Как решать выражения со степенями: Степенные выражения (выражения со степенями) и их преобразование

Содержание

Степенные выражения (выражения со степенями) и их преобразование

Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.

Что представляют собой степенные выражения?

В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.

Определение 1

Степенное выражение – это выражение, которое содержит степени.

Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.

Самыми простыми степенными выражениями можно считать степени числа с натуральным показателем: 32, 75+1, (2+1)5, (−0,1)4, 2233, 3·a2−a+a2, x3−1, (a2)3. А также степени с нулевым показателем: 50, (a+1)0, 3+52−3,20. И степени с целыми отрицательными степенями: (0,5)2+(0,5)-22.

Чуть сложнее работать со степенью, имеющей рациональный  и иррациональный показатели: 26414-3·3·312, 23,5·2-22-1,5, 1a14·a12-2·a-16·b12, xπ·x1-π, 233+5.

В качестве показателя может выступать переменная 3x-54-7·3x-58 или логарифм x2·lgx−5·xlgx.

С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.

Основные виды преобразований степенных выражений

В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.

Пример 1

Вычислите значение степенного выражения 23·(42−12).

Решение

Все преобразования мы будем проводить с соблюдением порядка выполнения действий. В данном случае начнем мы с выполнения действий в скобках: заменим степень на цифровое значение и вычислим разность двух чисел. Имеем 23·(42−12)=23·(16−12)=23·4.

Нам остается заменить степень 23 ее значением 

8 и вычислить произведение 8·4=32. Вот наш ответ.

Ответ: 23·(42−12)=32.

Пример 2

Упростите выражение со степенями 3·a4·b−7−1+2·a4·b−7.

Решение

Данное нам в условии задачи выражение содержит подобные слагаемые, которые мы можем привести: 3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Ответ: 3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Пример 3

Представьте выражение со степенями 9-b3·π-12 в виде произведения.

Решение

Представим число 9 как степень 32 и применим формулу сокращенного умножения:

9-b3·π-12=32-b3·π-12==3-b3·π-13+b3·π-1

Ответ: 9-b3·π-12=3-b3·π-13+b3·π-1.

А теперь перейдем к разбору тождественных преобразований, которые могут применяться именно в отношении степенных выражений. 

Работа с основанием и показателем степени

Степень в основании или показателе может иметь и числа, и переменные, и некоторые выражения. Например, (2+0,3·7)5−3,7 и (a·(a+1)−a2)2·(x+1). Работать с такими записями сложно. Намного проще заменить выражение в основании степени или выражение в показателе тождественно равным выражением.

Проводятся преобразования степени и показателя по известным нам правилам отдельно друг от друга. Самое главное, чтобы в результате преобразований получилось выражение, тождественное исходному.

Цель преобразований – упростить исходное выражение или получить решение задачи. Например, в примере, который мы привели выше, (2+0,3·7)5−3,7 можно выполнить действия для перехода к степени 4,11,3. Раскрыв скобки, мы можем привести подобные слагаемые в основании степени (a·(a+1)−a2)2·(x+1) и получить степенное выражение более простого вида a2·(x+1).

Использование свойств степеней

Свойства степеней, записанные в виде равенств, являются одним из главных инструментов преобразования выражений со степенями. Приведем здесь основные из них, учитывая, что

a и b – это любые положительные числа, а r и s — произвольные действительные числа:

Определение 2
  • ar·as=ar+s;
  • ar:as=ar−s;
  • (a·b)r=ar·br;
  • (a:b)r=ar:br;
  • (ar)s=ar·s.

В тех случаях, когда мы имеем дело с натуральными, целыми, положительными показателями степени, ограничения на числа a и b могут быть гораздо менее строгими. Так, например, если рассмотреть равенство am·an=am+n, где m и n – натуральные числа, то оно будет верно для любых значений a, как положительных, так и отрицательных, а также для a=0.

Применять свойства степеней без ограничений можно в тех случаях, когда основания степеней положительные или содержат переменные, область допустимых значений которых такова, что на ней основания принимают лишь положительные значения. Фактически, в рамках школьной программы по математике задачей учащегося является выбор подходящего свойства и правильное его применение.

При подготовке к поступлению в Вузы могут встречаться задачи, в которых неаккуратное применение свойств будет приводить к сужению ОДЗ и другим сложностям с решением. В данном разделе мы разберем всего два таких случая. Больше информации по вопросу можно найти в теме «Преобразование выражений с использованием свойств степеней».

Пример 4

Представьте выражение a2,5·(a2)−3:a−5,5 в виде степени с основанием a.

Решение

Для начала используем свойство возведения в степень и преобразуем по нему второй множитель (a2)−3 . Затем используем свойства умножения и деления степеней с одинаковым основанием:

a2,5·a−6:a−5,5= a2,5−6:a−5,5=a−3,5:a−5,5= a−3,5−(−5,5)=a2.

Ответ: a2,5·(a2)−3:a−5,5=a2.

Преобразование степенных выражений согласно свойству степеней может производиться как слева направо, так и в обратном направлении.

