Корень из 324 равен: делители, простота, двоичный вид, куб, квадрат

Содержание

квадратный корень — английский перевод

Квадратный корень

Square Root

Квадратный корень

Square root

квадратный корень

THE SQUARE ROOT LINDSAY…

sqrt корень квадратный

sqrt square root

Вставить квадратный корень.

Inserts the square root.

Например квадратный корень

For certain things, we may encounter obstacles. For example, the square root sign…

Корень квадратный из 4.

Square root of 4.

Квадратный корень из 36.

The square root of 36.

Это квадратный корень 1369.

That’s the square root of 1,369.

Итак, квадратный корень из 2 умноженный на квадратный корень из 2 равен 2.

So the square root of 2 times the square root of 2, that is 2.

Получаем, квадратный корень из 6,45 плюс 4, что равно квадратный корень из 10,45.

So that’s the square root of 6.45 plus 4, which equals the square root of 10.45.

Квадратный корень из четырех два.

The square root of four is two.

Каков квадратный корень из 67?

What is the square root of 67?

3 квадратный корень из 9.

3 is equal to the square root of 9.

Ну было бы квадратный корень

Well, it would be the square root iteration.

Это корень квадратный из N.

Here is the square root of ‘n’.

Каков квадратный корень из 17422?

What is the square route of 14722 ?

Каков квадратный корень из 841?

What’s the square root of 841?

Т.е. это равно корень квадратный из 25 умножить на 3 что равно корень квадратный из 25 умножить на корень квадратный из 3 равно 5 на корень из 3

So that’s equal to the square root of 25 times 3. Which is equal to the square root of 25 times the square root of 3.

Квадратный корень из единицы равен единице.

The square root of one is one.

Чему равен квадратный корень из двух?

What is the square root of 2?

Квадратный корень из 1 равен 1.

The square root of 1 is 1.

И извлечь квадратный корень из этого.

You take the square root of that.

Чему равен квадратный корень из ста?

What’s the square root of 100?

Возвести в квадрат, взять квадратный корень.

Return the square and square root of a number, respectively.

Какой будет квадратный корень из икс?

What’s the square root of x ?

Квадратный корень из 2 396 324?

What is the square root of 2,396,324?

Квадратный корень из трех тысяч шести?

What’s the square root of 3,006?

В прошлом видео я вместо 49 корень квадратный из 3 нечаянно написал 40 корень квадратный из 3.

And in the last video, by accident, in the calculator, instead of doing 49 square roots of 3, I wrote 40 square roots of three.

Квадратный корень из 3 является иррациональным числом.

The square root of 3 is an irrational number.

Корень квадратный из 4, это равно 2.

Square root of 4, that equals 2.

Ага, квадратный корень длины пропорционален периоду колебаний .

And I’m thinking, Oh yeah, the square root of the length is proportional to its period. (Laughter)

Единственная функция, которая рассматривается извне квадратный корень.

The only function that is seen from the outside is square root.

Квадратный корень из 200 приблизительно равен 14.1.

And just using our kinematics formula, this would have been a really tough formula. This would have been difficult.

Квадратный корень 2 или число Пи, например.

The square root of two and pi, for instance.

И квадратный корень вы можете использовать калькулятор.

And the square root or you could use a calculator.

Скажем корень квадратный из N находится здесь.

And let’s say the square root of ‘n’ is here.

Плюс или минус квадратный корень b квадрат.

Plus or minus the square root of b squared.

Я просто беру квадратный корень 9Т квадрат.

I’m just taking the square root of 9t squared.

Девять девятых, квадратный корень, нажмите на целое.

Put in nine nines, take the square root and press the integer.

Здесь говорится чему равно квадратный корень из 7 плюс квадратный корень из 7, и все это в квадрате.

And it says, what is the square root of 7 plus the square root of 7, and all of that squared.

Итак, если мы возьмем положительный квадратный корень от обеих частей, мы получи положительный квадратный корень из 1 это 1.

So if you take the positive square root of both sides, you get the positive square root of 1 is 1.

Квадратный корень из ста сорока четырёх равен двенадцати.

The square root of one hundred forty four is twelve.

Дано квадратный корень из квадратного корня из 1.

So they say the square root of the square root of 1.

И квадратный корень из этого будет равно 1.

And the square root of that is going to be equal to 1.

Корень из а в квадрате. Что такое арифметический квадратный корень

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без калькулятора?» Попробуем ответить на этот вопрос.

Как же извлечь корень квадратный из числа без помощи калькулятора?

Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81

Если из положительного числа извлечь корень квадратный и результат возвести в квадрат, получим то же число.

Из небольших чисел, являющихся точными квадратами натуральных чисел, например 1, 4, 9, 16, 25, …,100 квадратные корни можно извлечь устно. Обычно в школе учат таблицу квадратов натуральных чисел до двадцати. Зная эту таблицу легко извлечь корни квадратные из чисел 121,144, 169, 196, 225, 256, 289, 324, 361, 400. Из чисел больших 400 можно извлекать методом подбора используя, некоторые подсказки. Давайте попробуем на примере рассмотреть этот метод.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √676 = 26 .

