Расстояние между двумя точками в пространстве формула: Расстояние между точками — калькулятор и формула

Расстояние между двумя точками.

Навигация по странице:

  • Определение расстояния между двумя точками
  • Формулы для вычисления расстояния между двумя точками
  • Вывод формулы вычисления расстояния между двумя точками для плоской задачи
  • Примеры задач на вычисление расстояния между двумя точками
    • плоские задачи
    • пространственные задачи

Онлайн калькулятор. Расстояние между двумя точками.

Определение. Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.


Формулы вычисления расстояния между двумя точками:

  • Формула вычисления расстояния между двумя точками A(xa, ya) и B(xb, yb) на плоскости:

    AB = √(xb — xa)2 + (yb — ya)2

  • Формула вычисления расстояния между двумя точками A(xa, ya, za) и B(xb, yb, zb) в пространстве:

    AB = √(xb — xa)2 + (yb — ya)2 + (zb — za)2


Вывод формулы для вычисления расстояния между двумя точками на плоскости

Из точек A и B опустим перпендикуляры на оси координат.

Рассмотрим прямоугольный треугольник ∆ABC. Катеты этого треугольника равны:

AC = xb — xa;
BC = yb — ya.

Воспользовавшись теоремой Пифагора, вычислим длину отрезка AB:

AB = √AC2 + BC2.

Подставив в это выражение длины отрезков AC и BC, выраженные через координаты точек A и B, получим формулу для вычисления расстояния между точками на плоскости.

Формула для вычисления расстояния между двумя точками в пространстве выводится аналогично.

Примеры задач на вычисление расстояния между двумя точками

Пример вычисления расстояния между двумя точками на плоскости

Пример 1.

Найти расстояние между точками A(-1, 3) и B(6,2).

Решение.

AB = √(xb — x
a
)2 + (yb — ya)2 = √(6 — (-1))2 + (2 — 3)2 = √72 + 12 = √50 = 5√2

Ответ: AB = 5√2.


Пример вычисления расстояния между двумя точками в пространстве

Пример 2.

Найти расстояние между точками A(-1, 3, 3) и B(6, 2, -2).

Решение.

AB = √(xb — xa)2 + (yb — ya)2 + (zb — za)2 =

= √(6 — (-1))2 + (2 — 3)2 + (-2 — 3)2 = √72 + 12 + 52 = √75 = 5√3

Ответ: AB = 5√3.

Аналитическая геометрия: Вступление и оглавлениеРасстояние между двумя точками.Середина отрезка. Координаты середины отрезка.Уравнение прямой.Уравнение плоскости.Расстояние от точки до плоскости.Расстояние между плоскостями.Расстояние от точки до прямой на плоскости.Расстояние от точки до прямой в пространстве.Угол между плоскостями.Угол между прямой и плоскостью.

Онлайн калькуляторы. Аналитическая геометрия. Декартовые координаты.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Как найти расстояние между двумя точками: формулы, примеры

Sign in

Password recovery

Восстановите свой пароль

Ваш адрес электронной почты

MicroExcel. ru Математика Геометрия Нахождение расстояния между двумя точками

В данной публикации мы рассмотрим, чему равно расстояние между двумя точками, и по какой формуле оно считается (на плоскости и в пространстве). Также разберем примеры решения задач по этой теме.

  • Расчет расстояния между двумя точками
  • Примеры задач

Расчет расстояния между двумя точками

Расстояние между двумя точками — это длина отрезка (d), который получится, если их соединить.

Если точки A (xa, ya) и B (xb, yb) расположены на плоскости, то расстояние между ними считается по формуле:

Если точки A (xa, ya, za) и B (xb, yb, zb) находятся в трехмерном пространстве, расстояние вычисляется так:

Примеры задач

Задание 1
На плоскости даны две точки: A (2, 5) и B (-3, 7). Найдем расстояние между ними.

Решение:
Воспользуемся первой формулой, представленной выше:

Задание 2
Найдем расстояние между точками A (-1, 0, 12) и B (2, 6, -4).

Решение:
Применим соответствующую формулу, подставив в нее известные нам значения:

ЧАЩЕ ВСЕГО ЗАПРАШИВАЮТ

Таблица знаков зодиака

Нахождение площади трапеции: формула и примеры

Нахождение длины окружности: формула и задачи

Римские цифры: таблицы

Таблица синусов

Тригонометрическая функция: Тангенс угла (tg)

Нахождение площади ромба: формула и примеры

Нахождение объема цилиндра: формула и задачи

Тригонометрическая функция: Синус угла (sin)

Геометрическая фигура: треугольник

Нахождение объема шара: формула и задачи

Тригонометрическая функция: Косинус угла (cos)

Нахождение объема конуса: формула и задачи

Таблица сложения чисел

Нахождение площади квадрата: формула и примеры

Что такое тетраэдр: определение, виды, формулы площади и объема

Нахождение объема пирамиды: формула и задачи

Признаки подобия треугольников

Нахождение периметра прямоугольника: формула и задачи

Формула Герона для треугольника

Что такое средняя линия треугольника

Нахождение площади треугольника: формула и примеры

Нахождение площади поверхности конуса: формула и задачи

Что такое прямоугольник: определение, свойства, признаки, формулы

Разность кубов: формула и примеры

Степени натуральных чисел

Нахождение площади правильного шестиугольника: формула и примеры

Тригонометрические значения углов: sin, cos, tg, ctg

Нахождение периметра квадрата: формула и задачи

Теорема Фалеса: формулировка и пример решения задачи

Сумма кубов: формула и примеры

Нахождение объема куба: формула и задачи

Куб разности: формула и примеры

Нахождение площади шарового сегмента

Что такое окружность: определение, свойства, формулы

1.

2}=\sqrt{5}$. 92=16$. Теперь мы видим, что это круг с радиусом 4 и центром $(1,-2)$, который легко изобразить на графике. $\квадрат$

Пример 1.2.1 Найдите уравнение окружности радиуса 3 с центром:

    a) (0,0)$ d) (0,3)$
    b) (5,6)$ e ) $(0,-3 )$
    c) $(-5,-6)$ f) $(3,0)$

(отвечать)

Пример 1.2.2 Для каждой пары точек $A(x_1,y_1)$ и $B(x_2,y_2)$ найти (i) $\Delta x$ и $\Delta y$ при переходе от $A$ к $B$, (ii) наклон линии, соединяющей $A$ и $B$, (iii) уравнение линии, соединяющей $A$ и $B$, в виде $y=mx+b$, (iv) расстояние от $A$ до $B$, и (v) уравнение окружность с центром в $A$, проходящая через $B$.

    a) $A(2,0)$, $B(4,3)$ d) $A(-2,3)$, $B(4,3)$
    б) $A(1,-1)$, $B(0,2)$ 92-8г=0$.

    Пример 1.2.6 Найдите стандартное уравнение окружности, проходящей через $(-2,1)$ и касательной к прямой $3x-2y=6$ в точке $(4,3)$. Эскиз. (Подсказка: линия, проходящая через центр окружности и точку касания перпендикулярно касательной.) (отвечать)

    Трехмерный калькулятор расстояний

    Базовый калькулятор

    3D Калькулятор расстояний

    1 , Y 1 , Z 1 ) =

    (X 2 , Y 2 , Z 2 ) =

    Ответ:

    д = 10,24692} \)

    \( d = \sqrt{100 + 4 + 1} \)

    \( d = \sqrt105 \)

    \( d = 10,246951 \)

    Поделитесь этой ссылкой для ответа: help
    Вставьте эту ссылку в электронное письмо, текст или социальные сети.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    © 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

    Карта сайта