Пример 5

Найти значение степенного выражения 313·713·2123.

Решение

Если мы применим равенство (a·b)r=ar·br, справа налево, то получим произведение вида 3·713·2123 и дальше 2113·2123. Сложим показатели при умножении степеней с одинаковыми основаниями: 2113·2123=2113+23=211=21.

Есть еще один способ провести преобразования:

313·713·2123=313·713·(3·7)23=313·713·323·723==313·323·713·723=313+23·713+23=31·71=21

Ответ: 313·713·2123=31·71=21

 

Пример 6

Дано степенное выражение a1,5−a0,5−6, введите новую переменную t=a0,5.

Решение

Представим степень a1,5

 как a0,5·3 . Используем свойство степени в степени (ar)s=ar·s справа налево и получим (a0,5)3: a1,5−a0,5−6=(a0,5)3−a0,5−6. В полученное выражение можно без проблем вводить новую переменную t=a0,5: получаем t3−t−6.

Ответ: t3−t−6.

Преобразование дробей, содержащих степени

Обычно мы имеем дело с двумя вариантами степенных выражений с дробями: выражение представляет собой дробь со степенью или содержит такую дробь. К таким выражениям применимы все основные преобразования дробей без ограничений. Их можно сокращать, приводить к новому знаменателю, работать отдельно с числителем и знаменателем. Проиллюстрируем это примерами.

Пример 7

Упростить степенное выражение 3·523·513-5-231+2·x2-3-3·x2.

Решение

Мы имеем дело с дробью, поэтому проведем преобразования и в числителе, и в знаменателе:

3·523·513-5-231+2·x2-3-3·x2=3·523·513-3·523·5-23-2-x2==3·523+13-3·523+-23-2-x2=3·51-3·50-2-x2

Поместим минус перед дробью для того, чтобы изменить знак знаменателя: 12-2-x2=-122+x2

Ответ:  3·523·513-5-231+2·x2-3-3·x2=-122+x2

Дроби, содержащие степени, приводятся к новому знаменателю точно также, как и рациональные дроби. Для этого необходимо найти дополнительный множитель и умножить на него числитель и знаменатель дроби. Подбирать дополнительный множитель необходимо таким образом, чтобы он не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример 8

 

Приведите дроби к новому знаменателю: а) a+1a0,7 к знаменателю a, б) 1×23-2·x13·y16+4·y13 к знаменателю x+8·y12.

Решение

а) Подберем множитель, который позволит нам произвести приведение к новому знаменателю. a0,7·a0,3=a0,7+0,3=a, следовательно, в качестве дополнительного множителя мы возьмем

a0,3. Область допустимых значений переменной а включает множество всех положительных действительных чисел. В этой области степень a0,3 не обращается в нуль.

Выполним умножение числителя и знаменателя дроби на a0,3:

a+1a0,7=a+1·a0,3a0,7·a0,3=a+1·a0,3a

б) Обратим внимание на знаменатель:

x23-2·x13·y16+4·y13==x132-x13·2·y16+2·y162

Умножим это выражение на x13+2·y16, получим сумму кубов x13 и 2·y16, т. е. x+8·y12. Это наш новый знаменатель, к которому нам надо привести исходную дробь.
 

Так мы нашли дополнительный множитель x13+2·y16. На области допустимых значений переменных x и y выражение x13+2·y16 не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:
1×23-2·x13·y16+4·y13==x13+2·y16x13+2·y16x23-2·x13·y16+4·y13==x13+2·y16x133+2·y163=x13+2·y16x+8·y12

Ответ:

 а) a+1a0,7=a+1·a0,3a , б) 1×23-2·x13·y16+4·y13=x13+2·y16x+8·y12.  

Пример 9

Сократите дробь: а) 30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53, б) a14-b14a12-b12.

Решение

а) Используем наибольший общий знаменатель (НОД), на который можно сократить числитель и знаменатель. Для чисел 30 и 45 это 15. Также мы можем произвести сокращение на x0,5+1 и на x+2·x113-53.

Получаем:

30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53=2·x33·(x0,5+1)

б) Здесь наличие одинаковых множителей неочевидно. Придется выполнить некоторые преобразования для того, чтобы получить одинаковые множители в числителе и знаменателе. Для этого разложим знаменатель, используя формулу разности квадратов:

a14-b14a12-b12=a14-b14a142-b122==a14-b14a14+b14·a14-b14=1a14+b14

Ответ:  а)30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53=2·x33·(x0,5+1), б) a14-b14a12-b12=1a14+b14.

К числу основных действий с дробями относится приведение к новому знаменателю и сокращение дробей. Оба действия выполняют с соблюдением ряда правил. При сложении и вычитании дробей сначала дроби приводятся к общему знаменателю, после чего проводятся действия (сложение или вычитание) с числителями. Знаменатель остается прежним. Результатом наших действий является новая дробь, числитель которой является произведением числителей, а знаменатель есть произведение знаменателей.

Пример 10

Выполните действия x12+1×12-1-x12-1×12+1·1×12.

