Метод Гаусса — Жордана | это… Что такое Метод Гаусса — Жордана?
Толкование
- Метод Гаусса — Жордана
Метод Гаусса — Жордана
Метод Гаусса — Жордана используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе, отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана[1].
Содержание
- 1 Алгоритм
- 2 Пример
- 3 Ссылки
- 4 Примечания
Алгоритм
- Выбирают первую колонку слева, в которой есть хоть одно отличное от нуля значение.
- Если самое верхнее число в этой колонке есть нуль, то меняют всю первую строку матрицы с другой строкой матрицы, где в этой колонке нет нуля.
- Все элементы первой строки делят на верхний элемент выбранной колонки.
- Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) нуль.
- Далее проводят такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.
- После повторения этой процедуры n − 1 раз получают верхнюю треугольную матрицу
- Вычитаем из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.
- Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).
- Чтобы получить обратную матрицу, нужно применить все операции в том же порядке к единичной матрице.
Пример
Для решения следующей системы уравнений:
запишем её в виде матрицы 3×4, где последний столбец является свободным членом:
Проведём следующие действия:
- К строке 2 добавим: −4 × Строку 1.