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Еще пример: √20736 . Разложим число 20736 на множители:

Получаем √20736 = √2 8 ∙3 4 = 2 4 ∙3 2 = 144.

Конечно, разложение на множители требует знания признаков делимости и навыков разложения на множители.

И, наконец, есть же правило извлечение корней квадратных . Давайте познакомимся с этим правилом на примерах.

Вычислите √279841 .

Чтобы извлечь корень из многоцифрового целого числа, разбиваем его справа налево на грани, содержащие по 2 цифры (в левой крайней грани может оказаться и одна цифра). Записываем так 27’98’41

Чтобы получить первую цифру корня (5), извлекаем квадратный корень из наибольшего точного квадрата, содержащегося в первой слева грани (27).
Потом вычитают из первой грани квадрат первой цифры корня (25) и к разности приписывают (сносят) следующую грань (98).
Слева от полученного числа 298 пишут удвоенную цифру корня (10), делят на нее число всех десятков раннее полученного числа (29/2 ≈ 2), испытывают частное (102 ∙2 = 204 должно быть не больше 298) и записывают (2) после первой цифры корня.


Потом вычитают от 298 полученное частное 204 и к разности (94) приписывают (сносят) следующую грань (41).
Слева от полученного числа 9441 пишут удвоенное произведение цифр корня (52 ∙2 = 104), делят на это произведение число всех десятков числа 9441 (944/104 ≈ 9), испытывают частное (1049 ∙9 = 9441) должно быть 9441 и записывают его (9) после второй цифры корня.

Получили ответ √279841 = 529.

Аналогично извлекают корни из десятичных дробей . Только подкоренное число надо разбивать на грани так, чтобы запятая была между гранями.

Пример . Найдите значение √0,00956484.

Только надо помнить, что если десятичная дробь имеет нечетное число десятичных знаков, из нее точно квадратный корень не извлекается .

Итак, теперь вы познакомились с тремя способами извлечения корня. Выбирайте тот, который вам больше подходит и практикуйтесь. Чтобы научиться решать задачи, их надо решать. А если у Вас возникнут вопросы, записывайтесь на мои уроки .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Площадь квадратного участка земли равна 81 дм². Найти его сторону. Предположим, что длина стороны квадрата равна х дециметрам. Тогда площадь участка равна х ² квадратным дециметрам. Так как по условию эта площадь равна 81 дм², то х ² = 81. Длина стороны квадрата — положительное число. Положительным числом, квадрат которого равен 81, является число 9. При решении задачи требовалось найти число х, квадрат которого равен 81, т. е. решить уравнение х ² = 81. Это уравнение имеет два корня: x 1 = 9 и x 2 = — 9, так как 9² = 81 и (- 9)² = 81. Оба числа 9 и — 9 называют квадратными корнями из числа 81.

Заметим, что один из квадратных корней х = 9 является положительным числом. Его называют арифметическим квадратным корнем из числа 81 и обозначают √81, таким образом √81 = 9.

Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а .

Например, числа 6 и — 6 являются квадратными корнями из числа 36. При этом число 6 является арифметическим квадратным корнем из 36, так как 6 — неотрицательное число и 6² = 36. Число — 6 не является арифметическим корнем.

Арифметический квадратный корень из числа а обозначается так: √а.

Знак называется знаком арифметического квадратного корня; а — называется подкоренным выражением. Выражение √а читается так: арифметический квадратный корень из числа

а. Например, √36 = 6, √0 = 0, √0,49 = 0,7. В тех случаях, когда ясно, что речь идет об арифметическом корне, кратко говорят: «корень квадратный из а «.

Действие нахождения квадратного корня из числа называют извлечением квадратного корня. Это действие является обратным к возведению в квадрат.

Возводить в квадрат можно любые числа, но извлекать квадратные корни можно не из любого числа. Например, нельзя извлечь квадратный корень из числа — 4. Если бы такой корень существовал, то, обозначив его буквой х , мы получили бы неверное равенство х² = — 4, так как слева стоит неотрицательное число, а справа отрицательное.

Выражение √а имеет смысл только при а ≥ 0. Определение квадратного корня можно кратко записать так: √а ≥ 0, (√а )² = а . Равенство (√а )² = а справедливо при а ≥ 0. Таким образом, чтобы убедиться в том, что квадратный корень из неотрицательного числа

а равен b , т. е. в том, что √а =b , нужно проверить, что выполняются следующие два условия: b ≥ 0, b ² = а.

Квадратный корень из дроби

Вычислим . Заметим, что √25 = 5, √36 = 6, и проверим выполняется ли равенство .

Так как и , то равенство верно. Итак, .

Теорема: Если а ≥ 0 и b > 0, то т. е. корень из дроби равен корню из числителя, деленному на корень из знаменателя. Требуется доказать, что: и .