Решение

Начнем с вычитания дробей, которые располагаются в скобках. Приведем их к общему знаменателю:

x12-1·x12+1

Вычтем числители:

x12+1×12-1-x12-1×12+1·1×12==x12+1·x12+1×12-1·x12+1-x12-1·x12-1×12+1·x12-1·1×12==x12+12-x12-12×12-1·x12+1·1×12==x122+2·x12+1-x122-2·x12+1×12-1·x12+1·1×12==4·x12x12-1·x12+1·1×12

Теперь умножаем дроби:

4·x12x12-1·x12+1·1×12==4·x12x12-1·x12+1·x12

Произведем сокращение на степень x12, получим 4×12-1·x12+1.

Дополнительно можно упростить степенное выражение в знаменателе, используя формулу разности квадратов: квадратов: 4×12-1·x12+1=4×122-12=4x-1.

Ответ: x12+1×12-1-x12-1×12+1·1×12=4x-1

Пример 11

Упростите степенное выражение x34·x2,7+12x-58·x2,7+13.
Решение

Мы можем произвести сокращение дроби на (x2,7+1)2. Получаем дробь x34x-58·x2,7+1.

Продолжим преобразования степеней икса x34x-58·1×2,7+1. Теперь можно использовать свойство деления степеней с одинаковыми основаниями:  x34x-58·1×2,7+1=x34—58·1×2,7+1=x118·1×2,7+1.

Переходим от последнего произведения к дроби x138x2,7+1.

Ответ: x34·x2,7+12x-58·x2,7+13=x138x2,7+1.

Множители с отрицательными показателями степени в большинстве случаев удобнее переносить из числителя в знаменатель и обратно, изменяя знак показателя. Это действие позволяет упростить дальнейшее решение. Приведем пример: степенное выражение (x+1)-0,23·x-1 можно заменить  на x3·(x+1)0,2.

Преобразование выражений с корнями и степенями

В задачах встречаются степенные выражения, которые содержат не только степени с дробными показателями, но и корни. Такие выражения желательно привести только к корням или только к степеням. Переход к степеням предпочтительнее, так как с ними проще работать. Такой переход является особенно предпочтительным, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков.

Пример 12

Представьте выражение x19·x·x36 в виде степени.

Решение

Область допустимых значений переменной x определяется двумя неравенствами  x≥0  и x·x3≥0 ,  которые задают множество [0, +∞).

На этом множестве мы имеем право перейти от корней к степеням: 

x19·x·x36=x19·x·x1316

Используя свойства степеней, упростим полученное степенное выражение.

x19·x·x1316=x19·x16·x1316=x19·x16·x1·13·6==x19·x16·x118=x19+16+118=x13

Ответ: x19·x·x36=x13.

Преобразование степеней с переменными в показателе

Данные преобразования достаточно просто произвести, если грамотно использовать свойства степени. Например, 52·x+1−3·5x·7x−14·72·x−1=0.

Мы можем заменить произведением степени, в показателях которых находится сумма некоторой переменной и числа. В левой части это можно проделать с первым и последним слагаемыми левой части выражения:

52·x·51−3·5x·7x−14·72·x·7−1=0, 5·52·x−3·5x·7x−2·72·x=0.

Теперь поделим обе части равенства на 72·x. Это выражение на ОДЗ переменной x принимает только положительные значения:

5·5-3·5x·7x-2·72·x72·x=072·x,5·52·x72·x-3·5x·7×72·x-2·72·x72·x=0,5·52·x72·x-3·5x·7x7x·7x-2·72·x72·x=0

Сократим дроби со степенями, получим: 5·52·x72·x-3·5x7x-2=0.

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению 5·572·x-3·57x-2=0 , которое равносильно 5·57×2-3·57x-2=0.

Введем новую переменную t=57x, что сводит решение исходного показательного уравнения к решению квадратного уравнения 5·t2−3·t−2=0.

Преобразование выражений со степенями и логарифмами

Выражения, содержащие с записи степени и логарифмы, также встречаются в задачах. Примером таких выражений могут служить: 141-5·log23 или log3279+5(1-log35)·log53. Преобразование подобных выражений проводится с использованием разобранных выше подходов и свойств логарифмов, которые мы подробно разобрали в теме «Преобразование логарифмических выражений».

Решение задач от 1 дня / от 150 р. Курсовая работа от 5 дней / от 1800 р. Реферат от 1 дня / от 700 р.

Степенные выражения (выражения со степенями) и их преобразование

Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.

Что представляют собой степенные выражения?

В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.

Определение 1

Степенное выражение – это выражение, которое содержит степени.

Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.

Самыми простыми степенными выражениями можно считать степени числа с натуральным показателем: 32, 75+1, (2+1)5, (−0,1)4, 2233, 3·a2−a+a2, x3−1, (a2)3. А также степени с нулевым показателем: 50, (a+1)0, 3+52−3,20. И степени с целыми отрицательными степенями: (0,5)2+(0,5)-22.

Чуть сложнее работать со степенью, имеющей рациональный  и иррациональный показатели: 26414-3·3·312, 23,5·2-22-1,5, 1a14·a12-2·a-16·b12, xπ·x1-π, 233+5.

