Найти тангенс через синус: Синус, косинус и тангенс угла — урок. Геометрия, 9 класс.

Найдите тангенс альфа если синус

Бизнес с Oriflame — рост и РАЗВИТИЕ!

ЗАМУЧИЛИ БОЛИ В СПИНЕ?

Александр | 2012-10-03

В данной статье мы с вами разберём некоторые задачи связанные с выражениями. Задания данной группы довольно разнообразны. Если вы запомнили свойства степеней, корней и логарифмов, знаете основные формулы тригонометрии, и постоянно практикуетесь, то большинство задач для вас никакого труда не представят.

Относительную сложность могут вызывать следующие:

— преобразования буквенных иррациональных выражений
— вычисление значений тригонометрических выражений
— преобразования тригонометрических выражений

Если перечислить все группы задач, то они довольно разнообразны.

Они включают в себя: ПОКАЗАТЬ/СКРЫТЬ

Здесь мы с вами разберём задачи на вычисление значений тригонометрических выражений. Конечно, все их в одной статье разобрать невозможно. Но мы обязательно разберём и другие примеры, не пропустите!

Итак, что обязательно вы должны знать и всегда помнить? Это знаки тригонометрических функций в четвертях. ЭТО ВАЖНО!!!

Как  осознать эту  информацию и понять  следствием чего она является –  об этом будет отдельная статья (если вы это знаете, то прекрасно). Пока предлагаю пока просто запомнить:

Основное тригонометрическое тождество:

Формулы тангенса и котангенса:

Выполняются элементарные алгебраические преобразования:

1. Числитель и знаменатель дроби можем умножать и делить на одно и тоже число.
2. Левую и правую часть уравнения можем умножать и делить на одно и тоже число.

В представленных ниже заданиях используется основное тригонометрическое тождество и формула тангенса.

Найдите тангенс альфа, если

В этом и подобных примерах необходимо знать основное тригонометрическое тождество (его вообще нужно помнить всегда), а также формулу тангенса:

Косинус угла нам известен. Из формулы основного тригонометрического тождества  мы можем найти значение синуса. Затем подставить их в формулу тангенса.

Теперь ВАЖНЫЙ момент: необходимо определить знак синуса для интервала (3Пи/2;2Пи). Это интервал от 270 до 360 градусов (четвёртая четверть).  Как переводить радианы в градусы можно посмотреть здесь. Значение синуса в этой четверти отрицательное, поэтому:

Таким образом:

Ответ: – 0,5

Найдите tg α, если

В этом и подобных примерах необходимо знать основное тригонометрическое тождество (его вообще нужно помнить всегда), а также формулу тангенса:

Cинус угла нам известен. Из формулы основного тригонометрического тождества  мы можем найти значение косинуса. Затем подставить их в формулу тангенса.

Определяем знак косинуса для интервала (Пи/2;Пи). Это интервал  от 90 до 180 градусов (вторая четверть). Значение косинуса в этой четверти отрицательное (смотрите эскиз). Поэтому

Таким образом:

Ответ: – 0,25

Найдите 5·cos α, если синус альфа

Необходимо найти косинус угла. Из формулы основного тригонометрического тождества следует, что cos2x = 1– sin2x и

Определим знак косинуса. Угол принадлежит интервалу (3Пи/2;2Пи).

Это интервал от 270 до 360 градусов  (четвёртая четверть).  Значение косинуса в этой четверти  положительное, поэтому:

Таким образом, 5·cos α = 5∙0,7 = 3,5

Ответ: 3,5

Найдите 0,1·sin α, если

Необходимо найти синус угла. Из формулы основного тригонометрического тождества следует, что sin2x = 1– cos2x  и

Определим знак синуса. Угол принадлежит интервалу (0; Пи/2).

Это интервал от 0 до 90 градусов  (первая четверть).  Значение синуса в этой четверти  положительное, поэтому:

Таким образом 0,1·sin α = 0,1∙0,3 = 0,03

Ответ: 0,03

Общая рекомендация для следующих данных примеров! Если требуется найти тангенс аргумента (квадрат  тангенса), то осуществляем деление на косинус (квадрат косинуса). Если требуется найти котангенс аргумента (квадрат  котангенса), то осуществляем деление на синус (квадрат синуса). Примеры:

65217. Найдите tg2 α, если  3sin2 α + 8 cos2 α = 7

Требуется найти квадрат тангенса. Разделим обе части уравнения на cos2 α, получим:

Второй способ:

Далее по формуле основного тригонометрического тождества можно найти квадрат синуса и используя формулу тангенса вычислить уже его квадрат:

Ответ: 0, 25

65269. Найдите

Преобразуем данное выражение так, чтобы в числителе и знаменателе был тангенс. Разделим числитель и знаменатель на cos α, получим:

Ответ: – 0,5

65273. Найдите

Здесь дано значение тангенса. Необходимо сделать так, чтобы в выражении у нас был тангенс. Вынесем cosα за скобки в числителе и знаменателе (или разделим числитель и знаменатель на  cosα), получим:

Подставим значение тангенса данное в условии, получим:

*Косинус у нас сократился.

Ответ: 4

65363. Найдите tg α, если

В левой части в числителе и знаменателе вынесем cosα за скобки, получим:

Ответ: 0,4

65423. Найдите tg α, если

Умножим обе части уравнения на  4 (2sinα+cosα+1)

Ответ: –1,9

26775. Найдите tg α, если

Посмотреть решение

26776. Найдите tg α, если

Посмотреть решение

26777. Найдите 3cos α, если

Посмотреть решение

26778. Найдите 5sin α, если

Посмотреть решение

26787. Найдите  tg2 α, если

Посмотреть решение

26788. Найдите

Посмотреть решение

26789. Найдите

Посмотреть решение

26790. Найдите tg α, если

Посмотреть решение

26791. Найдите tg α, если

Посмотреть решение

Подведём итог, для решения подобных примеров вы:

1. Должны знать на зубок основные формулы тригонометрии.
2. Не забывать определять знак (+ или -) для тригонометрических функций в четвертях. Потерянный знак на экзамене – это ошибка и потерянный бал, будьте внимательны!!!

Надеюсь, что материал был для вас полезен.

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.


Категория: Выражения | ЕГЭ-№6Тригонометрия

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Замучили боль и скованность в мышцах спины?

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.


Синус, косинус и тангенс острого угла прямоугольного треугольника

Урок 25. Геометрия 8 класс ФГОС

На этом уроке мы повторим основные элементы прямоугольного треугольника. Введем понятие прилежащего и противолежащего катетов. Познакомимся с синусом, косинусом и тангенсом, понятиями, которые связывают острый угол прямоугольного треугольника с катетами и гипотенузой этого треугольника. Выведем две формулы для нахождения тангенса острого угла прямоугольного треугольника. Докажем основное тригонометрическое тождество. Подробно рассмотрим примеры, в которых надо найти синусы, косинусы и тангенсы острых углов прямоугольного треугольника.


Конспект урока «Синус, косинус и тангенс острого угла прямоугольного треугольника»

На этом уроке мы познакомимся с синусом, косинусом и тангенсом, понятиями, которые связывают острый угол прямоугольного треугольника с катетами и гипотенузой этого треугольника.

Прежде всего, давайте повторим основные сведения о прямоугольном треугольнике. Пусть нам дан прямоугольный треугольник ABC. Вершина C, угол С= 90º – прямой, гипотенуза с. Вершина А, угол α — острый, катет

a. Вершина B, угол β — острый, катет b.

Напомним, что сумма углов треугольника равна 180º, значит, сумма острых углов прямоугольного треугольника равна 90º. Мы знаем, что стороны прямоугольного треугольника связаны между собой теоремой Пифагора.

Катет, BC является противолежащим для угла А, катет AC является прилежащим для угла А. Аналогично, катет AC является противолежащим для угла B, катет BC является прилежащим для угла B.

А теперь давайте подумаем, а можно ли связать между собой стороны и углы прямоугольного треугольника?

Давайте, посмотрим на два прямоугольных треугольника с острыми углами 30º и 60º.

И давайте, попробуем найти отношение катета, противолежащего углу в тридцать градусов к гипотенузе одного и второго треугольника.

Мы видим, что это отношение одинаково в обоих треугольниках.

Теперь давайте найдем отношение катета, прилежащего к углу в тридцать градусов. И опять получили одинаковые отношения.

;

Теперь давайте найдем отношение противолежащего катета к прилежащему. И снова у нас получились одинаковые отношения.

;

Теперь давайте, рассмотрим два прямоугольных равнобедренных треугольника. Острые углы этих треугольников равны по 45º. Находя для них такие же отношения, получим, что и в этом случае эти отношения для обоих треугольников равны.

 

= ;

 = ;

;

Учеными было сделано предположение, что эти отношения не зависят от величины сторон прямоугольного треугольника, а зависят от величины острых углов прямоугольного треугольника. Для этих отношений были введены специальные названия и обозначения.

Определение: синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Определение: косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Определение: тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Теперь давайте попробуем найти отношение синуса угла α к косинусу того же угла.

; ;

Сравним полученную формулу с формулой тангенса угла α и увидим, что можно записать, что тангенс угла альфа равен отношению синуса угла альфа к косинусу угла альфа.;

Задача. Найти  треугольника  с прямым углом , если  см,  см.

Решение.

 

 (см)       

  

 

Ответ:      .

Из определения синуса,  

Из определения тангенса угла А можно получить формулу, которая связывает два катета прямоугольного треугольника. Получим, что катет a равен произведению катета b на тангенс противолежащего угла.

Задача. Пусть в прямоугольном треугольнике, один из катетов равен  см, а противолежащий угол равен . Выразить второй катет, противолежащий ему угол и гипотенузу через известный катет и угол, и найти их значение.

Решение.

Ответ: .

Теперь давайте докажем, что если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

Пусть нам даны два прямоугольных треугольника ABC и A1B1C1 с прямыми углами C и C1 и равными острыми углами А и A1. Очевидно, что углы B и B1 также будут равны. То есть наши треугольники подобны по первому признаку подобия (если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны).

Значит, справедливы равенства

Из этих равенств несложно вывести равенство отношения  а эти отношения есть ничто иное как синус угла А и синус угла A1. То есть можно записать, что .

Аналогично, можно вывести равенство отношения  то есть равенство .

А раз равны синусы и косинусы, то из формулы , получим, что . Таким образом, наше утверждение доказано.

Теперь, давайте попробуем доказать справедливость равенства:

Рассмотрим прямоугольный треугольник ABC.

Таким образом, справедливость равенства доказана.

Это равенство называют основным тригонометрическим тождеством. Синус, косинус, тангенс – тригонометрические функции.

Слово «тригонометрия» происходит от греческих слов «треугольники» и «измеряю». «Тригонометрия» — раздел математики, в котором изучают тригонометрические функции и их использование в геометрии.

Задача. Найти  если .

Решение

 или

Ответ: .

Повторим главное:

синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе;

косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе;

тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему;

Синус и косинус одного и того же угла связаны между собой основным тригонометрическим тождеством.

Предыдущий урок 24 О подобии произвольных фигур

Следующий урок 26 Значения синуса, косинуса и тангенса для углов 30, 45 и 60


Получите полный комплект видеоуроков, тестов и презентаций Геометрия 8 класс ФГОС

Чтобы добавить комментарий зарегистрируйтесь или войдите на сайт

Синус, косинус и тангенс » Ярно Воуда

1. Введение

Синус, косинус и тангенс — это функции, которые мы используем в математике для вычисления углов и сторон треугольников. На вашем калькуляторе эти функции кратко записываются как «sin», «cos» и «tan»,

Легенда

 • = Умножение
∠ = Угол
≈ = Приблизительно равно