Так как √а ≥0 и √b > 0, то .

По свойству возведения дроби в степень и определению квадратного корня теорема доказана. Рассмотрим несколько примеров.

Вычислить , по доказанной теореме .

Второй пример: Доказать, что , если а ≤ 0, b .

Еще примерчик: Вычислить .

.

Преобразование квадратных корней

Вынесение множителя из-под знака корня. Пусть дано выражение . Если

а ≥ 0 и b ≥ 0, то по теореме о корне из произведения можно записать:

Такое преобразование называется вынесение множителя из под знака корня. Рассмотрим пример;

Вычислить при х = 2. Непосредственная подстановка х = 2 в подкоренное выражение приводит к сложным вычислениям. Эти вычисления можно упростить, если вначале вынести из-под знака корня множители: . Подставив теперь х = 2, получим:.

Итак, при вынесении множителя из-под знака корня представляют подкоренное выражение в виде произведения, в котором один или несколько множителей являются квадратами неотрицательных чисел. Затем применяют теорему о корне из произведения и извлекают корень из каждого множителя. Рассмотрим пример: Упростить выражение А = √8 + √18 — 4√2 вынося в первых двух слагаемых множители из-под знака корня, получим:. Подчеркнем, что равенство справедливо только при

а ≥ 0 и b ≥ 0. если же а

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

Шаги

Разложение на простые множители

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число. Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

  • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
  • Записать это можно следующим образом: √400 = √(25 х 16).
  • Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b. Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  • Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа.

    Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  • Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 — мы были правы.
  • Еще один способ – разложите подкоренное число на простые множители . Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Вычисление квадратного корня вручную

    При помощи деления в столбик
    1. Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как «7 95 20 78 91 82, 47 89 70».

      • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде «7 80, 14». Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
    2. Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

      • В нашем случае, первым слева числом будет число 7. Далее, 4
    3. Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

      • В нашем примере вычтите 4 из 7 и получите 3.
    4. Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением «_×_=».

      • В нашем примере второй парой чисел является «80». Запишите «80» после 3. Затем, удвоенное число сверху справа дает 4. Запишите «4_×_=» снизу справа.
    5. Заполните прочерки справа.

      • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 — слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа — это вторая цифра в искомом квадратном корне числа 780,14.
    6. Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

      • В нашем примере, вычтите 329 из 380, что равно 51.
    7. Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением «_×_=».

      • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите «54_×_=» снизу справа.
    8. Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

      • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 — 4941 = 173.
    9. Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

      Понимание процесса
      1. Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

        Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C — третьей и так далее.

        Задайте букву для каждой пары первых цифр. Обозначим через S a первую пару цифр в значении S, через S b — вторую пару цифр и так далее.

        Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

      2. Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен S a (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa

        • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8
      3. Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C — цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

        • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B² . Запомните, что 10A+B — это такое число, у которого цифра B означает единицы, а цифра A — десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² — это площадь всего квадрата, 100A² — площадь большого внутреннего квадрата, — площадь малого внутреннего квадрата, 10A×B — площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.
  • Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень . Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

    1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
    2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

    Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней .

    Итак, алгоритм:

    1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
    2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
    3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

    Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

    Ограничение корней

    В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

    10 2 = 100;
    20 2 = 400;
    30 2 = 900;
    40 2 = 1600;
    . ..
    90 2 = 8100;
    100 2 = 10 000.

    Получим ряд чисел:

    100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

    Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

    [Подпись к рисунку]

    То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

    [Подпись к рисунку]

    Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

    Отсев заведомо лишних чисел

    Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

    Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

    Последняя цифра квадрата зависит только от последней цифры исходного числа .

    Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

    Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

    1234567890
    1496569410

    Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

    2 2 = 4;
    8 2 = 64 → 4.

    Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

    [Подпись к рисунку]

    Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

    [Подпись к рисунку]

    Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

    Финальные вычисления

    Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

    Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

    52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
    58 2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

    Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный:)

    Примеры вычисления корней

    Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

    [Подпись к рисунку]

    Для начала выясним, между какими числами лежит число 576:

    400 20 2

    Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

    Осталось возвести каждое число в квадрат и сравнить с исходным:

    24 2 = (20 + 4) 2 = 576

    Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    900 30 2

    Смотрим на последнюю цифру:

    1369 → 9;
    33; 37.

    Возводим в квадрат:

    33 2 = (30 + 3) 2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
    37 2 = (40 − 3) 2 = 1600 − 2 · 40 · 3 + 9 = 1369.

    Вот и ответ: 37.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    Ограничиваем число:

    2500 50 2

    Смотрим на последнюю цифру:

    2704 → 4;
    52; 58.

    Возводим в квадрат:

    52 2 = (50 + 2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;

    Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    Ограничиваем число:

    3600 60 2

    Смотрим на последнюю цифру:

    4225 → 5;
    65.

    Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

    65 2 = (60 + 5) 2 = 3600 + 2 · 60 · 5 + 25 = 4225;

    Все правильно. Записываем ответ.