В качестве показателя может выступать переменная 3x-54-7·3x-58 или логарифм x2·lgx−5·xlgx.

С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.

Основные виды преобразований степенных выражений

В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.

Пример 1

Вычислите значение степенного выражения 23·(42−12).

Решение

Все преобразования мы будем проводить с соблюдением порядка выполнения действий. В данном случае начнем мы с выполнения действий в скобках: заменим степень на цифровое значение и вычислим разность двух чисел. Имеем 23·(42−12)=23·(16−12)=23·4.

Нам остается заменить степень 23 ее значением 8 и вычислить произведение 8·4=32. Вот наш ответ.

Ответ: 23·(42−12)=32.

Пример 2

Упростите выражение со степенями 3·a4·b−7−1+2·a4·b−7.

Решение

Данное нам в условии задачи выражение содержит подобные слагаемые, которые мы можем привести: 3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Ответ: 3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Пример 3

Представьте выражение со степенями 9-b3·π-12 в виде произведения.

Решение

Представим число 9 как степень 32 и применим формулу сокращенного умножения:

9-b3·π-12=32-b3·π-12==3-b3·π-13+b3·π-1

Ответ: 9-b3·π-12=3-b3·π-13+b3·π-1.

А теперь перейдем к разбору тождественных преобразований, которые могут применяться именно в отношении степенных выражений. 

Работа с основанием и показателем степени

Степень в основании или показателе может иметь и числа, и переменные, и некоторые выражения. Например, (2+0,3·7)5−3,7 и (a·(a+1)−a2)2·(x+1). Работать с такими записями сложно. Намного проще заменить выражение в основании степени или выражение в показателе тождественно равным выражением.

Проводятся преобразования степени и показателя по известным нам правилам отдельно друг от друга. Самое главное, чтобы в результате преобразований получилось выражение, тождественное исходному.

Цель преобразований – упростить исходное выражение или получить решение задачи. Например, в примере, который мы привели выше, (2+0,3·7)5−3,7 можно выполнить действия для перехода к степени 4,11,3. Раскрыв скобки, мы можем привести подобные слагаемые в основании степени (a·(a+1)−a2)2·(x+1) и получить степенное выражение более простого вида a2·(x+1).

Использование свойств степеней

Свойства степеней, записанные в виде равенств, являются одним из главных инструментов преобразования выражений со степенями. Приведем здесь основные из них, учитывая, что a и b – это любые положительные числа, а r и s — произвольные действительные числа:

Определение 2
  • ar·as=ar+s;
  • ar:as=ar−s;
  • (a·b)r=ar·br;
  • (a:b)r=ar:br;
  • (ar)s=ar·s.

В тех случаях, когда мы имеем дело с натуральными, целыми, положительными показателями степени, ограничения на числа a и b могут быть гораздо менее строгими. Так, например, если рассмотреть равенство am·an=am+n, где m и n – натуральные числа, то оно будет верно для любых значений a, как положительных, так и отрицательных, а также для a=0.

Применять свойства степеней без ограничений можно в тех случаях, когда основания степеней положительные или содержат переменные, область допустимых значений которых такова, что на ней основания принимают лишь положительные значения. Фактически, в рамках школьной программы по математике задачей учащегося является выбор подходящего свойства и правильное его применение.

При подготовке к поступлению в Вузы могут встречаться задачи, в которых неаккуратное применение свойств будет приводить к сужению ОДЗ и другим сложностям с решением. В данном разделе мы разберем всего два таких случая. Больше информации по вопросу можно найти в теме «Преобразование выражений с использованием свойств степеней».

Пример 4

Представьте выражение a2,5·(a2)−3:a−5,5 в виде степени с основанием a.

Решение

Для начала используем свойство возведения в степень и преобразуем по нему второй множитель (a2)−3 . Затем используем свойства умножения и деления степеней с одинаковым основанием:

a2,5·a−6:a−5,5= a2,5−6:a−5,5=a−3,5:a−5,5= a−3,5−(−5,5)=a2.

Ответ: a2,5·(a2)−3:a−5,5=a2.

Преобразование степенных выражений согласно свойству степеней может производиться как слева направо, так и в обратном направлении.

Пример 5

Найти значение степенного выражения 313·713·2123.

Решение

Если мы применим равенство (a·b)r=ar·br, справа налево, то получим произведение вида 3·713·2123 и дальше 2113·2123. Сложим показатели при умножении степеней с одинаковыми основаниями: 2113·2123=2113+23=211=21.

Есть еще один способ провести преобразования:

313·713·2123=313·713·(3·7)23=313·713·323·723==313·323·713·723=313+23·713+23=31·71=21

Ответ: 313·713·2123=31·71=21

 

Пример 6

Дано степенное выражение a1,5−a0,5−6, введите новую переменную t=a0,5.

Решение

Представим степень a1,5 как a0,5·3 . Используем свойство степени в степени (ar)s=ar·s справа налево и получим (a0,5)3: a1,5−a0,5−6=(a0,5)3−a0,5−6. В полученное выражение можно без проблем вводить новую переменную t=a0,5: получаем t3−t−6.

