Формула для нахождения длины вектора: Как найти длину вектора: формула, примеры решений

Как найти длину (модуль) вектора: формула, пример задачи

Sign in

Password recovery

Восстановите свой пароль

Ваш адрес электронной почты

В данной публикации мы рассмотрим, что такое длина вектора, как она находится, а также приведем пример задачи для демонстрации применения теоретических знаний на практике.

  • Определение длины вектора
  • Нахождение длины вектора
  • Пример задач

Определение длины вектора

Длина (или модуль) вектора AB – это неотрицательное число, которое равно расстоянию между его началом и концом. Другими словами, это длина соответствующего отрезка AB.

Для рассматриваемого вектора длина обозначается как |AB|, т.е. по бокам добавляются вертикальные черточки.

Примечания:

  • Длина нулевого вектора 0, соответственно, равняется нулю.
  • Длина единичного вектора e равна единице.

Нахождение длины вектора

Допустим, у нас есть вектор a, который задан своими координатами:

a = (ax; ay; az).

В этом случае длина вектора вычисляется по формуле:

Таким образом, длина вектора, заданная определенными координатами, равняется квадратному корню из суммы квадратов этих координат.

Пример задач

Дан вектор a = (2; -5; 6). Найдем его длину.

Решение

Все, что нам нужно сделать – это воспользоваться приведенной выше формулой, подставив в нее известные значения.

ЧАЩЕ ВСЕГО ЗАПРАШИВАЮТ

Таблица знаков зодиака

Нахождение площади трапеции: формула и примеры

Нахождение длины окружности: формула и задачи

Римские цифры: таблицы

Таблица синусов

Тригонометрическая функция: Тангенс угла (tg)

Нахождение площади ромба: формула и примеры

Нахождение объема цилиндра: формула и задачи

Тригонометрическая функция: Синус угла (sin)

Геометрическая фигура: треугольник

Нахождение объема шара: формула и задачи

Тригонометрическая функция: Косинус угла (cos)

Нахождение объема конуса: формула и задачи

Таблица сложения чисел

Нахождение площади квадрата: формула и примеры

Что такое тетраэдр: определение, виды, формулы площади и объема

Нахождение объема пирамиды: формула и задачи

Признаки подобия треугольников

Нахождение периметра прямоугольника: формула и задачи

Формула Герона для треугольника

Что такое средняя линия треугольника

Нахождение площади треугольника: формула и примеры

Нахождение площади поверхности конуса: формула и задачи

Что такое прямоугольник: определение, свойства, признаки, формулы

Разность кубов: формула и примеры

Степени натуральных чисел

Нахождение площади правильного шестиугольника: формула и примеры

Тригонометрические значения углов: sin, cos, tg, ctg

Нахождение периметра квадрата: формула и задачи

Теорема Фалеса: формулировка и пример решения задачи

Сумма кубов: формула и примеры

Нахождение объема куба: формула и задачи

Куб разности: формула и примеры

Нахождение площади шарового сегмента

Что такое окружность: определение, свойства, формулы

как найти по координатам начала и конца, формула, вычисление через угол

Определение

Определение

Длина вектора (модуль вектора) — длина направленного отрезка, которая определяет числовое значение вектора. 2}=\sqrt{4+4+6}=\sqrt{14}\)

Нахождение длины вектора по теореме косинусов

Однако по условию задач координаты вектора не всегда известны. Тогда приходится искать иные пути решения.

К примеру, известны длины двух векторов\( \vec AB\) и \(\vec AC\), а также угол между ними. Необходимо выяснить, длину вектора \(\vec BC\). В этом случае, чтобы определить векторное значение, следует можно обратиться к теореме косинусов.

Определение

Теорема косинусов — квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Пример:

Длина вектора \(\vec AB=2\), \(\vec AC=4\), а угол между ними \(=\frac\pi4.\)

Вычислить длину вектора \(\vec BC.\)

Длина вектора \(\vec BC\) равна длине стороны BC треугольника ΔABC.

Исходные данные позволяют воспользоваться теоремой косинусов, так как длины стороны треугольника известны из условия (они равны длинам векторов \(\vec AB\) и \(\vec AC\)). 2-2\cdot2\cdot4\cdot\cos\frac\pi4=4+16-8\sqrt2=20-8\sqrt2\)

\(BC=\sqrt{20-8\sqrt2}\)

\(\left|\vec BC\right|=\sqrt{20-8\sqrt2}\)

4.4: длина вектора

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    14520
    • Кен Каттлер
    • Университет Бригама Янга via Lyryx
    • 9003 0 9{2}} \метка{расстояние1}\]

      Теперь рассмотрим случай \(n=2\), показанный на следующем рисунке.

      Рисунок \(\PageIndex{1}\)

      Есть две точки \(P =\left( p_{1},p_{2}\right)\) и \(Q = \left(q_{1},q_ {2}\справа)\) в плоскости. Расстояние между этими точками показано на рисунке сплошной линией. Обратите внимание, что эта линия является гипотенузой прямоугольного треугольника, который составляет половину прямоугольника, показанного пунктирными линиями. {1/2} \label{distance3}\] 9n\), и пусть расстояние между ними \(d( P, Q)\) задано, как в определении \(\PageIndex{1}\). Тогда выполняются следующие свойства.

      • \(d(P, Q) = d(Q, P)\)
      • \(d( P, Q) \geq 0\), и равен 0 точно, когда \(P = Q.\)

      Концепция расстояния имеет множество применений. Например, имея две точки, мы можем спросить, какой набор точек находится на одинаковом расстоянии между данными точками. Это исследуется в следующем примере.

      9{2}-4p_3\nonumber \] Упрощая, получается \[-2p_1+14-4p_2-6p_3=-2p_2+5-4p_3\nonumber \], что можно записать как \[2p_1+2p_2+2p_3=-9 \ label{distanceplane}\] Таким образом, точки \(P = \left( p_1,p_2,p_3\right)\), находящиеся на одинаковом расстоянии от каждой из заданных точек, образуют плоскость, уравнение которой задается выражением \(\eqref {расстояние}\).

      Теперь мы можем использовать наше понимание расстояния между двумя точками, чтобы определить, что понимается под длиной вектора. Рассмотрим следующее определение.

      92}\nonumber \]

      Это определение соответствует определению \(\PageIndex{1}\), если вы считаете, что вектор \(\vec{u}\) имеет хвост в точке \(0 = \left ( 0, \cdots ,0 \right)\) и его кончик в точке \(U = \left(u_1, \cdots, u_n \right)\). Тогда длина \(\vec{u}\) равна расстоянию между \(0\) и \(U\), \(d(0,U)\). В общем, \(d(P,Q)=||\vec{PQ}||\).

      Рассмотрим пример \(\PageIndex{1}\). По определению \(\PageIndex{2}\) мы также можем найти расстояние между \(P\) и \(Q\) как длину соединяющего их вектора. Следовательно, если бы мы нарисовали вектор \(\overrightarrow{PQ}\) с хвостом в \(P\) и точкой в ​​\(Q\), этот вектор имел бы длину, равную \(\sqrt{47 }\). 9{н}\). Тогда вектор \(\vec{u}\), который имеет то же направление, что и \(\vec{v}\), но длина равна \(1\), является соответствующим единичным вектором вектора \(\vec{v} \). Этот вектор задается \[\vec{u} = \frac{1}{\| \vec{v} \|} \vec{v}\номер \]

      Мы часто используем термин нормализовать

      для обозначения этого процесса. Когда мы нормализуем вектор, мы находим соответствующий единичный вектор длины \(1\). Рассмотрим следующий пример.

      Пример \(\PageIndex{3}\): поиск единичного вектора 9T\end{aligned}\]

      С помощью определения \(\PageIndex{1}\) можно проверить, что \(\| \vec{u} \| = 1\).


      Эта страница под названием 4.4: Длина вектора распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована Кеном Каттлером (Lyryx) с использованием исходного контента, который был отредактирован в соответствии со стилем и стандартами LibreTexts. Платформа; подробная история редактирования доступна по запросу.

      1. Наверх
        • Была ли эта статья полезной?
        1. Тип изделия
          Раздел или Страница
          Автор
          Кен Каттлер
          Лицензия
          СС BY
          Версия лицензии
          4,0
          Показать страницу TOC
          нет
        2. Теги
          1. Формула расстояния
          2. источник@https://lyryx. com/first-course-linear-алгебра

        Исчисление III. Длина дуги с векторными функциями

        Онлайн-заметки Пола
        Главная / Исчисление III / Трехмерное пространство / Длина дуги с векторными функциями

        Показать мобильное уведомление Показать все примечания Скрыть все примечания

        Уведомление для мобильных устройств

        Похоже, вы используете устройство с «узкой» шириной экрана ( т.е. вы наверное на мобильном телефоне). Из-за характера математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в ландшафтном режиме, многие уравнения будут отображаться сбоку вашего устройства (должна быть возможность прокрутки, чтобы увидеть их), а некоторые пункты меню будут обрезаны из-за узкой ширины экрана.

        Раздел 12.9: Длина дуги с векторными функциями

        В этом разделе мы переведем старую формулу в термины векторных функций. Мы хотим определить длину векторной функции,

        \[\vec r\left( t \right) = \left\langle {f\left( t \right),g\left( t \right),h\left( t \right)} \right\rangle \ ]

        на интервале \(a \le t \le b\).

        На самом деле мы уже знаем, как это сделать. Напомним, что мы можем записать векторную функцию в параметрическую форму

        \[x = f\left( t \right)\hspace{0.25in}y = g\left( t \right)\hspace{0.25in}z = h\left( t \right)\]

        Также напомню, что для двумерных параметрических кривых длина дуги определяется выражением 9{{\,b}}{{\влево\| {\ vec r ‘\ влево ( т \ вправо)} \ вправо \ | \, dt}} \]

        Давайте рассмотрим быстрый пример этого.

        Пример 1 Определить длину кривой \(\vec r\left( t \right) = \left\langle {2t,3\sin \left( {2t} \right),3\cos \left( {2t} \right)} \right\rangle \) на отрезке \(0 \le t \le 2\pi \).

        Показать решение

        Сначала нам понадобится касательный вектор и его величина.

        9{{\, т}} {{\ влево \| {\ vec r ‘\ влево ( и \ вправо)} \ вправо \ | \, du}} \]

        Прежде чем мы рассмотрим, почему это может быть важно, давайте рассмотрим небольшой пример.

        Пример 2. Определить функцию длины дуги для \(\vec r\left( t \right) = \left\langle {2t,3\sin \left( {2t} \right),3\cos \left( {2t} \право)} \право\угол \).

        Показать решение

        Из предыдущего примера мы знаем, что

        \[\слева\| {\ vec r ‘\ влево ( т \ вправо)} \ вправо \ | = 2\квадрат {10} \] 9т = 2\sqrt {10} \,т\]

        Ладно, только зачем нам это? Что ж, давайте возьмем результат примера выше и решим его для \(t\).

        \[t = \frac{s}{{2\sqrt {10} }}\]

        Теперь, взяв это и подставив в исходную векторную функцию, мы можем репараметризовать функцию в виде \(\vec r\left( {t\left( s \right)} \right)\). Для нашей функции это

        . \[\ vec r\left( {t\left(s\right)} \right) = \left\langle {\ frac {s}{{\ sqrt {10}}},3\sin \left( {\ frac {s} {{\ sqrt {10} }}} \right), 3 \ cos \ left ( {\ frac {s} {{\ sqrt {10} }}} \ right)} \ right \ rangle \]

        Итак, зачем нам это? Что ж, с репараметризацией мы теперь можем сказать, где мы находимся на кривой после того, как мы прошли расстояние \(s\) вдоль кривой. Также обратите внимание, что мы начнем измерение расстояния с того места, где мы находимся в точке \(t = 0\).

        Пример 3. Где на кривой \(\vec r\left( t \right) = \left\langle {2t,3\sin \left( {2t} \right),3\cos \left( {2t} \right )} \right\rangle \) после путешествия на расстояние \(\displaystyle \frac{{\pi \sqrt {10} }}{3}\)?

        Показать решение

        Чтобы определить это, нам нужна репараметризация, которую мы получили сверху.

        \[\ vec r\left( {t\left(s\right)} \right) = \left\langle {\ frac {s}{{\ sqrt {10}}},3\sin \left( {\ frac {s} {{\ sqrt {10} }}} \right), 3 \ cos \ left ( {\ frac {s} {{\ sqrt {10} }}} \ right)} \ right \ rangle \]

        Затем, чтобы определить, где мы находимся, все, что нам нужно сделать, это подключить сюда \(s = \frac{{\pi \sqrt {10} }}{3}\), и мы получим наше местоположение.

        \[\ vec r \ left ( {t \ left ( {\ frac {{\ pi \ sqrt {10}}} {3}} \ right)} \ right) = \ left \ langle {\ frac {\ pi} {3},3\sin\left({\frac{\pi}{3}}\right),3\cos\left({\frac{\pi}{3}}\right)} \right\rangle = \ left \ langle {\ frac {\ pi} {3}, \ frac {{3 \ sqrt 3}} {2}, \ frac {3} {2}} \ right \ rangle \]

        Итак, пройдя расстояние \(\frac{{\pi \sqrt {10}}}{3}\) по кривой, мы находимся в точке \(\left( {\frac{\pi }{ 3},\frac{{3\sqrt 3 }}{2},\frac{3}{2}} \right)\).

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *