Конспект урока алгебры для 10 класса «Логарифмы и их свойства». | План-конспект урока по алгебре (10 класс) на тему:
Тема урока: Логарифмы и их свойства.
Цель урока:
- Образовательная – сформировать понятие логарифма, изучить основные свойства логарифмов и способствовать формированию умения применять свойства логарифмов при решении заданий.
- Развивающая – развивать логическое мышление; технику вычисления; умение рационально работать.
- Воспитательная – содействовать воспитанию интереса к математике, воспитывать чувство самоконтроля, ответственности.
Тип урока: Урок изучения и первичного закрепления новых знаний.
Оборудование: компьютер, мультимедийный проектор, презентация «Логарифмы и их свойства», раздаточный материал.
Учебник: Алгебра и начала математического анализа,10-11. Ш. А. Алимов, Ю. М. Колягин и др., Просвещение, 2014.
Ход урока:
1. Организационный момент: проверка готовности учащихся к уроку.
2. Повторение пройденного материала.
Вопросы учителя:
1) Дать определение степени. Что называется основанием и показателем? (Корень n-ой степени из числа а называется такое число, n-я степень которого равна а. 34 = 81.)
2) Сформулируйте свойства степени.
3. Изучение новой темы.
Тема сегодняшнего урока — Логарифмы и их свойства (откройте тетради и запишите дату и тему).
На этом уроке мы познакомимся с понятием «логарифм», также рассмотрим свойства логарифмов.
Зададим вопрос:
1) В какую степень нужно возвести 5, чтобы получить 25? Очевидно, во вторую. Показатель степени, в которую нужно возвести число 5, чтобы получить 25, равен 2.
2) В какую степень нужно возвести 3, чтобы получить 27? Очевидно, в третью. Показатель степени, в которую нужно возвести число 3, чтобы получить 27, равен 3.
Во всех случаях мы искали показатель степени, в которую нужно что-то возвести, чтобы что-то получить.
Число, которое мы возводим в степень, т.е. основание степени, называется основанием логарифма и записывается в нижнем индексе. Затем пишется число, которое мы получает, т.е. число, которое мы ищем: log5 25=2
Эта запись читается так: «Логарифм числа 25 по основанию 5». Логарифм числа 25 по основанию 5- это показатель степени, в которую нужно возвести 5, чтобы получить 25. Этот показатель равен 2.
Аналогично разберём второй пример.
Дадим определение логарифма.
Определение. Логарифмом числа b>0 по основанию a>0, a ≠ 1 называется показатель степени, в которую надо возвести число a, чтобы получить число b.
Логарифмом числа b по основанию a обозначается loga b.
История возникновения логарифма:
Логарифмы были введены шотландским математиком Джоном Непером (1550-1617) и математиком Иостом Бюрги (1552-1632).
Бюрги пришел к логарифмам раньше, но опубликовал свои таблицы с опозданием (в 1620г.), а первой в 1614г. появилась работа Непера «Описание удивительной таблицы логарифмов».
С точки зрения вычислительной практики, изобретение логарифмов можно смело поставить рядом с другими, более древним великим изобретением – нашей десятичной системой нумерации.
Через десяток лет после появления логарифмов Непера английский ученый Гунтер изобрел очень популярный прежде счетный прибор – логарифмическую линейку. Она помогала астрономам и инженерам при вычислениях, она позволяла быстро получать ответ с достаточной точностью в три значащие цифры. Теперь ее вытеснили калькуляторы, но без логарифмической линейки не были бы созданы ни первые компьютеры, ни микрокалькуляторы.
Рассмотрим примеры:
log327=3; log525=2; log255=1/2;
log5 1/125=-3; log-2 (-8)- не существует; log51=0; log44=1
Рассмотрим такие примеры:
10. loga1=0, а>0, a ≠ 1;
20. logaа=1, а>0, a ≠ 1.
Эти две формулы являются свойствами логарифма. Ими можно пользоваться при решении задач.
Как перейти из логарифмического равенства к показательному? logаb=с, с – это логарифм, показатель степени, в которую нужно возвести а, чтобы получить b. Следовательно, а степени с равен b: а с= b.
Выведем основное логарифмическое тождество: а log a b = b. (Доказательство приводит учитель на доске).
Рассмотрим пример.
5 log 5 13 =13
Рассмотрим ещё важные свойства логарифмов.
Свойства логарифмов:
3°. logа ху = logах + logау.
4°. logа х/у = logах — logау.
5°. logах p = p · logах, для любого действительного p.
Рассмотрим пример на проверку 3 свойства:
log28 + log216= log2 8∙16= log2 128=7
3 +4 = 7
Рассмотрим пример на проверку 5 свойства:
3∙ log28= log283= log2512 =9
3∙3 = 9
4. Закрепление.
Задание 1. Назовите свойство, которое применяется при вычислении следующих логарифмов, и вычислите (устно):
- log66
- log 0,51
- log63+ log62
- log36- log32
- log448
Задание 2.
Перед вами 8 решённых примеров, среди которых есть правильные, остальные с ошибкой. Определите верное равенство (назовите его номер), в остальных исправьте ошибки.
- log232+ log22= log264=6
- log553 = 2;
- log345 — log35 = log340
- 3∙log24 = log2 (4∙3)
- log315 + log33 = log345;
- 2∙log56 = log512
- 3∙log23 = log227
- log2162 = 8.
Задание 3.
Работа с учебником. №271, 275, 280,290(1,2), 291(1,2)
- Проверка ЗУН – самостоятельная работа по карточкам.
Вариант 1.
Вычислите:
- log327
- log4 8
- log49 7
- log55
Вариант 2.
Вычислите:
- log416
- log25125
- log82
- log66
- Подведение итогов.
2
- Функция — Квадрат x
- ctg(x)
- Функция — Котангенс от x
- arcctg(x)
- Функция — Арккотангенс от x
- arcctgh(x)
- Функция — Гиперболический арккотангенс от
- tg(x)
- Функция — Тангенс от x
- tgh(x)
- Функция — Тангенс гиперболический от x
- cbrt(x)
- Функция — кубический корень из x
- gamma(x)
- Гамма-функция
- LambertW(x)
- Функция Ламберта
- x! или factorial(x)
- Факториал от x
- DiracDelta(x)
- Дельта-функция Дирака
- Heaviside(x)
- Функция Хевисайда
Интегральные функции:
- Si(x)
- Интегральный синус от x
- Ci(x)
- Интегральный косинус от x
- Shi(x)
- Интегральный гиперболический синус от x
- Chi(x)
- Интегральный гиперболический косинус от x
В выражениях можно применять следующие операции:
- Действительные числа
- вводить в виде 7.
3
- — возведение в степень
- x + 7
- — сложение
- x — 6
- — вычитание
- 15/7
- — дробь
Другие функции:
- asec(x)
- Функция — арксеканс от x
- acsc(x)
- Функция — арккосеканс от x
- sec(x)
- Функция — секанс от x
- csc(x)
- Функция — косеканс от x
- floor(x)
- Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
- ceiling(x)
- Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
- sign(x)
- Функция — Знак x
- erf(x)
- Функция ошибок (или интеграл вероятности)
- laplace(x)
- Функция Лапласа
- asech(x)
- Функция — гиперболический арксеканс от x
- csch(x)
- Функция — гиперболический косеканс от x
- sech(x)
- Функция — гиперболический секанс от x
- acsch(x)
- Функция — гиперболический арккосеканс от x
Постоянные:
- pi
- Число «Пи», которое примерно равно ~3.
14159..
- e
- Число e — основание натурального логарифма, примерно равно ~2,7183..
- i
- Комплексная единица
- oo
- Символ бесконечности — знак для бесконечности