Ответ: t3−t−6.

Преобразование дробей, содержащих степени

Обычно мы имеем дело с двумя вариантами степенных выражений с дробями: выражение представляет собой дробь со степенью или содержит такую дробь. К таким выражениям применимы все основные преобразования дробей без ограничений. Их можно сокращать, приводить к новому знаменателю, работать отдельно с числителем и знаменателем. Проиллюстрируем это примерами.

Пример 7

Упростить степенное выражение 3·523·513-5-231+2·x2-3-3·x2.

Решение

Мы имеем дело с дробью, поэтому проведем преобразования и в числителе, и в знаменателе:

3·523·513-5-231+2·x2-3-3·x2=3·523·513-3·523·5-23-2-x2==3·523+13-3·523+-23-2-x2=3·51-3·50-2-x2

Поместим минус перед дробью для того, чтобы изменить знак знаменателя: 12-2-x2=-122+x2

Ответ:  3·523·513-5-231+2·x2-3-3·x2=-122+x2

Дроби, содержащие степени, приводятся к новому знаменателю точно также, как и рациональные дроби. Для этого необходимо найти дополнительный множитель и умножить на него числитель и знаменатель дроби. Подбирать дополнительный множитель необходимо таким образом, чтобы он не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример 8

 

Приведите дроби к новому знаменателю: а) a+1a0,7 к знаменателю a, б) 1×23-2·x13·y16+4·y13 к знаменателю x+8·y12.

Решение

а) Подберем множитель, который позволит нам произвести приведение к новому знаменателю. a0,7·a0,3=a0,7+0,3=a, следовательно, в качестве дополнительного множителя мы возьмем a0,3. Область допустимых значений переменной а включает множество всех положительных действительных чисел. В этой области степень a0,3 не обращается в нуль.

Выполним умножение числителя и знаменателя дроби на a0,3:

a+1a0,7=a+1·a0,3a0,7·a0,3=a+1·a0,3a

б) Обратим внимание на знаменатель:

x23-2·x13·y16+4·y13==x132-x13·2·y16+2·y162

Умножим это выражение на x13+2·y16, получим сумму кубов x13 и 2·y16, т. е. x+8·y12. Это наш новый знаменатель, к которому нам надо привести исходную дробь.
 

Так мы нашли дополнительный множитель x13+2·y16. На области допустимых значений переменных x и y выражение x13+2·y16 не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:
1×23-2·x13·y16+4·y13==x13+2·y16x13+2·y16x23-2·x13·y16+4·y13==x13+2·y16x133+2·y163=x13+2·y16x+8·y12

Ответ: а) a+1a0,7=a+1·a0,3a , б) 1×23-2·x13·y16+4·y13=x13+2·y16x+8·y12.  

Пример 9

Сократите дробь: а) 30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53, б) a14-b14a12-b12.

Решение

а) Используем наибольший общий знаменатель (НОД), на который можно сократить числитель и знаменатель. Для чисел 30 и 45 это 15. Также мы можем произвести сокращение на x0,5+1 и на x+2·x113-53.

Получаем:

30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53=2·x33·(x0,5+1)

б) Здесь наличие одинаковых множителей неочевидно. Придется выполнить некоторые преобразования для того, чтобы получить одинаковые множители в числителе и знаменателе. Для этого разложим знаменатель, используя формулу разности квадратов:

a14-b14a12-b12=a14-b14a142-b122==a14-b14a14+b14·a14-b14=1a14+b14

Ответ:  а)30·x3·(x0,5+1)·x+2·x113-5345·x0,5+12·x+2·x113-53=2·x33·(x0,5+1), б) a14-b14a12-b12=1a14+b14.

К числу основных действий с дробями относится приведение к новому знаменателю и сокращение дробей. Оба действия выполняют с соблюдением ряда правил. При сложении и вычитании дробей сначала дроби приводятся к общему знаменателю, после чего проводятся действия (сложение или вычитание) с числителями. Знаменатель остается прежним. Результатом наших действий является новая дробь, числитель которой является произведением числителей, а знаменатель есть произведение знаменателей.

Пример 10

Выполните действия x12+1×12-1-x12-1×12+1·1×12.

Решение

Начнем с вычитания дробей, которые располагаются в скобках. Приведем их к общему знаменателю:

x12-1·x12+1

Вычтем числители:

x12+1×12-1-x12-1×12+1·1×12==x12+1·x12+1×12-1·x12+1-x12-1·x12-1×12+1·x12-1·1×12==x12+12-x12-12×12-1·x12+1·1×12==x122+2·x12+1-x122-2·x12+1×12-1·x12+1·1×12==4·x12x12-1·x12+1·1×12

Теперь умножаем дроби:

4·x12x12-1·x12+1·1×12==4·x12x12-1·x12+1·x12

Произведем сокращение на степень x12, получим 4×12-1·x12+1.

Дополнительно можно упростить степенное выражение в знаменателе, используя формулу разности квадратов: квадратов: 4×12-1·x12+1=4×122-12=4x-1.

Ответ: x12+1×12-1-x12-1×12+1·1×12=4x-1

Пример 11

Упростите степенное выражение x34·x2,7+12x-58·x2,7+13.
Решение

Мы можем произвести сокращение дроби на (x2,7+1)2. Получаем дробь x34x-58·x2,7+1.

Продолжим преобразования степеней икса x34x-58·1×2,7+1. Теперь можно использовать свойство деления степеней с одинаковыми основаниями:  x34x-58·1×2,7+1=x34—58·1×2,7+1=x118·1×2,7+1.

Переходим от последнего произведения к дроби x138x2,7+1.

Ответ: x34·x2,7+12x-58·x2,7+13=x138x2,7+1.

Множители с отрицательными показателями степени в большинстве случаев удобнее переносить из числителя в знаменатель и обратно, изменяя знак показателя. Это действие позволяет упростить дальнейшее решение. Приведем пример: степенное выражение (x+1)-0,23·x-1 можно заменить  на x3·(x+1)0,2.

Преобразование выражений с корнями и степенями

В задачах встречаются степенные выражения, которые содержат не только степени с дробными показателями, но и корни. Такие выражения желательно привести только к корням или только к степеням. Переход к степеням предпочтительнее, так как с ними проще работать. Такой переход является особенно предпочтительным, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков.

Пример 12

Представьте выражение x19·x·x36 в виде степени.

Решение

Область допустимых значений переменной x определяется двумя неравенствами  x≥0  и x·x3≥0 ,  которые задают множество [0, +∞).

На этом множестве мы имеем право перейти от корней к степеням: 

x19·x·x36=x19·x·x1316

Используя свойства степеней, упростим полученное степенное выражение.

x19·x·x1316=x19·x16·x1316=x19·x16·x1·13·6==x19·x16·x118=x19+16+118=x13

Ответ: x19·x·x36=x13.

Преобразование степеней с переменными в показателе

Данные преобразования достаточно просто произвести, если грамотно использовать свойства степени. Например, 52·x+1−3·5x·7x−14·72·x−1=0.

Мы можем заменить произведением степени, в показателях которых находится сумма некоторой переменной и числа. В левой части это можно проделать с первым и последним слагаемыми левой части выражения:

52·x·51−3·5x·7x−14·72·x·7−1=0, 5·52·x−3·5x·7x−2·72·x=0.

Теперь поделим обе части равенства на 72·x. Это выражение на ОДЗ переменной x принимает только положительные значения:

5·5-3·5x·7x-2·72·x72·x=072·x,5·52·x72·x-3·5x·7×72·x-2·72·x72·x=0,5·52·x72·x-3·5x·7x7x·7x-2·72·x72·x=0

Сократим дроби со степенями, получим: 5·52·x72·x-3·5x7x-2=0.

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению 5·572·x-3·57x-2=0 , которое равносильно 5·57×2-3·57x-2=0.

Введем новую переменную t=57x, что сводит решение исходного показательного уравнения к решению квадратного уравнения 5·t2−3·t−2=0.

Преобразование выражений со степенями и логарифмами

Выражения, содержащие с записи степени и логарифмы, также встречаются в задачах. Примером таких выражений могут служить: 141-5·log23 или log3279+5(1-log35)·log53. Преобразование подобных выражений проводится с использованием разобранных выше подходов и свойств логарифмов, которые мы подробно разобрали в теме «Преобразование логарифмических выражений».

Решение задач от 1 дня / от 150 р. Курсовая работа от 5 дней / от 1800 р. Реферат от 1 дня / от 700 р.

Термины и выражения с показателями степени

Цели обучения

  • Определить компоненты термина, содержащего целые показатели степени
  • Вычисление выражений, содержащих целые показатели степени

 

Лингва-франка — это общий язык, используемый для общения между людьми, говорящими на разных языках. {12}[/латекс]. Выражение таким образом — гораздо более эффективный и понятный способ выразить способы деления клеток. 9{2}[/латекс]

Показать решение

В следующем видео вам предоставлено больше примеров применения экспонент к различным основаниям.

Вычисление выражений

Вычисление выражений, содержащих экспоненты, аналогично вычислению линейных выражений из предыдущего курса. Вы подставляете значение переменной в выражение и упрощаете.

Вы можете использовать порядок операций для вычисления выражений, содержащих показатели степени. Во-первых, оцените что-нибудь в скобках или сгруппируйте символы. Затем найдите Экспоненты, затем Умножение и Деление (читая слева направо) и, наконец, Сложение и Вычитание (опять же, читая слева направо). 9{3}[/latex] если [latex]x=4[/latex], сначала подставьте значение 4 для переменной x . Затем оцените, используя порядок операций.

В приведенном ниже примере обратите внимание на то, как добавление круглых скобок может изменить результат при упрощении терминов с показателями степени.

Добавление круглых скобок имело большое значение! Скобки позволяют применять показатель степени к переменным или числам, которые умножаются, делятся, складываются или вычитаются друг из друга.

Внимание! Включение отрицательного знака в состав основы часто приводит к путанице. Ниже приведен пример, чтобы прояснить, применяется ли отрицательный знак до или после экспоненты. 9{2}\\=\left(-3\right)\cdot\left(-3\right)\\={ 9}\end{array}[/latex]

Чтобы запомнить это, нужно следовать Порядок операций. Первое выражение не содержит круглых скобок, поэтому вы сначала примените показатель степени к целому числу 3, а затем примените знак минус. Второе выражение включает круглые скобки, так что, надеюсь, вы помните, что отрицательный знак также возводится в квадрат.

В следующих разделах вы узнаете, как упростить выражения, содержащие экспоненты. Вернитесь на эту страницу, если вы забудете, как применять порядок операций к терму с показателями степени, или забудете, где основание, а где показатель степени!

В следующем видеоролике представлены примеры вычисления экспоненциальных выражений для заданного числа.

Упрощение показателей степени — правила, различные основания, дроби, примеры

Упрощение показателей степени — это метод упрощения алгебраических выражений, включающих показатели степени, в более простую форму, чтобы их нельзя было упростить дальше. В алгебре есть правила упрощения показателей степени с разными и одинаковыми основаниями, которые мы можем использовать. Различные арифметические операции, такие как сложение, вычитание, умножение и деление, могут применяться для упрощения экспонентных алгебраических выражений, экспонент в дробях и отрицательных экспонент с использованием законов экспонент.

В этой статье мы научимся упрощать показатели степени в алгебраических выражениях, дробях, отрицательных показателях и с различными основаниями, используя правила упрощающих показателей. Мы также решим различные примеры, связанные с концепцией, для лучшего понимания.

1. Что такое упрощение показателей?
2. Упрощение правил экспоненты
3. Упрощение показателей степени с разными основаниями
4. Упрощение показателей степени в дробях
5. Упрощение рациональных показателей
6. Упрощение отрицательных показателей
7. Часто задаваемые вопросы об упрощении показателей

Что такое упрощение показателей?

Давайте сначала вспомним концепцию показателей, прежде чем учиться упрощать показатели. Показатель степени числа показывает, сколько раз число умножается само на себя. Когда мы применяем арифметические операции с показателями степени, мы используем законы показателей степени для упрощения выражения степени. Упрощение показателей степени — это простой процесс приведения математических выражений, включающих показатели степени, в более простую форму, чтобы их нельзя было упростить дальше. Давайте сначала рассмотрим некоторые важные правила упрощения показателей степени в следующем разделе.

Упрощение правил экспоненты

Ниже приводится список правил, которые мы используем для упрощения показателей степени в алгебраических выражениях. Эти правила также известны как законы экспонент и названы в соответствии с выполняемой операцией. Давайте посмотрим на эти правила, которые мы будем использовать позже для упрощения показателей:

  • Правило произведения: a m × a n = a m+n
  • Частное правило: a м н = а м-н
  • Правило нулевой степени: a 0 = 1
  • Правило степени идентичности: a 1 = a
  • Правило отрицательных показателей: a -m = 1/a m ; (а/б) = (б/а) м
  • Сила силы Правило: (a m ) n = a mn
  • Мощность продукта Правило: (ab) m = a m b m
  • Степень частного Правило: (a/b) m = a m /b m

Упрощение показателей степени с разными основаниями

Когда мы умножаем степени или делим степени с разными основаниями, могут быть два случая: i) когда степени одинаковы, ii) когда степени разные. Давайте обсудим каждый из этих случаев и поймем процесс упрощения показателей в таких случаях с помощью примеров.

Упрощение показателей степени с разными основаниями и одинаковой степенью

При упрощении показателей с разным основанием и одинаковой степенью следуем правилам:

  • a m × b m = (ab) m
  • a м ÷ b м = (a÷b) м

Давайте упростим следующие показатели: I) 2 4 × 3 4 , II) 4 3 ÷ 2 3

I) 2 4 × 3 4

= (2 ×3) 4

= 6 4

II) 4 3 ÷ 2 3

= (4 ÷ 2) 3

= 2 3

= 8

Проще говоря, с различными базовыми и различными базовыми и различными базовыми и разнообразными. Степень

Когда нам нужно упростить показатели степени с разным основанием и разной степенью, мы упрощаем термины по отдельности, а затем применяем соответствующую арифметическую операцию. Давайте решим пример, чтобы понять это лучше. Упростите 23 × 52. Здесь и основания, и степени разные. Итак, для упрощения показателей степени в этом выражении мы сначала упростим члены по отдельности.

2 3 × 5 2

= 8 × 25

= 200

Упрощение показателей степени в дробях

В этом разделе мы научимся упрощать показатели степени в дробях. Когда нам дают алгебраические выражения в дробях, мы используем законы показателей, чтобы упростить их. Давайте поймем это с помощью нескольких примеров, решенных ниже:

Пример 1 : Упростить (35x 3 y 2 z) / (7xy 4 )

Решение: Мы упростим данное алгебраическое выражение, используя правила степени упрощения, описанные выше. Итак, имеем

(35x 3 y 2 z) / (7xy 4 )

= (35/7) (x 3 /x) (y 2 1 /x) (y 2 2 ). ) (z)

= 5 × x 3-1 × y 2-4 × z

= 5x 2 Y -2 Z

Ответ: (35x 3 Y

5. 2 z)/(7xy 4 ) = 5x 2 y -2 z

с 2 ).