    Заключение

    Увы, не лучше. Давайте разберемся в причинах. Их две:

    • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
    • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

    Корень из 58 разложить. Извлечение корня квадратного

    Извлечение корня из большого числа. Дорогие друзья! В этой статье мы с вами разберём как извлекать корень из большого числа без калькулятора. Это необходимо не только для решения некоторых типов задач ЕГЭ (есть такие — на движение), но и для общего математического развития этот аналитический приём знать желательно.

    Казалось бы, всё просто: разложи на множители, да извлекай. Проблемы нет. Например число 291600 при разложении даст произведение:

    Вычисляем:

    Есть одно НО! Способ хорош если легко определяются делители 2, 3, 4 и так далее. А что делать если число, из которого мы извлекаем корень является произведением простых чисел? Например 152881 является произведением чисел 17, 17, 23, 23. Попробуй-ка сходу найди эти делители.

    Суть рассматриваемого нами метода — это чистый анализ. Корень при наработанном навыке находится быстро. Если навык не отработан, а просто понят подход, то немного медленнее, но всё же определяется.

    Извлечём корень из 190969.

    Сначала определим — между какими числами (кратными ста) лежит наш результат.

    Очевидно, что результат корня из данного числа лежит в пределах от 400 до 500, так как

    400 2 =160000 и 500 2 =250000

    Действительно:

    посредине, ближе к 160 000 или к 250 000?

    Число 190969 находится примерно посредине, но все же ближе к 160000. Можно сделать вывод, что результат нашего корня будет меньше 450. Проверим:

    Действительно, он меньше 450, так как 190 969

    Теперь проверим число 440:

    Значит наш результат меньше 440, так как 190 969

    Проверяем число 430:

    Мы установили, что результат данного корня лежит в пределах от 430 до 440.

    Произведение чисел имеющих на конце 1 или 9 дают число с 1 в конце. Например, 21 на 21 равно 441.

    Произведение чисел имеющих на конце 2 или 8 дают число с 4 в конце. Например, 18 на 18 равно 324.

    Произведение чисел имеющих на конце 5 дают число с 5 в конце. Например, 25 на 25 равно 625.

    Произведение чисел имеющих на конце 4 или 6 дают число с 6 в конце. Например 26 на 26 равно 676.

    Произведение чисел имеющих на конце 3 или 7 дают число с 9 в конце. Например, 17 на 17 равно 289.

    Так как число 190969 заканчивается цифрой 9, то это произведение либо числа 433, либо 437.

    *Только они при возведении в квадрат могут дать 9 в конце.

    Проверяем:

    Значит результат корня будет равен 437.

    То есть, мы как бы «нащупали» верный ответ.

    Как видите, максимум что потребуется это осуществить 5 действий столбиком. Возможно, вы сразу попадёте в точку, или сделаете всего три действия. Всё зависит о того, как точно вы сделаете начальную оценку числа.

    Извлеките самостоятельно корень из 148996

    Такой дискриминант получается в задаче:

    Теплоход проходит по течению реки до пункта назначения 336 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 48 часов после отплытия из него. Ответ дайте в км/ч.

    Посмотреть решение

    Результат корня находится между числами 300 и 400:

    300 2 =90000 400 2 =160000

    Действительно, 90000

    Суть дальнейших рассуждений сводится к тому, чтобы определить, как число 148996 расположено (отстоит) относительно этих чисел.

    Вычислим разности 148996 — 90000=58996 и 160000 — 148996=11004.

    Получается, что 148996 близко (на много ближе) к 160000. Поэтому, результат корня однозначно будет больше 350 и даже 360.

    Можем сделать вывод, что наш результат больше 370. Далее ясно: так как 148996 оканчивается цифрой 6, то это означает, что в квадрат надо возводить число, оканчивающееся либо на 4, либо на 6. *Только эти числа при возведении в квадрат дают в конце 6.

    С уважением, Александр Крутицких.

    P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

    Что такое квадратный корень?

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно «не очень…»
    И для тех, кто «очень даже…»)

    Это понятие очень простое. Естественное, я бы сказал. Математики на каждое действие стараются найти противодействие. Есть сложение — есть и вычитание. Есть умножение — есть и деление. Есть возведение в квадрат… Значит есть и извлечение квадратного корня! Вот и всё. Это действие (извлечение квадратного корня ) в математике обозначается вот таким значком:

    Сам значок называется красивым словом «радикал «.

    Как извлечь корень? Это лучше рассмотреть на примерах .

    Сколько будет квадратный корень из 9? А какое число в квадрате даст нам 9? 3 в квадрате даст нам 9! Т. е:

    А вот сколько будет квадратный корень из нуля? Не вопрос! Какое число в квадрате ноль даёт? Да сам же ноль и даёт! Значит:

    Уловили, что такое квадратный корень? Тогда считаем примеры :

    Ответы (в беспорядке): 6; 1; 4; 9; 5.

    Решили? Действительно, уж куда проще-то?!

    Но… Что делает человек, когда видит какое-нибудь задание с корнями?

    Тосковать начинает человек… Не верит он в простоту и лёгкость корней. Хотя, вроде, и знает, что такое квадратный корень

    Всё потому, что человек проигнорировал несколько важных пунктиков при изучении корней. Потом эти пунктики жестоко мстят на контрольных и экзаменах…

    Пунктик первый. Корни надо узнавать в лицо!

    Сколько будет корень квадратный из 49? Семь? Верно! А как вы узнали, что семь? Возвели семёрку в квадрат и получили 49? Правильно! Обратите внимание, чтобы извлечь корень из 49 нам пришлось проделать обратную операцию — возвести 7 в квадрат! И убедиться, что мы не промахнулись. А могли и промахнуться…

    В этом и есть сложность извлечения корней . Возвести в квадрат можно любое число без особых проблем. Умножить число само на себя столбиком — да и все дела. А вот для извлечения корня такой простой и безотказной технологии нет. Приходится подбирать ответ и проверять его на попадание возведением в квадрат.

    Этот сложный творческий процесс — подбор ответа — сильно упрощается, если вы помните квадраты популярных чисел. Как таблицу умножения. Если, скажем, надо умножить 4 на 6 — вы же не складываете четверку 6 раз? Сразу выплывает ответ 24. Хотя, не у всех он выплывает, да…

    Для свободной и успешной работы с корнями достаточно знать квадраты чисел от 1 до 20. Причём туда и обратно. Т.е. вы должны легко называть как, скажем, 11 в квадрате, так и корень квадратный из 121. Чтобы добиться такого запоминания, есть два пути. Первый — выучить таблицу квадратов. Это здорово поможет решать примеры. Второй — решать побольше примеров. Это здорово поможет запомнить таблицу квадратов.

    И никаких калькуляторов! Только для проверки. Иначе на экзамене будете тормозить нещадно…

    Итак, что такое квадратный корень и как извлекать корни — думаю, понятно. Теперь выясним ИЗ ЧЕГО можно их извлекать.

    Пунктик второй. Корень, я тебя не знаю!

    Из каких чисел можно извлекать квадратные корни? Да почти из любых. Проще понять, из чего нельзя их извлекать.

    Попробуем вычислить вот такой корень:

    Для этого нужно подобрать число, которое в квадрате даст нам -4. Подбираем.

    Что, не подбирается? 2 2 даёт +4. (-2) 2 даёт опять +4! Вот-вот… Нет таких чисел, которые при возведении в квадрат дадут нам отрицательное число! Хотя я такие числа знаю. Но вам не скажу). Поступите в институт — сами узнаете.

    Такая же история будет с любым отрицательным числом. Отсюда вывод:

    Выражение, в котором под знаком квадратного корня стоит отрицательное число — не имеет смысла ! Это запретная операция. Такая же запретная, как и деление на ноль. Запомните этот факт железно! Или, другими словами:

    Квадратные корни из отрицательных чисел извлечь нельзя!

    Зато из всех остальных — можно. Например, вполне можно вычислить

    На первый взгляд это очень сложно. Подбирать дроби, да в квадрат возводить… Не волнуйтесь. Когда разберёмся со свойствами корней, такие примеры будут сводиться к всё той же таблице квадратов. Жизнь станет проще!

    Ну ладно дроби. Но нам ведь ещё попадаются выражения типа:

    Ничего страшного. Всё то же самое. Корень квадратный из двух — это число, которое при возведении в квадрат даст нам двойку. Только число это совсем неровное… Вот оно:

    Что интересно, эта дробь не кончается никогда… Такие числа называются иррациональными. В квадратных корнях это — самое обычное дело. Кстати, именно поэтому выражения с корнями называют иррациональными . Понятно, что писать всё время такую бесконечную дробь неудобно. Поэтому вместо бесконечной дроби так и оставляют:

    Если при решении примера у вас получилось что-то неизвлекаемое, типа:

    то так и оставляем. Это и будет ответ.

    Нужно чётко понимать, что под значками

    Конечно, если корень из числа извлекается ровно , вы обязаны это сделать. Ответ задания в виде, например

    вполне себе полноценный ответ.

    И, конечно, надо знать на память приблизительные значения:

    Это знание здорово помогает оценить ситуацию в сложных заданиях.

    Пунктик третий. Самый хитрый.

    Основную путаницу в работу с корнями вносит как раз этот пунктик. Именно он придаёт неуверенность в собственных силах… Разберёмся с этим пунктиком как следует!

    Для начала опять извлечём квадратный корень их четырёх. Что, уже достал я вас с этим корнем?) Ничего, сейчас интересно будет!

    Какое число даст в квадрате 4? Ну два, два — слышу недовольные ответы…

    Верно. Два. Но ведь и минус два даст в квадрате 4. .. А между тем, ответ

    правильный, а ответ

    грубейшая ошибка. Вот так.

    Так в чём же дело?

    Действительно, (-2) 2 = 4. И под определение корня квадратного из четырёх минус два вполне подходит… Это тоже корень квадратный из четырёх.

    Но! В школьном курсе математики принято считать за квадратные корни только неотрицательные числа! Т.е ноль и все положительные. Даже термин специальный придуман: из числа а — это неотрицательное число, квадрат которого равен а . Отрицательные результаты при извлечении арифметического квадратного корня попросту отбрасываются. В школе все квадратные корни — арифметические . Хотя особо об этом не упоминается.

    Ну ладно, это понятно. Это даже и лучше — не возиться с отрицательными результатами… Это ещё не путаница.

    Путаница начинается при решении квадратных уравнений. Например, надо решить вот такое уравнение.

    Уравнение простое, пишем ответ (как учили):

    Такой ответ (совершенно правильный, кстати) — это просто сокращённая запись двух ответов:

    Стоп-стоп! Чуть выше я написал, что квадратный корень — число всегда неотрицательное! А здесь один из ответов — отрицательный ! Непорядок. Это первая (но не последняя) проблемка, которая вызывает недоверие к корням… Решим эту проблемку. Запишем ответы (чисто для понимания!) вот так:

    Скобки сути ответа не меняют. Просто я отделил скобками знаки от корня . Теперь наглядно видно, что сам корень (в скобках) — число всё равно неотрицательное! А знаки — это результат решения уравнения . Ведь при решении любого уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше уравнение подходит корень из пяти (положительный!) как с плюсом, так и с минусом.

    Вот так. Если вы просто извлекаете квадратный корень из чего-либо, вы всегда получаете один неотрицательный результат. Например:

    Потому, что это — арифметический квадратный корень .

    Но если вы решаете какое-нибудь квадратное уравнение, типа:

    то всегда получается два ответа (с плюсом и минусом):

    Потому, что это — решение уравнения.

    Надеюсь, что такое квадратный корень со своими пунктиками вы уяснили. Теперь осталось узнать, что можно делать с корнями, каковы их свойства. И какие там пунктики и подводные кор… извините, камни!)

    Всё это — в следующих уроках.

    Если Вам нравится этот сайт…

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    можно познакомиться с функциями и производными.

    Формулы корней. Свойства квадратных корней.

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно «не очень…»
    И для тех, кто «очень даже…»)

    В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.

    Формулы корней, свойства корней и правила действий с корнями — это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да…

    Начнём с самой простой. Вот она:

    Если Вам нравится этот сайт…

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    можно познакомиться с функциями и производными.

    До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

    Шаги

    Разложение на простые множители

      Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число. Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  • Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b. Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  • Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  • Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 — мы были правы.
  • Еще один способ – разложите подкоренное число на простые множители . Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Вычисление квадратного корня вручную

    При помощи деления в столбик
    1. Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как «7 95 20 78 91 82, 47 89 70».

      • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде «7 80, 14». Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
    2. Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

      • В нашем случае, первым слева числом будет число 7. Далее, 4
    3. Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

      • В нашем примере вычтите 4 из 7 и получите 3.
    4. Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением «_×_=».

      • В нашем примере второй парой чисел является «80». Запишите «80» после 3. Затем, удвоенное число сверху справа дает 4. Запишите «4_×_=» снизу справа.
    5. Заполните прочерки справа.

      • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 — слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа — это вторая цифра в искомом квадратном корне числа 780,14.
    6. Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

      • В нашем примере, вычтите 329 из 380, что равно 51.
    7. Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением «_×_=».

      • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите «54_×_=» снизу справа.
    8. Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

      • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 — 4941 = 173.
    9. Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

    Понимание процесса

      Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

      Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C — третьей и так далее.

      Задайте букву для каждой пары первых цифр. Обозначим через S a первую пару цифр в значении S, через S b — вторую пару цифр и так далее.

      Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

    1. Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен S a (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa

      • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8
    2. Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C — цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

      • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B² . Запомните, что 10A+B — это такое число, у которого цифра B означает единицы, а цифра A — десятки. Например, если A=1 и B=2, то 10A+B равно числу 12. 2=400\\ \hline \end{array}\]

        Факт 3.
        Какие действия можно выполнять с квадратными корнями?
        \(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\) , то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\) , а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл )
        Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\) ; \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\) ; \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
        Рассмотрим пример. Найдем \(\sqrt{44100}\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
        Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
        \(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt{25}\) , то \ Заметим также, что, например,
        1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
        2) \(5\sqrt3-\sqrt3=4\sqrt3\)
        3) \(\sqrt a+\sqrt a=2\sqrt a\) . 2\) , поэтому \(\sqrt{16}=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
        Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
        Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
        \(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\) .
        Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

        Факт 5.
        \(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. 2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
        Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3 \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\ &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. 2=168\cdot 168=28224\) .
        Следовательно, \(\sqrt{28224}=168\) . Вуаля!

        Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

        Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

        1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
        2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

        Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

        3-8 9 Оценить квадратный корень из 12 10 Оценить квадратный корень из 20 11 Оценить квадратный корень из 50 94 18 Оценить квадратный корень из 45 19 Оценить квадратный корень из 32 20 Оценить квадратный корень из 18 92

        Что такое квадратный корень из 324?

        Как мы знаем, квадратный корень из 324 равен 18 .

        Посмотреть полный ответ на Spell.today


        Что такое квадратный корень 324 упрощенный?

        Суть упрощения (до простейшей подкоренной формы 324) заключается в следующем: получить число 324 внутри подкоренного знака √ как можно ниже. Следовательно, ответ 18.

        Посмотреть полный ответ на заклинание.сегодня

        Какое число в квадрате будет 324?

        324 — идеальный квадрат. Потому что 18*18=324.

        Посмотреть полный ответ на mathwarehouse.com


        Каковы делители числа 324?

        Делителями числа 324 являются 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162 и 324.

        Посмотреть полный ответ на cuemath.com

        На какое число делится 324?

        Таким образом, 324 делится на 6. Поскольку 3 делится на 3, число делится на 3, а единичная цифра делится на 2, поэтому оно делится на 2. Таким образом, 2010 делится на 6. Чтобы число делилось на 6 оно должно делиться и на 2, и на 3.

        Посмотреть полный ответ на lidolearning.com


        Квадратный корень из 324

        Как найти квадратный корень?

        Какова формула вычисления квадратного корня из числа? Квадратный корень любого числа можно выразить по формуле: √y = y ½ . Другими словами, если показатель степени числа равен 1/2, это означает, что нам нужно найти квадратный корень из числа.

        Посмотреть полный ответ на cuemath.com

        Каково значение 1 на 0?

        01 не определено.

        Посмотреть полный ответ на блестящем.org

        Что такое 6 как дробь?

        Ответ: 6% в виде дроби равно 3/50

        Преобразование процентов в дроби осуществляется в три простых шага.

        Посмотреть полный ответ на cuemath.com

        Как найти квадратный корень без калькулятора?

        Попробуйте: +2 × +2 = 4 и -2 × -2 = 4. Так как квадратный корень числа должен равняться этому числу при умножении на себя. Когда вы умножаете это число само на себя и представляете его как полное уравнение ( n * n = x ), два множителя (n и n) либо оба положительны, либо оба отрицательны, поскольку они являются одним и тем же числом.

        Посмотреть полный ответ на homeschoolmath.net


        Как вручную найти квадратный корень?

        Метод длинного деления

        1. Разделите основание квадратного корня на пары. …
        2. Найдите самый большой квадрат, который делится на первое число или пару. …
        3. Вычесть квадрат из первого числа или пары. …
        4. Опустите следующую пару. …
        5. Умножить первую цифру квадрата на два. …
        6. Настройте уравнение следующего фактора.

        Посмотреть полный ответ на Indeed. com

        Как возвести число в квадрат?

        Чтобы возвести число в квадрат: умножьте его само на себя.

        1. Пример: Сколько будет 3 в квадрате? 3 в квадрате. …
        2. Пример: Что произойдет, если возвести в квадрат (−5) ? Ответ: …
        3. Пример: (−3) в квадрате. (−3) × (−3) = 9,
        4. Пример. Чему равны квадратные корни из 25? (−5) × (−5) = 25. …
        5. Пример: Что такое √25? …
        6. Пример: Что такое √36 ? …
        7. Пример: что такое √10? …
        8. День квадратного корня.

        Посмотреть полный ответ на mathsisfun.com

        ЯВЛЯЕТСЯ 324 идеальным квадратом?

        Да, 324 — это полный квадрат, поскольку он выражается как произведение двух равных целых чисел. (т.е.) 324 = 18×18.

        Посмотреть полный ответ на byjus.com

        Какое место занимает число 324?

        Ответ: разрядное значение числа 2 в числе 324 — это разряд десятков. Представьте, что вы убираете 3 и заменяете 4 на 0.

        Посмотреть полный ответ на brainly.in


        Как составить идеальный куб из 324?

        Ссылки

        1. Дано: задано число 324.
        2. Чтобы найти: Нам нужно найти наименьшее число, на которое нужно умножить 324, чтобы получить идеальный куб.
        3. Решение: Разложение числа 324 на простые множители: 324 = 2×2×3×3×3×3=(2×2)×(3×3×3)×3. Следовательно, данное число, чтобы быть совершенным кубом, должно быть умножено. 2×3×3=18 2 × 3 × 3 = 18 .

        Просмотр полный ответ на tutorix.com

        Как шаг за шагом найти квадратный корень из 2?

        Как найти квадратный корень из 2?

        1. Шаг 1: Найдите наибольшее число, квадрат которого меньше или равен числу 2. Возьмите это число как делитель и частное (в данном случае 1). …
        2. Шаг 2: В частном поставьте запятую после 1. …
        3. Шаг 3: Удвойте делитель и введите его с пробелом справа.

        Посмотреть полный ответ на cuemath.com

        Как выглядит десятичная дробь 3/8?

        3/8 в десятичном виде равно 0,375.

        Посмотреть полный ответ на argoprep.com

        Как превратить десятичную дробь в проценты на калькуляторе?

        Использование калькулятора

        1. Преобразование десятичного числа в процентное выполняется путем умножения десятичного значения на 100 и добавления %.
        2. Пример: 0,10 становится 0,10 x 100 = 10 %
        3. Пример: 0,675 становится 0,675 x 100 = 67,5 %

        Просмотр полный ответ на calculatesoup.com


        Предыдущий вопрос
        Что означает ожерелье от сглаза?

        Следующий вопрос
        Какой едой славится Седона?

        Квадратный корень из 324

        Sqrt(324). Найдите квадратный корень из 324 или любого другого действительного числа, положительного или отрицательного. Вот ответы на такие вопросы, как: Квадратный корень из 324 или что такое квадратный корень из 324?

        Что такое квадратный корень? Определение квадратного корня

        Квадратный корень числа ‘x’ – это число y такое, что y 2 = x, другими словами, число y, квадрат которого равен y. Например, 18 — это квадратный корень из 324, потому что 18 2 = 18•18 = 324, —18 — это квадратный корень из 324, потому что (—18) 2 = (—18)•(—18) = 324. При написании математических выражений люди часто используют sqrt(x) для обозначения квадратного корня из x. Подробнее о квадратном корне читайте здесь: Квадратный корень — Википедия и здесь: Квадратный корень — Wolfram

        Квадратный символ?

        Вот символ квадратного корня. Он обозначается √, известным как радикальный знак или основание.

        Таблица квадратного корня 1-100

        Квадратные корни от 1 до 100 округляются до тысячных.

        номер квадрат квадрат
        корень
        1 1 1.000
        2 4 1.414
        3 9 1.732
        4 16 2.000
        5 25 2. 236
        6 36 2.449
        7 49 2.646
        8 64 2.828
        9 81 3.000
        10 100 3,162
        11 121 3,317
        12 144 3,464
        13 3,464
        13 3,464
        13 3,464
        0004 169 3.606
        14 196 3.742
        15 225 3.873
        16 256 4.000
        17 289 4.123
        18 324 4.243
        19 361 4,359
        20 0005 4009 4. 472
        4005 4.472
        4005 4.472
        4005 4.472
        0003 21 441 4.583
        22 484 4.690
        23 529 4.796
        24 576 4.899
        25 625 5.000

        0011
        номер квадрат квадрат
        корень
        26 676 5,099
        27 729 5.196
        28 784 5.292
        29 841 5.385
        30 900 5.477
        31 961 5.568
        32 1,024 5.657
        33 1,089 5. 745
        34 1,156 5.831
        35 1,225 5.916
        36 1,296 6.000
        37 1,369 6.083
        38 1,444 6.164
        39 1 521 6.245
        40 1,600 6,325
        41 1,681 6.403
        42 1,764 6.481
        43 1,849 6.557
        44 1,936 6.633
        45 2,025 6.708
        46 2 116 6.782
        47 2 209 6,856
        48 6.928
        4 6.9280004 2 401 7.000
        50 2 500 7,071

        Номер Квадрат11113 Квадрат Квадрат Руний
        14
        11114
        1114
        114
        1114
        14
        114
        14
        14
        14
        14
        14
        14
        14.111911190050011
        51 2,601 7.141
        52 2,704 7.211
        53 2,809 7.280
        54 2,916 7.348
        55 3,025 7.416
        56 3,136 7.483
        57 3,249 7.550
        58 3,364 7.616
        59 3,481 7,681
        60 3 600 7,746
        61 3 721 7,810
        62 3,844
        6000 9000 3,844
        6000 9000 3,844 7.874
        63 3,969 7.937
        64 4,096 8.000
        65 4,225 8. 062
        66 4,356 8.124
        67 4 489 8.185
        68 4 624 8,246
        69 4 761 8.307 4 761 8.307
        70 4,900 8.367
        71 5,041 8.426
        72 5,184 8.485
        73 5,329 8.544
        74 5 476 8.602
        75 5,625 8.660

        Номер Квадрат14
        0005 9000 97
        Номер.0912 корень
        76 5,776 8.718
        77 5,929 8.775
        78 6,084 8.832
        79 6,241 8. 888
        80 6,400 8.944
        81 6 561 9.000
        82 6 724 9.055
        .0004 83 6,889 9.110
        84 7,056 9.165
        85 7,225 9.220
        86 7,396 9.274
        87 7,569 9.327
        88 7 744 9.381
        89 7,921 9.434

        81009

        81009 9.487
        91 8,281 9.539
        92 8,464 9.592
        93 8,649 9.644
        94 8,836 9.695
        95 9,025 9,747
        96 9,216 9,798
        9,409 9,849 9000 97 9,409 9.

        Добавить комментарий

        Ваш адрес email не будет опубликован. Обязательные поля помечены *

        © 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

        Карта сайта