Параметрическая функция: Дифференциальное и интегральное исчисления для втузов, т.1

Дифференциальное и интегральное исчисления для втузов, т.1

  

Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов, т.1: Учебное пособие для втузов.— 13-е изд.— М.: Наука. Главная редакция физико-математической литературы, 1985. — 432 с.

Хорошо известное учебное пособие по математике для втузов с достаточно широкой математической подготовкой.

Первый том включает разделы: введение в анализ, дифференциальное исчисление (функций одной и нескольких переменных), неопределенный и определенный интегралы.

Настоящее издание не отличается от предыдущего (1978 г.).

Для студентов высших технических учебных заведений.



Оглавление

ПРЕДИСЛОВИЕ К ДЕВЯТОМУ ИЗДАНИЮ
ПРЕДИСЛОВИЕ К ПЯТОМУ ИЗДАНИЮ
ГЛАВА I. ЧИСЛО. ПЕРЕМЕННАЯ. ФУНКЦИЯ
§ 1. Действительные числа.
§ 2. Абсолютная величина действительного числа
§ 3. Переменные и постоянные величины
§ 4. Область изменения переменной величины
§ 5. Упорядоченная переменная величина. Возрастающая и убывающая переменные величины Ограниченная переменная величина
§ 6. Функция
§ 7. Способы задания функции
§ 8. Основные элементарные функции. Элементарные функции
§ 9. Алгебраические функции
§ 10. Полярная система координат
Упражнения к главе I
ГЛАВА II. ПРЕДЕЛ. НЕПРЕРЫВНОСТЬ ФУНКЦИЙ
§ 1. Предел переменной величины. Бесконечно большая переменная величина
§ 2. Предел функции
§ 3. Функция, стремящаяся к бесконечности. Ограниченные функции
§ 4. Бесконечно малые и их основные свойства
§ 5. Основные теоремы о пределах
§ 6. Предел функции (sin x)/x при x->0
§ 7. Число e
§ 8. Натуральные логарифмы
§ 9. Непрерывность функций
§ 10. Некоторые свойства непрерывных функций
§ 11.
n при n целом и положительном
§ 6. Производные от функций y = sinx; y = cosx
§ 7. Производные постоянной, произведения постоянной на функцию, суммы, произведения, частного
§ 8. Производная логарифмической функции
§ 9. Производная от сложной функции
§ 10. Производные функций y = tgx, y = ctgx, y = ln|x|
§ 11. Неявная функция и ее дифференцирование
§ 12. Производные степенной функции при любом действительном показателе, показательной функции, сложной показательной функции
§ 13. Обратная функция и ее дифференцирование
§ 14. Обратные тригонометрические функции и их дифференцирование
§ 15. Таблица основных формул дифференцирования
§ 16. Параметрическое задание функции
§ 17. Уравнения некоторых кривых в параметрической форме
§ 18. Производная функции, заданной параметрически
§ 19. Гиперболические функции
§ 20. Дифференциал
§ 21. Геометрическое значение дифференциала Рассмотрим функцию
§ 22. Производные различных порядков
§ 23. x, sin x, cos x
Упражнения к главе IV
ГЛАВА V. ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ФУНКЦИЙ
§ 2. Возрастание и убывание функции
§ 3. Максимум и минимум функций
§ 4. Схема исследования дифференцируемой функции на максимум и минимум с помощью первой производной
§ 5. Исследование функции на максимум и минимум с помощью второй производной
§ 6. Наибольшее и наименьшее значения функции на отрезке
§ 7. Применение теории максимума и минимума функций к решению задач
§ 8. Исследование функции на максимум и минимум с помощью формулы Тейлора
§ 9. Выпуклость и вогнутость кривой. Точки перегиба
§ 10. Асимптоты
§ 11. Общий план исследования функций и построения графиков
§ 12. Исследование кривых, заданных параметрически
Упражнения к главе V
ГЛАВА VI. КРИВИЗНА КРИВОЙ
§ 1. Длина дуги и ее производная
§ 2. Кривизна
§ 3. Вычисление кривизны
§ 4. Вычисление кривизны линии, заданной параметрически
§ 5. Вычисление кривизны линии, заданной уравнением в полярных координатах
§ 6. Радиус и круг кривизны. Центр кривизны. Эволюта и эвольвента
§ 7. Свойства эволюты
§ 8. Приближенное вычисление действительных корней уравнения
Упражнения к главе VI
ГЛАВА VII. КОМПЛЕКСНЫЕ ЧИСЛА, МНОГОЧЛЕНЫ
§ 1. Комплексные числа. Исходные определения
§ 2. Основные действия над комплексными числами
§ 3. Возведение комплексного числа в степень и извлечение корня из комплексного числа
§ 4. Показательная функция с комплексным показателем и ее свойства
§ 5. Формула Эйлера. Показательная форма комплексного числа
§ 6. Разложение многочлена на множители
§ 7. О кратных корнях многочлена
§ 8. Разложение многочлена на множители в случае комплексных корней
§ 9. Интерполирование. Интерполяционная формула Лагранжа
§ 10. Интерполяционная формула Ньютона
§ 11. Численное дифференцирование
§ 12. О наилучшем приближении функций многочленами. Теория Чебышева
Упражнения к главе VII
ГЛАВА VIII. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 1. Определение функции нескольких переменных
§ 2. Геометрическое изображение функции двух переменных
§ 3. Частное и полное приращение функции
§ 4. Непрерывность функции нескольких переменных
§ 5. Частные производные функции нескольких переменных
§ 6. Геометрическая интерпретация частных производных функции двух переменных
§ 7. Полное приращение и полный дифференциал
§ 8. Применение полного дифференциала в приближенных вычислениях
§ 9. Приложение дифференциала к оценке погрешности при вычислениях
§ 10. Производная сложной функции. Полная производная. Полный дифференциал сложной функции
§ 11. Производная от функции, заданной неявно
§ 12. Частные производные различных порядков
§ 13. Поверхности уровня
§ 14. Производная по направлению
§ 15. Градиент
§ 16. Формула Тейлора для функции двух переменных
§ 17. Максимум и минимум функции нескольких переменных
§ 18. Максимум и минимум функции нескольких переменных, связанных данными уравнениями (условные максимумы и минимумы)
§ 19. Получение функции на основании экспериментальных данных по методу наименьших квадратов
§ 20. Особые точки кривой
Упражнения к главе VIII
ГЛАВА IX. ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ К ГЕОМЕТРИИ В ПРОСТРАНСТВЕ
§ 1. Уравнения кривой в пространстве
§ 2. Предел и производная векторной функции скалярного аргумента. Уравнение касательной к кривой. Уравнение нормальной плоскости
§ 3. Правила дифференцирования векторов (векторных функций)
§ 4. Первая и вторая производные вектора по длине дуги. Кривизна кривой. Главная нормаль. Скорость и ускорение точки в криволинейном движении
§ 5. Соприкасающаяся плоскость. Бинормаль. Кручение.
§ 6. Касательная плоскость и нормаль к поверхности
Упражнения к главе IX
ГЛАВА X. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. Первообразная и неопределенный интеграл
§ 2. Таблица интегралов
§ 3. Некоторые свойства неопределенного интеграла
§ 4. Интегрирование методом замены переменной или способом подстановки
§ 5. Интегралы от некоторых функций, содержащих квадратный трехчлен
§ 6. Интегрирование по частям
§ 7. Рациональные дроби. Простейшие рациональные дроби и их интегрирование
§ 8. Разложение рациональной дроби на простейшие
§ 9. Интегрирование рациональных дробей
§ 10. Интегралы от иррациональных функций
§ 11. Интегралы вида …
§ 12. Интегрирование некоторых классов тригонометрических функций
§ 13. Интегрирование некоторых иррациональных функций с помощью тригонометрических подстановок
§ 14. О функциях, интегралы от которых не выражаются через элементарные функции
Упражнения к главе X
ГЛАВА XI. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. Постановка задачи. Нижняя и верхняя интегральные суммы
§ 2. Определенный интеграл. Теорема о существовании определенного интеграла
§ 3. Основные свойства определенного интеграла
§ 4. Вычисление определенного интеграла. Формула Ньютона — Лейбница
§ 5. Замена переменной в определенном интеграле
§ 6. Интегрирование по частям
§ 7. Несобственные интегралы
§ 8. Приближенное вычисление определенных интегралов
§ 9.
Формула Чебышева
§ 10. Интегралы, зависящие от параметра. Гамма-функция
§ 11. Интегрирование комплексной функции действительной переменной
Упражнения кглаве XI
ГЛАВА XII. ГЕОМЕТРИЧЕСКИЕ И МЕХАНИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
§ 1. Вычисление площадей в прямоугольных координатах
§ 2. Площадь криволинейного сектора в полярных координатах
§ 3. Длина дуги кривой
§ 4. Вычисление объема тела по площадям параллельных сечений
§ 5. Объем тела вращения
§ 6. Площадь поверхности тела вращения
§ 7. Вычисление работы с помощью определенного интеграла
§ 8. Координаты центра масс
§ 9. Вычисление момента инерции линии, круга и цилиндра с помощью определенного интеграла
Упражнения к главе XII

21.2. Функция, заданная параметрически

Пусть зависимость между аргументом х и функцией у задана параметрически в виде двух уравнений

где t — вспомогательная переменная, называемая параметром.

Найдем производную у’х, считая, что функции (21.1) имеют производные и что функция х=x(t) имеет обратную t=φ(х). По правилу дифференцирования обратной функции

Функцию у=ƒ(х), определяемую параметрическими уравнениями (21.1), можно рассматривать как сложную функцию у=y(t), где t=φ(х). По правилу дифференцирования сложной функции имеем: у’х=y’t•t’x. С учетом равенства (21.2) получаем

Полученная формула позволяет находить производную у’х от функции заданной параметрически, не находя непосредственной зависимости у от х.

<< Пример 21.2

Пусть  

Найти у’х.

Решение: Имеем   x’t=3t2,   y’t=2t.   Следовательно,   у’х=2t/t2,   т. е. 

В этом можно убедиться, найдя непосредственно зависимость у от х.

Действительно,    Тогда    Отсюда  т. е.

22. Логарифмическое дифференцирование

В ряде случаев для нахождения производной целесообразно заданную функцию сначала прологарифмировать. А затем результат продифференцировать. Такую операцию называют логарифмическим дифференцированием.

<< Пример 22.1

Найти производную функции 

Решение: Пользуясь формулой (22.1), получаем:

Отметим, что запоминать формулу (22.1) необязательно, легче запомнить суть логарифмического дифференцирования.

Существуют функции, производные которых находят лишь логарифмическим дифференцированием. К их числу относится так называемая степенно-показательная функция у=uv, где u=u(x) и ν=ν(х) — заданные дифференцируемые функции от х. Найдем производную этой функции:

Сформулируем правило запоминания формулы (22.1): производная степенно-показательной функции равна сумме производной показательной функции, при условии u=const, и производной степенной функции, при условии ν=const.

§23. Производные высших порядков

Додати до моєї бази знань

  Математика

23.

Производные высших порядков

23.1. Производные высших порядков явно заданной функции

Производная у’=ƒ'(х) функции у=ƒ(х) есть также функция от х и называется производной первого порядка.

Если функция ƒ'(х) дифференцируема, то ее производная называется производной второго порядка и обозначается у»

Итак, у»=(у’)’.

Производная от производной второго порядка, если она существует, называется производной третьего порядка и обозначается у'» (или ƒ'»(х)). Итак, у'»=(y»)’

Производной n-го порядка (или n-й производной) называется производная от производной  (n-1) порядка:

y(n)=(y(n-1))¢ .

Производные порядка выше первого называются производными высших порядков.

Начиная с производной четвертого порядка, производные обозначают римскими цифрами или числами в скобках (уν или у(5)— производная пятого порядка).

<< Пример 23.1

Найти производную 13-го порядка функции у=sinx.

Решение:

23.2. Механический смысл производной второго порядка

Пусть материальная точка М движется прямолинейно по закону S=f(t). Как уже известно, производная S¢ t равна скорости точки в данный момент времени: S’t=V.

Покажем, что вторая производная от пути по времени есть величина, ускорения прямолинейного движения точки, т. е. S»=α.

Пусть в момент времени t скорость точки равна V, а в момент t+∆t — скорость равна V+∆V, т. е. за промежуток времени ∆t скорость изменилась на величину ∆V.

Отношение ∆V/∆t выражает среднее ускорение движения точки за время ∆t. Предел этого отношения при ∆t→0 называется ускорением точки М в данный момент t и обозначается буквой α:

Но V=S’t. Поэтому α=(S’t)’, т. е. α=S’t

Численность, математика и статистика — Набор академических навыков

Параметрические функции

ContentsToggle Главное меню 1 Определение 2 Построение графиков 2. 1 Определение 3 Декартово уравнение 3.1 Определение 3.2 Рабочие примеры 4 Нахождение градиента 4.1 Определение 4.2 Рабочий пример 5 Рабочая тетрадь 6 См. также 7 Внешние ресурсы

Определение

Параметрическое уравнение — это уравнение, в котором координаты кривой $x$ и $y$ записываются как функции другой переменной, называемой параметром; обычно это обозначается буквой $t$ или $\theta$. 92$.

Решение

Составьте таблицу и для каждого значения $t$ вычислите соответствующие значения $x$ и $y$.

т

-3

-2

-1

0

1

2

3

х

-3

-2

-1

0

1

2

3

г

9

4

1

0

1

4

9

Теперь у нас есть таблица координат $x$ и $y$, которую можно легко изобразить на графике.

Декартово уравнение
Определение 92$ и $y=2t$ в декартовой форме.

Решение

Изменить первое уравнение, чтобы сделать $t$ предметом

\[t = \sqrt{x}.\]

Подставить это во второе уравнение, чтобы исключить параметр $t$

\[y = 2\sqrt{x}.\]

Таким образом, декартова форма этих параметрических уравнений равна

\[y = 2\sqrt{x}.\]

Рабочий пример

Выразите параметрические уравнения $x = 3 \sin\theta$ и $y=4\cos\theta$ в декартовой форме.

92}{9} = 1\]

Нахождение градиента
Определение

Чтобы найти градиент , мы используем цепное правило. Мы дифференцируем оба наших уравнения и используем правило: frac{\mathrm{d}t}{\mathrm{d}x}\] В качестве альтернативы параметрические уравнения можно сначала преобразовать в декартовы уравнения, а затем продифференцировать как обычно.

Рабочий пример

Найдите градиент кривой, заданной параметрическими уравнениями $x=t^2$ и $y=2t$. 92\; \Rightarrow \dfrac{\mathrm{d}x}{\mathrm{d}t} = 2t\]

Наконец, подставьте их в приведенную выше формулу цепного правила. Не забудьте перевернуть $\dfrac{\mathrm{d}x}{\mathrm{d}t}$, так как нам нужно $\dfrac{\mathrm{d}t}{\mathrm{d}x}$ в формула.

\[\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \times \frac{1}{2t}\]

\[\frac{\mathrm{d}y} {\ mathrm {d} x} = \ frac {2} {2t} \]

\[\ frac {\ mathrm {d} y} {\ mathrm {d} x} = \ frac {1} {t} \]

Рабочая тетрадь

Это рабочая тетрадь по графикам функций и параметрической форме, разработанная HELM.

Это рабочая тетрадь по параметрическим кривым, разработанная HELM.

См. также
  • Параметрическое дифференцирование
Внешние ресурсы
  • Рабочая тетрадь по параметрическому дифференцированию в math center.

Параметрическое уравнение | Определение и факты

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • В этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Популярные вопросы
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 Women
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *