ОглавлениеПРЕДИСЛОВИЕ К ДЕВЯТОМУ ИЗДАНИЮПРЕДИСЛОВИЕ К ПЯТОМУ ИЗДАНИЮ ГЛАВА I. ЧИСЛО. ПЕРЕМЕННАЯ. ФУНКЦИЯ § 2. Абсолютная величина действительного числа § 3. Переменные и постоянные величины § 4. Область изменения переменной величины § 5. Упорядоченная переменная величина. Возрастающая и убывающая переменные величины Ограниченная переменная величина § 6. Функция § 7. Способы задания функции § 8. Основные элементарные функции. Элементарные функции § 9. Алгебраические функции § 10. Полярная система координат Упражнения к главе I ГЛАВА II. ПРЕДЕЛ. НЕПРЕРЫВНОСТЬ ФУНКЦИЙ § 1. Предел переменной величины. Бесконечно большая переменная величина § 2. Предел функции § 3. Функция, стремящаяся к бесконечности. Ограниченные функции § 4. Бесконечно малые и их основные свойства § 5. Основные теоремы о пределах § 6. Предел функции (sin x)/x при x->0 § 7. Число e § 8. Натуральные логарифмы § 9. Непрерывность функций § 10. Некоторые свойства непрерывных функций § 11. n при n целом и положительном § 6. Производные от функций y = sinx; y = cosx § 7. Производные постоянной, произведения постоянной на функцию, суммы, произведения, частного § 8. Производная логарифмической функции § 9. Производная от сложной функции § 10. Производные функций y = tgx, y = ctgx, y = ln|x| § 11. Неявная функция и ее дифференцирование § 12. Производные степенной функции при любом действительном показателе, показательной функции, сложной показательной функции § 13. Обратная функция и ее дифференцирование § 14. Обратные тригонометрические функции и их дифференцирование § 15. Таблица основных формул дифференцирования § 16. Параметрическое задание функции § 17. Уравнения некоторых кривых в параметрической форме § 18. Производная функции, заданной параметрически § 19. Гиперболические функции § 20. Дифференциал § 21. Геометрическое значение дифференциала Рассмотрим функцию § 23. x, sin x, cos x Упражнения к главе IV ГЛАВА V. ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ФУНКЦИЙ § 2. Возрастание и убывание функции § 3. Максимум и минимум функций § 4. Схема исследования дифференцируемой функции на максимум и минимум с помощью первой производной § 5. Исследование функции на максимум и минимум с помощью второй производной § 6. Наибольшее и наименьшее значения функции на отрезке § 7. Применение теории максимума и минимума функций к решению задач § 8. Исследование функции на максимум и минимум с помощью формулы Тейлора § 9. Выпуклость и вогнутость кривой. Точки перегиба § 10. Асимптоты § 11. Общий план исследования функций и построения графиков § 12. Исследование кривых, заданных параметрически Упражнения к главе V ГЛАВА VI. КРИВИЗНА КРИВОЙ § 1. Длина дуги и ее производная § 2. Кривизна § 3. Вычисление кривизны § 4. Вычисление кривизны линии, заданной параметрически § 5. Вычисление кривизны линии, заданной уравнением в полярных координатах § 6. Радиус и круг кривизны. Центр кривизны. Эволюта и эвольвента § 7. Свойства эволюты § 8. Приближенное вычисление действительных корней уравнения Упражнения к главе VI ГЛАВА VII. КОМПЛЕКСНЫЕ ЧИСЛА, МНОГОЧЛЕНЫ § 1. Комплексные числа. Исходные определения § 2. Основные действия над комплексными числами § 3. Возведение комплексного числа в степень и извлечение корня из комплексного числа § 4. Показательная функция с комплексным показателем и ее свойства § 5. Формула Эйлера. Показательная форма комплексного числа § 6. Разложение многочлена на множители § 7. О кратных корнях многочлена § 8. Разложение многочлена на множители в случае комплексных корней § 10. Интерполяционная формула Ньютона § 11. Численное дифференцирование § 12. О наилучшем приближении функций многочленами. Теория Чебышева Упражнения к главе VII ГЛАВА VIII. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ § 1. Определение функции нескольких переменных § 2. Геометрическое изображение функции двух переменных § 3. Частное и полное приращение функции § 4. Непрерывность функции нескольких переменных § 5. Частные производные функции нескольких переменных § 6. Геометрическая интерпретация частных производных функции двух переменных § 7. Полное приращение и полный дифференциал § 8. Применение полного дифференциала в приближенных вычислениях § 9. Приложение дифференциала к оценке погрешности при вычислениях § 10. Производная сложной функции. Полная производная. Полный дифференциал сложной функции § 11. Производная от функции, заданной неявно § 12. Частные производные различных порядков § 13. Поверхности уровня § 14. Производная по направлению § 15. Градиент § 16. Формула Тейлора для функции двух переменных § 17. Максимум и минимум функции нескольких переменных § 18. Максимум и минимум функции нескольких переменных, связанных данными уравнениями (условные максимумы и минимумы) § 19. Получение функции на основании экспериментальных данных по методу наименьших квадратов § 20. Особые точки кривой Упражнения к главе VIII ГЛАВА IX. ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ К ГЕОМЕТРИИ В ПРОСТРАНСТВЕ § 1. Уравнения кривой в пространстве § 2. Предел и производная векторной функции скалярного аргумента. Уравнение касательной к кривой. Уравнение нормальной плоскости § 4. Первая и вторая производные вектора по длине дуги. Кривизна кривой. Главная нормаль. Скорость и ускорение точки в криволинейном движении § 5. Соприкасающаяся плоскость. Бинормаль. Кручение. § 6. Касательная плоскость и нормаль к поверхности Упражнения к главе IX ГЛАВА X. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ § 1. Первообразная и неопределенный интеграл § 2. Таблица интегралов § 3. Некоторые свойства неопределенного интеграла § 4. Интегрирование методом замены переменной или способом подстановки § 5. Интегралы от некоторых функций, содержащих квадратный трехчлен § 6. Интегрирование по частям § 7. Рациональные дроби. Простейшие рациональные дроби и их интегрирование § 8. Разложение рациональной дроби на простейшие § 9. Интегрирование рациональных дробей § 10. Интегралы от иррациональных функций § 11. Интегралы вида … § 12. Интегрирование некоторых классов тригонометрических функций § 13. Интегрирование некоторых иррациональных функций с помощью тригонометрических подстановок § 14. О функциях, интегралы от которых не выражаются через элементарные функции Упражнения к главе X ГЛАВА XI. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ § 1. Постановка задачи. Нижняя и верхняя интегральные суммы § 2. Определенный интеграл. Теорема о существовании определенного интеграла § 3. Основные свойства определенного интеграла § 4. Вычисление определенного интеграла. Формула Ньютона — Лейбница § 5. Замена переменной в определенном интеграле § 6. Интегрирование по частям § 7. Несобственные интегралы § 8. Приближенное вычисление определенных интегралов § 9. § 10. Интегралы, зависящие от параметра. Гамма-функция § 11. Интегрирование комплексной функции действительной переменной Упражнения кглаве XI ГЛАВА XII. ГЕОМЕТРИЧЕСКИЕ И МЕХАНИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА § 1. Вычисление площадей в прямоугольных координатах § 2. Площадь криволинейного сектора в полярных координатах § 3. Длина дуги кривой § 4. Вычисление объема тела по площадям параллельных сечений § 5. Объем тела вращения § 6. Площадь поверхности тела вращения § 7. Вычисление работы с помощью определенного интеграла § 8. Координаты центра масс § 9. Вычисление момента инерции линии, круга и цилиндра с помощью определенного интеграла Упражнения к главе XII |
21.2. Функция, заданная параметрически
Пусть зависимость между аргументом х и функцией у задана параметрически в виде двух уравнений
где t — вспомогательная переменная, называемая параметром.
Найдем производную у’х, считая, что функции (21.1) имеют производные и что функция х=x(t) имеет обратную t=φ(х). По правилу дифференцирования обратной функции
Функцию у=ƒ(х), определяемую параметрическими уравнениями (21.1), можно рассматривать как сложную функцию у=y(t), где t=φ(х). По правилу дифференцирования сложной функции имеем: у’х=y’t•t’x. С учетом равенства (21.2) получаем
Полученная формула позволяет находить производную у’х от функции заданной параметрически, не находя непосредственной зависимости у от х.
<< Пример 21.2
Пусть
Найти у’х.
Решение: Имеем x’t=3t2, y’t=2t. Следовательно, у’х=2t/t2, т. е.
В этом можно убедиться, найдя непосредственно зависимость у от х.
Действительно, Тогда Отсюда т. е.
22. Логарифмическое дифференцирование
В ряде случаев для нахождения производной целесообразно заданную функцию сначала прологарифмировать. А затем результат продифференцировать. Такую операцию называют логарифмическим дифференцированием.
<< Пример 22.1
Найти производную функции
Решение: Пользуясь формулой (22.1), получаем:
Отметим, что запоминать формулу (22.1) необязательно, легче запомнить суть логарифмического дифференцирования.
Существуют функции, производные которых находят лишь логарифмическим дифференцированием. К их числу относится так называемая степенно-показательная функция у=uv, где u=u(x) и ν=ν(х) — заданные дифференцируемые функции от х. Найдем производную этой функции:
Сформулируем правило запоминания формулы (22.1): производная степенно-показательной функции равна сумме производной показательной функции, при условии u=const, и производной степенной функции, при условии ν=const.
§23. Производные высших порядков
Додати до моєї бази знань | Математика |
23.
Производные высших порядков23.1. Производные высших порядков явно заданной функции
Производная у’=ƒ'(х) функции у=ƒ(х) есть также функция от х и называется производной первого порядка.
Если функция ƒ'(х) дифференцируема, то ее производная называется производной второго порядка и обозначается у»
Итак, у»=(у’)’.
Производная от производной второго порядка, если она существует, называется производной третьего порядка и обозначается у'» (или ƒ'»(х)). Итак, у'»=(y»)’
Производной n-го порядка (или n-й производной) называется производная от производной (n-1) порядка:
y(n)=(y(n-1))¢ .
Производные порядка выше первого называются производными высших порядков.
Начиная с производной четвертого порядка, производные обозначают римскими цифрами или числами в скобках (уν или у(5)— производная пятого порядка).
<< Пример 23.1
Найти производную 13-го порядка функции у=sinx.
Решение:
23.2. Механический смысл производной второго порядка
Пусть материальная точка М движется прямолинейно по закону S=f(t). Как уже известно, производная S¢ t равна скорости точки в данный момент времени: S’t=V.
Покажем, что вторая производная от пути по времени есть величина, ускорения прямолинейного движения точки, т. е. S»=α.
Пусть в момент времени t скорость точки равна V, а в момент t+∆t — скорость равна V+∆V, т. е. за промежуток времени ∆t скорость изменилась на величину ∆V.
Отношение ∆V/∆t выражает среднее ускорение движения точки за время ∆t. Предел этого отношения при ∆t→0 называется ускорением точки М в данный момент t и обозначается буквой α:
Но V=S’t. Поэтому α=(S’t)’, т. е. α=S’t‘
Численность, математика и статистика — Набор академических навыков
Параметрические функции
ContentsToggle Главное меню 1 Определение 2 Построение графиков 2. 1 Определение 3 Декартово уравнение 3.1 Определение 3.2 Рабочие примеры 4 Нахождение градиента 4.1 Определение 4.2 Рабочий пример 5 Рабочая тетрадь 6 См. также 7 Внешние ресурсы
Определение
Параметрическое уравнение — это уравнение, в котором координаты кривой $x$ и $y$ записываются как функции другой переменной, называемой параметром; обычно это обозначается буквой $t$ или $\theta$. 92$.
Решение
Составьте таблицу и для каждого значения $t$ вычислите соответствующие значения $x$ и $y$.
т | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
х | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
г | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
Теперь у нас есть таблица координат $x$ и $y$, которую можно легко изобразить на графике.
Декартово уравнение
Определение 92$ и $y=2t$ в декартовой форме.
Решение
Изменить первое уравнение, чтобы сделать $t$ предметом
\[t = \sqrt{x}.\]
Подставить это во второе уравнение, чтобы исключить параметр $t$
\[y = 2\sqrt{x}.\]
Таким образом, декартова форма этих параметрических уравнений равна
\[y = 2\sqrt{x}.\]
Рабочий пример
Выразите параметрические уравнения $x = 3 \sin\theta$ и $y=4\cos\theta$ в декартовой форме.
92}{9} = 1\]Нахождение градиента
Определение
Чтобы найти градиент , мы используем цепное правило. Мы дифференцируем оба наших уравнения и используем правило: frac{\mathrm{d}t}{\mathrm{d}x}\] В качестве альтернативы параметрические уравнения можно сначала преобразовать в декартовы уравнения, а затем продифференцировать как обычно.
Рабочий пример
Найдите градиент кривой, заданной параметрическими уравнениями $x=t^2$ и $y=2t$. 92\; \Rightarrow \dfrac{\mathrm{d}x}{\mathrm{d}t} = 2t\]
Наконец, подставьте их в приведенную выше формулу цепного правила. Не забудьте перевернуть $\dfrac{\mathrm{d}x}{\mathrm{d}t}$, так как нам нужно $\dfrac{\mathrm{d}t}{\mathrm{d}x}$ в формула.
\[\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \times \frac{1}{2t}\]
\[\frac{\mathrm{d}y} {\ mathrm {d} x} = \ frac {2} {2t} \]
\[\ frac {\ mathrm {d} y} {\ mathrm {d} x} = \ frac {1} {t} \]
Рабочая тетрадь
Это рабочая тетрадь по графикам функций и параметрической форме, разработанная HELM.
Это рабочая тетрадь по параметрическим кривым, разработанная HELM.
См. также
- Параметрическое дифференцирование
Внешние ресурсы
- Рабочая тетрадь по параметрическому дифференцированию в math center.
Параметрическое уравнение | Определение и факты
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- В этот день в истории
- Викторины
- Подкасты
- Словарь
- Биографии
- Резюме
- Популярные вопросы
- Инфографика
- Демистификация
- Списки
- #WTFact
- Товарищи
- Галереи изображений
- Прожектор
- Форум
- Один хороший факт
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- Britannica объясняет
В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы. - Britannica Classics
Посмотрите эти ретро-видео из архивов Encyclopedia Britannica. - Demystified Videos
В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы. - #WTFact Видео
В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти. - На этот раз в истории
В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
- Студенческий портал
Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д. - Портал COVID-19
Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня. - 100 Women
Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.