Неравенство с параметром решение – Неравенства с параметром

Способы решения уравнений и неравенств с параметрами

Разделы: Математика


Задачи с параметрами являются самыми сложными из всех заданий школьного курса математики. Для их решения требуется умение мыслить логически: необходимо в каждый момент проведения решения достаточно отчётливо представлять себе, что уже сделано, что ещё надо сделать, что означают уже полученные результаты. В заданиях ЕГЭ по математике проверяется умение выпускника мыслить сжато, логично и аргументировано.

Имеется несколько способов решения  параметрических уравнений и неравенств׃ алгебраический, аналитический, функционально-графический. А в некоторых задачах применяются  методы математического анализа.

Суть каждого способа рассмотрена на примерах. (Приложение)

1. Алгебраический способ решения иррациональных уравнений с параметрами

Задача 1. При каких  уравнение  имеет единственное решение?

Решение:  1 способ. Обеспечим неотрицательность обеих частей, возведем в квадрат обе части уравнения:

                                    

Найдем дискриминант квадратного уравнения:

1) По условию уравнение должно иметь один корень, значит,

   но надо проверить, удовлетворяет ли это значение  ОДЗ уравнения:

.

2) Если , то только один корень уравнения должен удовлетворять условию .

а)                   

б)      Ø

Ответ:     

2 способ.  Решим это задание аналитическим способом.

Проведем графический анализ менее трудоемкий, чем построение графика  — полупараболы с вершиной х=-3;    – множество параллельных прямых, с угловым коэффициентом 2.

Рассмотрим схему расположения графиков при различных  значениях а, причем с ростом

a прямая у=2х – a перемещается вправо.

Когда прямая является касательной к полупараболе и, начиная с положения, когда прямая проходит через вершину параболы (- 3; 0),мы имеем одну точку пересечения, т. е одно решение исходного уравнения. Напишем уравнение касательной в точке

Угловой коэффициент равен 2, т. е.  =2 , — абсцисса точки касания

Тогда уравнение касательной ,    a =

При х=-3, у=0  графики пересекаются в двух точках. При этом .

А при  имеем одну точку пересечения.

Ответ: 

2. Аналитический способ решения тригонометрического уравнения с параметром

Задача 2. При каких значениях параметра a уравнение

 имеет на промежутке  не меньше 3 корней?        

Решение:

1 способ. Заменим , причем  |t| ≤ 1

             

 при  любом a.

Рассмотрим 2 случая:

1) , тогда уравнения будут иметь не больше 2 корней, но по условию должно быть не меньше 3 корней. Следовательно, этот случай не надо рассматривать.

2) ,

Рассмотрим расположение корней уравнения на тригонометрической окружности.

Видим, что при  уравнение имеет два решения. Чтобы оно имело не меньше трех решений  и .                     

Ответ:

2 способ.  Пусть  ,  , тогда . Рассмотрим график .

В промежутке  при t= — 1 уравнение  имеет один корень

При — два корня,  при — один корень.

Поэтому чтобы исходное уравнение имело не меньше 3 корней необходимо выполнение условия:

Первая система имеет 4 решения.
Вторая система имеет 3 решения.

Расположим корни квадратного трехчлена по этим двум условиям:

1) 

2)  

Объединяя 1) и 2) получаем

3. Два способа решения одного тригонометрического неравенства с параметром

Задача 3. При каких а неравенство  верно для всех х?

Решение: 1 способ. Преобразуем неравенство и приведем его к виду

Пусть. Получим неравенство   

Это значит, что парабола при 0≤t≤1 находится ниже оси ох

Рассмотрим 3 случая:

1)

Получаем условия для

2)  

Но если .

   Ø

3)

Полученное неравенство верно при любых 0≤t≤1; объединяем 3 случая и получаем ответ: .          

2 способ. Уединяем параметр

,   

Минимум f(x) достигается при ; т.к   — минимум числителя,  — максимум знаменателя. Значит,  

Максимум f(x) достигается при ; т.е .

Схема:

Заметим, что минимум числителя и  максимум знаменателя достигается при  одном и том же х.

 для всех х при

Ответ: .

4. Графически и аналитический способы решения неравенства с параметром, содержащего знак модуля

Задача 5. При каких a неравенство  выполняется для всех ?

Решение:  . Рассмотрим две функции                                                            

Построим эскизы графиков функций:

Найдем уравнение касательной в точке  функции y= |x2-4x+3|

Тогда . Так как

Подставим значение точки х0 в производную рассматриваемой  функции и получаем, что — —a=-2-4, a=4+2.

 Следовательно, при  a =4+2  y=1-ax – касательная к y=|x2-4x+3|. Значит, чтобы неравенство выполнялось, нужно, чтобы  

 II способ.

1 случай.

Это значит, что

2 случай.

А это значит, что

   

                                                                                    

        

Чтобы неравенство выполнялось при всех x:

 

Ответ: .

Решение уравнений и неравенств с параметрами алгебраическим, аналитическим и графическим способами заключается в том, что при одном способе решение может быть громоздким, а при другом — более простым и наглядным. А это говорит о том, что нужно перед началом решения задания оценить его и выбрать тот путь, который проще.

Литература

  1. Сборник задач по математике для подготовки к вступительным экзаменам УГНТУ, Уфа-2003 г.
  2. Факультативный курс по математике, 10 класс. Шарыгин.И.Ф. Москва «Просвещение» 1989 г.
  3. Уравнение с параметрами на факультативных занятиях. С.Я.Постникова. «Математика в школе», №8, 2002 г.
  4. Математика абитуриенту. В.В.Ткачук, Москва, 2002 г.

22.07.2009

urok.1sept.ru

Квадратные уравнения и неравенства с параметром

Разделы: Математика


Серия «Учимся решать задачи с параметром»

IV. Квадратные уравнения и неравенства с параметром

IV.1. Основные понятия

Определение. Функцию вида  (1), где , ,  – данные функции от параметра а, рассматриваемые на пересечении их областей определения, назовём квадратичной функцией с параметром а.

В частности, некоторые из коэффициентов или свободный член могут быть числами.

Примеры.

1. .                                                          2. .
3. .                                                    4. .
5. .                                          6.       .
7. .                                       8. . 
9. .                                    10. .

Определение. Под областью определения квадратичной функции (1) с параметром а

будем понимать всё множество пар значений х и а вида (х; а), при каждой из которых выражение  не теряет смысла.

Установим области определения  функций 1-10.

1.     2.     3.    4.     5.
6.     7.     8.     9.     10.

Если параметр принимает одно из числовых значений из , то функция (1) примет вид одной из функций с числовыми коэффициентами:

;                            ;                            ;
;                                            ;                                ;              ,

где k, b, c – действительные числа.

Обратим внимание на то, что при некоторых значениях параметра из  квадратичная функция с параметром принимает вид либо квадратичной функции без параметра, либо – линейной.

Так как квадратичная функция с параметром чаще всего «порождает» семейство квадратичных или линейных функций с числовыми коэффициентами, то говоря о

графиках квадратичной функции с параметром, мы будем подразумевать множество графиков этого семейства.

Определение. Квадратным уравнением с параметром а называется уравнение вида  (1) где , ,  – данные функции от параметра а, рассматриваемые на пересечении их областей определения.

В частности, некоторые из коэффициентов или свободный член могут быть числами.

Примеры.

, (1)
,         (2)
,    (3)
, (4)
.   (5)

Используя определение квадратичной функции с параметром, можно дать такое определение квадратного уравнения с параметром.

Определение.  Квадратным уравнением с параметром

а называется уравнение вида , где  – квадратичная функция с параметром а.

Если , то уравнение (1) является квадратным в традиционном смысле, т.е. второй степени.
Если же , то уравнение (1) становится линейным.

При всех допустимых значениях параметра а, при которых   и , по известным формулам получаем выражения корней уравнения (1) через параметр.

Те значения а, при которых , следует рассматривать отдельно в качестве особых случаев.
Так, например, уравнение (5) при  примет вид , откуда .

IV.2. Квадратные уравнения с параметром

№1. Решите уравнение .

Решение

ООУ:

 – уравнение-следствие. Получим: , .

В системе координат (аОх) завершаем решение. (Рис. 1)

 

Ответ: 1. Если , то .

2. Если , то .

3. Если , , то , .

№2. Найдите значение параметра а, при котором уравнение  имеет единственный корень. Если таких значений несколько, в ответе запишите их сумму.

Решение

ООУ:

Данное уравнение сводится к равносильной системе:

Приведём её к виду:  и решим графически в системе координат (хОа). (Рис. 2).

Уравнение имеет единственный корень при ,  и .

0 + 1 + 4 =5.

Ответ: 5.

 

№3. Найдите все значения х такие, что при любом значении параметра а, не принадлежащем промежутку (0; 2], выражение  не равно выражению . (ЕГЭ-2007).

Решение

Переформулируем задачу: «Найдите все значения х такие, что при любом значении параметра  уравнение  не имеет корней».
Выразим а через х:

; .

1) Пусть . Тогда . Поэтому уравнение имеет корни. Значит,  не удовлетворяет условию.
2) Пусть . Тогда . Воспользуемся системой координат (хОа).  (Рис. 3).

Условию удовлетворяют .

Ответ: .

 

№4. Сколько корней в зависимости от параметра а имеет уравнение ?

Решение

ООУ:

Раскроем модуль:

             

В системе координат (хОу) построим график функции

 и несколько прямых пучка параллельных прямых, задаваемых уравнением . (Рис. 4).

Ответ: 1. Если , то корней нет.

                       

2. Если , то один корень.

3. Если , то два корня.

IV.3. Квадратные неравенства с параметром

№5. Решите неравенство .

Решение

1 способ.

Учтём, что . Тогда  - решение данного неравенства при любом b.  (Рис. 5).

Если , то переходим к неравенству , множество решений которого изобразим в системе координат (bOx). (Рис. 6).

Совместим рис. 5 и 6.

 

А теперь по рис. 7, рассекая его вертикальными прямыми, легко получить ответ.

Ответ: 1. Если , то .
2. Если , то .
3. Если , то

2 способ.

Решим неравенство графическим методом в системе координат (хОb):

. (Рис. 8).

Рассмотрим два случая.

1) . Тогда неравенство примет вид , откуда .
2) , тогда .

График функции  и часть плоскости, содержащая точки, координаты которых удовлетворяют неравенству , изображены на рисунке 8.

Ответ:

1. Если , то .
2.  Если , то . 3. Если , то .

3 способ.

Привёдем теперь графическое решение в системе координат (хОу). Для этого раскроем модуль:

Рассмотрим функцию .

,  — корни квадратного трёхчлена .

Сравним  и .

1) , откуда .

Получаем совокупность                .  (Рис. 9)

 

 

2) , откуда . (Рис. 10).

Тогда  т.е. .

3) , откуда . (Рис. 11).

Тогда  т.е. .

Ответ: 1. Если , то .

2. Если , то .
3. Если , то .

№6. Найдите все значения параметра а, для которых наименьшее значение функции  больше 2.

Решение

Достаточно найти все значения параметра а, для каждого из которых для любого  верно неравенство . Перепишем неравенство в виде .

Решим его графически в системе координат (хОу).

Для этого рассмотрим функции  (1),   (2).

(1)

      (Рис. 12).

Неравенство будет выполняться для всех , если график функции  будет выше графика функции .

Рассмотрим 2 случая: 1) прямая  является касательной к графику функции ; 2) прямая  является касательной к графику функции .

1. , , , ,  - уравнение касательной. Откуда , . Тогда .

2. График функции  проходит через точку с координатами (1; 1): , откуда .

Условию задачи удовлетворяют все .

Ответ: .
№7. Решите совокупность неравенств

Решение

Установим сначала область определения совокупности:

   

Будем решать совокупность графически в системе координат (хОа). (Рис. 13).

Перепишем совокупность в виде

Введем функцию . (0; 0), (6; 0) — точки пересечения с осями координат; (3; 9) — вершина параболы.

Найдём корни квадратного трёхчлена : ; .

На рис. 13 множество решений совокупности выделено цветом (темным или светлым).

Ответ:

1. Если , то решений нет.
2. Если , то .
3. Если , то .
4. Если , то .
5. Если , то .
6. Если , то .
7. Если , то .

Рис. 13

В данной статье мы рассмотрели лишь некоторые примеры, иллюстрирующие применение графического метода к решению квадратных уравнений и неравенств с параметром. Более подробно с теорией и методикой решения линейных и квадратных уравнений, неравенств, их систем и совокупностей с параметром вы можете ознакомиться в учебном пособии: авторы Беляева Э.С., Титоренко С.А.,  Потапов А.С. «Графический метод решения линейных и квадратных уравнений и неравенств с параметром». (Воронеж: Изд-во «Наука-ЮНИПРЕСС», 2010. — 300 с.).

8.04.2011

urok.1sept.ru

Решение иррациональных уравнений и неравенств с параметрами

Разделы: Математика


Цель: Познакомить обучающихся с решением иррациональных уравнений и неравенств с параметром. Способствовать развитию навыка решения задач.

Содержание занятий.

Задачи с параметром даются в текстах ЕГЭ.

Фактически задача с одним параметром содержит не одну неизвестную , а две — и параметр Множество решений такого уравнения — это множество пар чисел , подстановка которых в уравнение обращает его в верное равенство. Аналогично, множество решений неравенства с неизвестной  и параметром

 — множество пар чисел (, обращающих его в верное числовое неравенство. На I этапе решения классифицируются типы уравнений и неравенств для каждого значения параметра, а на II этапе – решаются не одно, а несколько уравнений (неравенств) каждого типа. Выделенные два этапа не обязательно идут в строгой последовательности I, II. В процессе решения они могут «переплетаться».

Пример №1 Решить уравнение

Решение. Перепишем уравнение в виде:

 (1)

и рассмотрим его как квадратное относительно . Находим дискриминант уравнения D=. Уравнение (1) имеет решение только в случае, если .

Заметим, что уравнение (2) имеет решение тогда и только тогда, когда , т. е. при  . Решив уравнения (2) и (3), получим при

                         

Таким образом, приходим к следующему ответу:

при  уравнение имеет два корня: х1 и х2 ; при  уравнение имеет один корень: х2; при  решений нет.

Пример №2 Решить уравнение

Решение. Функция  определена и возрастает на промежутке . Наименьшее значение она принимает в точке ; . Следовательно, при  уравнение  имеет единственное решение, при  решений нет.

Итак, пусть . Переписав уравнение в виде

, (1)

возведём обе его части в квадрат:

. (2)

Уравнение (2) является следствием (1). Перепишем его в виде:

 (3)

Уравнение (3) является квадратным относительно . Решив его, получаем совокупность двух уравнений:

При  уравнение (4) решений не имеет, а уравнение (5) имеет один корень

.

Так как при любом  исходное уравнение имеет один корень, и притом только один, то найденный корень и является корнем исходного уравнения.

Ответ: При  , при  решений нет.

Пример №3. Решить уравнение

Решение. Уравнение равносильно системе

При  система решений не имеет, при  получим

Заметив, что  при  приходим к ответу: при   при  3 решений нет.

Графическое решение

Пример №4

Решить уравнение

Решение. , на множестве Д уравнение  равносильно исходному.

Уравнение  равносильно системе

Изобразим на плоскости (х;а) график функции  — это парабола с минимумом в точке , пересекающая ось  в точке

Укажем также области плоскости (х;а), в которых выполняются неравенства системы

  1.  — полуплоскость ниже прямой , не включая эту прямую;
  2.  вертикальная полоса между прямыми  и  включающая правую границу;
  3.  полуплоскость выше прямой  включая эту прямую.

Таким образом, исходное уравнение имеет решение при указанных условиях, иллюстрирующееся частью параболы, заключённой внутри трапеции АВСД, т. е. при .

При всех остальных действительных значениях  решения нет.

Ответ:  при

Решений нет при

Пример №5.

Для любого значения  решите неравенство

.

Решение. Во-первых, заметим, что левая часть неравенства представляет собой квадратный трёхчлен относительно  с корнями

 так что левая часть раскладывается на множители

. (1)

Во-вторых, при  имеем особый случай: , решением которого является .

В- третьих, заметим, что значение разности во второй скобке положительно при . Так что при  неравенство (1) можно переписать в виде

.

При  в (1) значение суммы в первой скобке положительно, то есть (1) можно переписать в виде неравенства

.

Наконец, заметим, что  входит в последний случай.

Осталось скомпоновать

Ответ: если , то ;

Если  то .

Пример №6 Для каждого значения  решите неравенство

Решение. При  неравенство не выполняется и оно равносильно системе неравенств

Рассмотрим второе  При  нет решений, а для  имеем  Первое из этих неравенств заведомо выполнено (и ). Получаем систему

Двойное неравенство этой системы непротиворечиво лишь при условии  при условии  приводит к условию .

Итак, остаётся решить последнее неравенство системы (1) при . Основная идея – решаем неравенство относительно , объявляя на время  параметром.

  1. Если , то есть  — уже решение.
  2. Если же , то есть , то

. (1/)

Дискриминант квадратного трёхчлена

,

а его корни  и . Заметим, что очевидно  при х > 0. Значит, решения неравенства (1/) суть

.

Здесь первое неравенство следует из неравенства . Остаётся  для любого  (

При  решение последнего неравенства составляют промежутки

 

С учётом  очевидно, остаётся лишь второй промежуток.

Наконец, убедимся, что при

<.

 

Установим двойное неравенство

При  каждое из них сводиться к неравенству  (легко проверить!). Остаётся лишь записать

Ответ: если , то решений нет ;

если , то .

Задачи для самостоятельной работы 

27.07.2010

urok.1sept.ru

«Вложенные условия» на примере решения неравенств с параметром

Разделы: Математика, Информатика


Программа по информатике вариативна в различных классах и школах. Поэтому рекомендуется проводить урок в 9-10 классах с хорошим уровнем знаний по математике после прохождения темы вложенные условия с применением языка программирования.

По математике учащиеся должны знать алгоритм решения линейных неравенств, иметь представление о задачах с параметром. Эти темы могут быть пройдены на элективных курсах или в классах с углублённым изучением математики.

По информатике учащиеся должны уметь писать программы на языке программирования и знать вложенные условия.

Урок проводился в 10-м классе. Информатика в этом классе изучалась с 9 класса и учащиеся проходили язык программирования Pascal. Урок проводился после изучения темы вложенные условия.

Цели:

  • Обучающие: формирование умений обобщать материал, устанавливать логические связи между этапами решения задач, показать, что предметы не изолированы друг от друга,
  • Развивающие: развитие у учащихся умения анализировать задачу перед выбором способа её решения, навыков синтеза, обобщения, продолжить формирование логического мышления при переходе от частного к общему,
  • Воспитательные: активизация интереса к приобретению новых знаний, умений и навыков.

Урок позволяет:

  • Повторить основные теоретические понятия при решения неравенств с параметром
  • Закрепить основные способы решения задач с вложенными условиями
  • Показать взаимосвязь математики и информатики

Ход урока

1. Организационный момент

2. Объявление темы, целей и задач урока, мотивация ученика

Задачи:

1) Образовательная:

– интеграция двух предметов: математики и информатики.
– применение изученного на уроках математики на практике при составлении программ на информатике.

2) Воспитательная:

– повысить интерес к математике и информатике, показав взаимосвязь изучаемых тем в рамках разных образовательных областей.

3) Развивающая:

– развитие культуры оформления задач по информатике с использованием элементов алгебры.
– развитие логического мышления.

Учитель информатики говорит о цели урока: написать алгоритм и программу для решения неравенств. Для реализации этой цели нам необходимо вспомнить все возможные варианты решения неравенств.

Рефлексия: Выбери из предложенных рисунков тот, который соответствует твоему настроению на начало урока и отметь его.

Мне хорошо, я готов к уроку! Мне безразлично. Я тревожусь, все ли у меня получится?

3. Решение неравенств с параметром

Учитель математики начинает объяснение, рассматривая различные варианты неравенств.

Линейные неравенства имеют вид: .

Если а>0, то (не меняется знак неравенства)

Если а<0, то (знак неравенства меняется на противоположный)

Если а=0, то необходимо рассматривать не только знак неравенства, но и значение параметра b.

Например.

1)

2)

3)

4)

В случаях 1)-4) знак неравенства может быть и нестрогим.

5)

6)

7)

8) .

№ 1. Решить неравенство:

1) Если m-5>0, т.е. m>5, то

2) Если m-5<0, т.е. m<5, то

3) Если m-5=0, т.е. m=5, то

Ответ:

1) при m>5;

2) х- любое при m=5;

3) при m<5.

Учитель информатики

Предлагается нарисовать блок-схему к примеру aх+b>0.

Вызывается ученик и с помощью учителя рассматривает все возможные варианты решения задачи и рисует блок-схему,.

В данной задаче могут быть следующие варианты:

  1. а=0
  1. b>0 и тогда программа должна вывести “x – любое число”
  2. b<0 и тогда программа должна вывести “нет решений”
  1. а<>0
  1. а>0 и тогда программа должна вывести “x>”,-b/a
  2. a<0 и тогда программа должна вывести “x<”,-b/a

Учитель математики предлагает разобрать следующий пример.

№ 2. Решить неравенство вида .

Применим метод интервалов. Корень числителя: . Корень знаменателя .

Рассмотрим различные значения параметров а и b.

5) Если то неравенство примет вид , х=0 – четный корень и неравенство решений не имеет.

6) Если то неравенство примет вид , х=0 – четный корень и решениями неравенства будут .

 

7) Если b=0 , то неравенство не имеет смысла.

Учитель информатики

Предлагается нарисовать блок-схему к примеру , ограничение b<>0

Вызывается ученик и с помощью учителя рассматривает все возможные варианты решения задачи и рисует блок-схему,

В данной задаче могут быть следующие варианты:

  1. а=0
  1. b>0 и тогда программа должна вывести “нет решений”
  2. b<0 и тогда программа должна вывести “x >0 или x<0”
  1. а<>0

a. а>0 и тогда рассматриваем b

  • b>0 и тогда программа должна вывести –a, “<x<0”
  • b<0 и тогда программа должна вывести “x>0 или x<”,-a

b. a<0 и тогда рассматриваем b

  • b>0 и тогда программа должна вывести “0<x<”,-a
  • b<0 и тогда программа должна вывести “x>0 или x<”,-a

4. Домашнее задание

Написать программы и контрольные группы для разобранных примеров.

Рефлексия. Выбери из предложенных рисунков тот, который соответствует твоему настроению на конец урока и отметь его.

Мне понравилось, я доволен собой! Мне всё равно. Мне грустно, я не всё усвоил.

5. Итог урока

Повторены основные этапы решения задач с параметром на примере линейных неравенств.

Для решения математических задач можно применять вложенные условия. На следующем уроке мы проверим и наберём программу, которая при любых значениях Х, выдаст результат решения неравенств.

Умение применять знания математики и, в частности, решение неравенств необходимо при подготовке к ЕГЭ, т.к. задачи такого типа могут входить в часть С экзамена по информатике.

Использованная литература

Крылов С.С., Лешинер И.Р., Якушкин П.А. Информатика, Учебно-тренировочные материалы для подготовки учащихся, Интеллект-центр, 2007.

5.01.2010

urok.1sept.ru

9-й класс. Урок по теме «Решение уравнений и неравенств с параметром»

Разделы: Математика


Цель: Выработка навыка решения уравнений и неравенств с параметром различными способами. Развитее творческих способностей, математической культуры.
.
Приложение. Рисунки к уроку

Ход урока

I. Устно:

а) Сравнить: –а и 3а

  • если а=0, то –а=3а
  • если а<0, то –а>3а
  • если а>0, то –а<3а

б) Решить уравнение: ах=1

  • если а=0, то 0х=1 нет решений
  • если а≠0, то х=1/а

в) Решить неравенство: ах<1

  • если а=0, то 0<1 верно х- любое
  • если а>0, то х<1; х<1/а
  • если а<0, то х>1/а

г) Решить неравенство: ах>1

  • если а=0, то 0>1 нет решений
  • а>0, то х>1/a
  • а<0, то x<1/a

II. Сегодня на уроке решение уравнений и неравенств, содержащих модуль и параметр.

На карточках за доской учащиеся решают

1 ученик

1) Решить неравенство: |x+3|> -a²

  • если а=0, то |x+3|>0 при всех х≠-3
  • если а≠0, то x- любое

2 ученик

2) Решить уравнение |x²-1|+|a(x-1)|=0

Это возможно только при

Рассмотрим второе уравнение а(х-1)=0

а) если а≠0, то х=1, что уд. первому ур-нию

б) если а=0, то х- любое, но из первого х=±1

Ответ:

  • при а≠0, х=1
  • при а=0, х=±1.

3 ученик. Решить уравнение для каждого а

4 ученик. При каждом действительном значении а вычислить сумму различных действительных корней уравнения

5 ученик. При каких значениях параметра а уравнение |x²-2x-3|=a имеет ровно 3 корня. (Графический способ)

Построим график функции у=х²-2х-3

1) х²-2х-3=0

х1=-1 х2=3

(-1;0) (3;0)

Точки пересечения с осью ох

2) хв= =1

ув=1-2-3=-4

(1;-4)- вершина

3)

Рисунок №1

  • при а<0 решений нет
  • при а=0 2 решения х1=-1 х2=3
  • при 0<a<4 4 решения
  • при а=4 3 решения х1=1 х2,3=1±2√2
  • при а>4 2 решения

III Работа с классом.

1. Решить уравнение для каждого m

mx+1=x+m

mx-x=m-1

(m-1)[=m-1

1) если m=1, то 0х=0 х- любое

2) если m≠1, то х=1

2. Для каждого а решить уравнение.

=2

3. Решить неравенство

2ах+5>а+10х

2(а-5)х>а-5

а) при а=5 нет решений 0х>0

б) при а-5>0

а>5

х> x>

в) при а<5 x<

4. Решить для каждого а

ах²-5х+1=0

1) а=0 -5х+1=0

х=

2) а≠0 Д=25-4а

а) Д=0, 25-4а=0

4а=25

а=

х=; x=5:

x=

б) Д<0, 25-4а<0

-4a<-25

a> нет решений

в) Д>0, а< и а≠0

х=

5. Найти значение параметра а при каждом из которых уравнения

(а-2)х²-2ах+2а-3=0 положительны.

1 способ.

а≠2 а)

  рисунок №2  рисунок №3

Рисунок №10

При х1>0, x2>0

6. Для каждого m решить уравненине

m²x-m²+6=4x+m

(m²-4)x=m²+m²-6

1) m=±2

m=2, 0x=12 нет решений

m=-2, 0x=8 нет решений

2) m≠±2,

при m=2, х- любое

7. При каком m корни уравнения x²-2x+m=0 удовлетворяет условию

7х²-2х1=47

8. При каких значениях в корне уравнения х²-2(b+2)x+b²+12=0

 рисунок №11

Рисунок №12

IV. Подведение итогов урока.   

V. Домашнее задание:

1. Найти все значения а, при котором сумма квадратов корней уравнения х²-ах+а+7=0 равнялось 10

2. Задание №5 …

3. №3 оформить в тетрадь

4. а) 3+кх≤3х+к

б) ах-6≤2а-3х

12.06.2009

Поделиться страницей:

urok.1sept.ru

Урок «Решение неравенств с модулем, содержащих параметр»

Разделы: Математика


Тема: Решение неравенств с модулем, содержащих параметр.

Цели урока:

Обучающая познакомить с методом решения неравенств с модулем, содержащих параметр.
Развивающая — развитие познавательной активности, логического мышления.
Воспитательная — воспитание организованности, внимания, математической наблюдательности.

ТСО: Проектор, компьютер. Дискета со приложениями №1,№2. Переносная доска.

Наглядность: таблица с формулами

Ход урока:

I. Актуализация знаний и проверка домашнего задания.

Вступительное слово учителя.

Задачи  с параметром встречаются на ЕГЭ в группе «С» под номерами 3 и 5.
Так как среди вас есть те, кто претендует на высокий балл, то тема важна для изучения. Начнем с повторения ключевых задач по теме «Решение  неравенств с модулем».
Назовите идею решения  неравенств, записанных на доске и решите их:

Ответы. Ученик.

Фёдоров С.

Свиршевская М.

Васильева А.

Михеев А.

На переносной доске работает Клинов А.
Решить неравенство:              
Приходилось ли вам встречать и другие способы решения неравенств?

Ответ: графический. Приложение 1.
Рассмотрим, в чем заключается графический способ решения.
Решить неравенство : 
Соловцов:  – строим графики функций   
Отмечаем точку пересечения графиков А.
Знак  >  понимаем так, что 1 график выше графика 2 и пишем ответ: X < 2

Приложение 1.

Повторим алгоритм решения линейных неравенств с параметром: 
Клинов А. объясняет решение на переносной доске. 
x(a+1)<a
если  
если
если

II. Изучение новой темы:

Учитель: рассмотрим  методы решения типовых примеров.

В числовых неравенствах заменив число  на букву,  получим неравенство с параметром.
Рассмотрим методы решения  этих неравенств. Они аналогичны рассмотренным способам решения неравенств с модулем.

Т.к. знак модуля определён, т.е.    
Решение зависит от выражения  а+1

Учитель: решим следующее неравенство:


Ответ:
Если ;

Учитель: Решим 3 пример.

Какими способами можно решить неравенство, если бы вместо буквы а  стояло число?
Ответ: возведение обеих частей неравенства в квадрат, методом «промежутков».
Те же способы применяются и для неравенства с параметром.
Методом «промежутков» пойдет решать Семенова Д.
Методом возведения в квадрат- Федоров С.
,
,

Проверили решения данного примера.
Каким еще способом можно решить данное неравенство?
Ответ:  графический.
Показывается приложение 2.
1.Строим графики функций
Найдем те значения переменной Х, когда  первый график лежит выше второго.

Приложение 2.
Возможны варианты,  когда а < 5  и а > 5


Рассмотрев различные способы решения, сделаем вывод- какой метод наиболее рациональный? Какими методами можно решить неравенства с параметром?

Вывод:
Методы решения неравенств с модулем, содержащие параметр, аналогичны тем, что применяются при решении числовых неравенств с модулем: по определению модуля, возведение обеих частей в квадрат, метод интервалов, графический. Необходимо выбирать наиболее рациональный.

Домашнее задание:
Подобрать и решить 3 уравнения с модулем, 3 неравенства  с модулем и 3 неравенства с модулем, содержащие параметр. Можно придумать самим.

16.02.2009

Поделиться страницей:

urok.1sept.ru

Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)

Курсовая работа

Исполнитель: Бугров С К.

Москва, 2003

Введение

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые Вузы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса математики рассматривается только на немногочисленных факультативных занятиях.

Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. На мой взгляд графический метод является удобным и быстрым способом решения уравнений и неравенств с параметрами.

В моём реферате рассмотрены часто встречающиеся типы уравнений, неравенств и их систем, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов и при поступлении а ВУЗ.

§ 1. Основные определения

Рассмотрим уравнение

¦(a, b, c, …, k, x)=j(a, b, c, …, k, x), (1)

где a, b, c, …, k, x -переменные величины.

Любая система значений переменных

а = а0, b = b0, c = c0, …, k = k0, x = x0,

при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных a, b, c, …, k, x. Пусть А – множество всех допустимых значений а, B – множество всех допустимых значений b, и т.д., Х – множество всех допустимых значений х, т.е. аÎА, bÎB, …, xÎX. Если у каждого из множеств A, B, C, …, K выбрать и зафиксировать соответственно по одному значению a, b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным.

Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.

Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z.

Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.

Два уравнения, содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.

§ 2. Алгоритм решения.

Находим область определения уравнения.

Выражаем a как функцию от х.

В системе координат хОа строим график функции а=¦(х) для тех значений х, которые входят в область определения данного уравнения.

Находим точки пересечения прямой а=с, где сÎ(-¥;+¥) с графиком функции а=¦(х).Если прямая а=с пересекает график а=¦(х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а=¦(х) относительно х.

Записываем ответ.

I. Решить уравнение

(1)

Решение.

Поскольку х=0 не является корнем уравнения, то можно разрешить уравнение относительно а :

или

График функции – две “склеенных” гиперболы. Количество решений исходного уравнения определяется количеством точек пересечения построенной линии и прямой у=а.

Если а Î (-¥;-1]È(1;+¥)È

, то прямая у=а пересекает график уравнения (1) в одной точке. Абсциссу этой точки найдем при решении уравнения относительно х.

Таким образом, на этом промежутке уравнение (1) имеет решение

.

Если а Î

, то прямая у=а пересекает график уравнения (1) в двух точках. Абсциссы этих точек можно найти из уравнений и , получаем и .

Если а Î

, то прямая у=а не пересекает график уравнения (1), следовательно решений нет.

Ответ:

Если а Î (-¥;-1]È(1;+¥)È

, то ;

Если а Î

, то , ;

Если а Î

, то решений нет.

II. Найти все значения параметра а, при которых уравнение

имеет три различных корня.

Решение.

Переписав уравнение в виде

и рассмотрев пару функций , можно заметить, что искомые значения параметра а и только они будут соответствовать тем положениям графика функции , при которых он имеет точно три точки пересечения с графиком функции .

В системе координат хОу построим график функции

). Для этого можно представить её в виде и, рассмотрев четыре возникающих случая, запишем эту функцию в виде

Поскольку график функции

– это прямая, имеющая угол наклона к оси Ох, равный , и пересекающая ось Оу в точке с координатами (0 , а), заключаем, что три указанные точки пересечения можно получить лишь в случае, когда эта прямая касается графика функции . Поэтому находим производную

Ответ:

.

III. Найти все значения параметра а, при каждом из которых система уравнений

имеет решения.

Решение.

Из первого уравнения системы получим

при Следовательно, это уравнение задаёт семейство “полупарабол” — правые ветви параболы “скользят” вершинами по оси абсцисс.

Выделим в левой части второго уравнения полные квадраты и разложим её на множители

Множеством точек плоскости

, удовлетворяющих второму уравнению, являются две прямые и

Выясним, при каких значениях параметра а кривая из семейства “полупарабол” имеет хотя бы одну общую точку с одной из полученных прямых.

Если вершины полупарабол находятся правее точки А, но левее точки В (точка В соответствует вершине той “полупараболы”, которая касается

прямой

mirznanii.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *