В. n.
Слайд 5
Описание слайда:
Джеймс Стирлинг Джеймс Стирлинг (англ. James Stirling, май 1692—5 декабря 1770) — шотландский математик. Джеймс Стирлинг родился в неспокойное время. Четырьмя годами раньше был свергнут король Яков II, он же Яков VII Шотландский. В 1707 году Шотландия была присоединена к Англии. Когда Джеймсу было около 17 лет, его отец был арестован как якобит (сторонник свергнутого монарха) и обвинён в государственной измене. Суд его оправдал. Мятежи якобитов продолжались ещё долгое время. Образование Стирлинг получил в Оксфорде, затем, вероятно, в Глазго. Получить диплом ему мешало то, что при этом надо было непременно принести присягу английской королеве; Стирлинг категорически отказался делать это. Теперь уже угроза ареста нависла над ним самим. Стирлинг уезжает в Италию, где живёт до 1722 года. В Италии начинается научная деятельность Стирлинга.
Слайд 6
Описание слайда:
Научная деятельность 1724: Стирлинг приезжает в Лондон, работает преподавателем. Ведёт активные математические исследования. 1726: по рекомендации Ньютона, данной им незадолго до смерти, Стирлинг избран членом Королевского общества. 1730: опубликован главный труд Стирлинга, «Дифференциальные методы» (Methodus Differentialis). Это один из первых содержательных учебников по математическому анализу, излагающий помимо основ анализа немало личных открытий Стирлинга. Среди тем книги: бесконечные ряды, их суммирование и ускорение сходимости, теория интегрирования (квадратуры), интерполирование, свойства гамма-функции, асимптотические представления. Одно из таких представлений, несколько преобразованное де Муавром, известно сейчас как формула Стирлинга. Некоторые детали исследований Стирлинга можно почерпнуть из его переписки с де Муавром, Эйлером и Крамером. 1733: ещё один важный труд Стирлинга: «Двенадцать предложений о фигуре Земли». 1735: Стирлинг возвращается в Шотландию, куда приглашён управлять горной компанией. Административная работа хорошо ему даётся и хорошо оплачивается, но свободного времени практически нет. Единственная опубликованная его работа за этот период касается проблем шахтной вентиляции. На этой должности он оставался до конца жизни.
Слайд 7
Описание слайда:
Абрахам де Муавр Родился во Франции, в недворянской семье врача-гугенота; частицу де перед своей фамилией он добавил по собственной инициативе.
В 11 лет поступил в Протестантскую академию в Седане, где успел проучиться 4 года, после чего академия была запрещена властями (1682). Муавр продолжил образование в Сомюре (2 года). Вероятно, в это время он познакомился с теорией вероятностей по трудам Гюйгенса. Далее около года Муавр слушал лекции по физике и математике в Париже (в том числе у Озанама), но в 1685 году Людовик XIV официально отменил Нантский эдикт, возобновились притеснения протестантов, а сам Муавр попал в тюрьму. Подробности его заключения неизвестны, но так или иначе, он вынужден был покинуть родину.Слайд 8
Описание слайда:
Научная деятельность Открыл (1707) формулу Муавра для возведения в степень (и извлечения корней) комплексных чисел, заданных в тригонометрической форме. Он первый стал использовать возведение в степень бесконечных рядов. Муавр также установил связь между рекуррентными последовательностями и разностными уравнениями.
Слайд 9
Описание слайда:
Спасибо за внимание
Вероятность
— Формула Стирлинга для n!
спросил
Изменено 4 года, 1 месяц назад
Просмотрено 697 раз
$\begingroup$
Группа из $2N$ мальчиков и $2N$ девочек делится на две равные группы. 4 }$$ 9п $$ или, после отбрасывания тривиальных множителей, $2/\sqrt{\pi n}$, как вы ищете.
$\endgroup$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.Приближение Стирлинга для факториалов
Приближение Стирлинга для факториаловСуществует довольно много известных формул для аппроксимации факториалов и логарифмы факториалов. По крайней мере, два из них названы в честь Джеймс Стирлинг: так называемое приближение Стирлинга к должно вероятно, можно назвать «первым» приближением Стирлинга, поскольку оно может можно рассматривать как первый термин в ряду Stirling .
Начнем с вывода основной формулы Стирлинга.
Мы всегда можем увеличить логарифм N! в качестве:
|
На рисунке 1 и рисунке 2 мы рассматриваем пример, где N=8. На каждом рисунке синяя область представляет ln[(N−1)!]. Желтая область представляет ln(N) так, чтобы синяя и желтая области вместе представляют ln(N!).
Рис. 1. Приближение Стирлинга: верхняя граница
Рис. 2. Приближение Стирлинга: нижняя граница
Мы можем использовать рисунок 1, чтобы получить верхнюю границу пер(Н!):
| (2) |
Аналогично, мы можем использовать рисунок 2, чтобы получить нижнюю границу пер(Н!):
| (3) |
Это полезно, потому что мы можем легко вычислить интеграл:
| (4) |
Мы всегда можем вычесть 1 из нижней границы, чтобы получить более свободное нижнее значение. граница. Суммируя результаты, мы имеем:
| (5) |
Перейдем теперь от получения оценок к получению оценок и приближения. Некоторые интересные приближения включают:
| (6) |
Нижний-нижний приближение можно получить, вычитая 1 из нижнего для получения более слабой нижней границы.