Решение: Объединим подобные термины и упростим их по отдельности. Итак, имеем

(2a 3 b 5 c) × (5ab 6 c 2 )

= (2×5) (a 3 ×a) (1b 90 90 б 6 ) (с×с 2 )

= 10 A 3+1 B 5+6 C 1+2

= 10A 4 B 11 C 3

. 3 b 5 c) × (5ab 6 c 2 ) = 10a 4 b 11 c 3

Упрощение рациональных показателей

Теперь, когда мы поняли, как применять правила упрощающих показателей, давайте теперь научимся упрощать рациональные показатели. Мы применяем правила таким же образом для упрощения рациональных показателей, как и для целых чисел. Вот некоторые из общих правил, которые мы будем здесь использовать: 9.0011

  • а х/у × а м/н = а х/у + м/н
  • а х/у ÷ а м/н = а х/у — м/н
  • (а/б) м/н = (б/а) -м/н
  • a м/н = (1/а) -м/н
  • м/н ) х/у = а (м/н) × (х/у)

Упрощение отрицательных показателей

Как мы обсуждали в предыдущем разделе, для упрощения отрицательных показателей мы применяем законы показателей таким же образом. Вот некоторые из общих правил, которые мы используем для упрощения таких показателей:

  • a -m × a -n = a ( m)+(-n)
  • a m /a n = a m-(-n)
  • а = 1/а м ; (а/б) = (б/а) м
  • (a -m ) n = a -m×-n
  • (аб) м = а б
  • (а/б) -m = а -m /b -m

Важные примечания по упрощению показателей степени

  • Упрощение показателей степени — это простой процесс приведения математических выражений, включающих показатели степени, в более простую форму, чтобы их нельзя было упростить дальше.
  • Когда мы применяем арифметические операции с показателями степени, мы используем законы показателей степени для упрощения выражения степени.
  • Мы можем применить правила упрощения показателей для упрощения рациональных и отрицательных показателей.

☛ Статьи по теме:

  • Иррациональные показатели
  • Экспоненты Формула
  • Экспоненциальные уравнения

Часто задаваемые вопросы об упрощении показателей

Что такое упрощение показателей в математике?

Упрощение показателей степени — это метод упрощения алгебраических выражений, включающих показатели степени, в более простую форму, чтобы их нельзя было упростить дальше. В алгебре существуют правила упрощения показателей с разными и одинаковыми основаниями.

Каковы правила упрощения показателей?

Ниже приводится список правил, которые мы используем для упрощения показателей степени в алгебраических выражениях:

  • Правило произведения: a m × a n = a m+n
  • Частное правило: a m /a n = a m-n
  • Правило нулевой степени: a 0 = 1
  • Правило степени идентичности: a 1 = a
  • Правило
  • отрицательных степеней: a -m = 1/a m ; (а/б) = (б/а) м
  • Сила силы Правило: (a m ) n = a mn
  • Мощность продукта Правило: (ab) m = a m b m
  • Степень частного Правило: (a/b) m = a m /b m

Что такое упрощение показателей степени в дробях?

Когда алгебраические выражения, включающие показатели степени, задаются в дробях, мы упрощаем их, используя законы показателей степени. Например, (35x 3 y 2 z) / (7xy 4 ), (5x 2 y 7 z) / (xy -1 ) и т. д.

Как упростить Экспоненты?

Для упрощения выражений с отрицательными показателями используются те же законы показателей, что и для целых чисел. Вот некоторые из часто используемых правил:

  • a -m × a -n = a ( m)+(-n)
  • а м н = а м-(-н)
  • а = 1/а м ; (а/б) = (б/а) м
  • (a -m ) n = a -m×-n
  • (ab) м = а -m б -m
  • (а/б) -m = а -m /b -m

Как упростить рациональные показатели?

Мы применяем правила таким же образом для упрощения рациональных показателей, как и для целых чисел. Вот некоторые из общих правил, которые мы здесь будем использовать:

  • a x/y × a m/n = a x/y + m/n
  • а х/у ÷ а м/н = а х/у — м/н
  • (а/б) м/н = (б/а) -м/н
  • a м/н = (1/а) -м/н
  • м/н ) х/у = а (м/н) × (х/у)

Что такое упрощение показателей степени с разными основаниями?

Когда мы умножаем степени или делим степени с разным основанием, может быть два случая: i) когда степени одинаковы, ii) когда степени разные. При упрощении показателей с разным основанием и одинаковой степенью руководствуемся правилом:

  • a m × b m = (ab) m
  • а м ÷ b м = (a÷b) м

Когда нам нужно упростить показатели степени с разным основанием и разной степенью, мы упрощаем термины по отдельности, а затем применяем соответствующую арифметическую операцию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *