Уравнения с модулем — презентация онлайн
Цель: повторить , обобщить и
систематизировать знания учащихся о
модуле и его свойствах, умения решать
различные уравнения , содержащие
модуль.
2. Определение модуля
а, если а 0,а
а, если а 0.
ab a b
x
x
, y 0.
y
y
x x
2
2
x2 x
x y x
2
y
log a x 2 2 log a x
3. Геометрический смысл модуля
Геометрически x есть расстояниеот точки х числовой оси до начала
отсчёта – точки О.
x
x
0
x 0
x
x a
есть расстояние между
точками х и а числовой оси.
x
x
0
x a
x
0
a
x
a x 0
1.Простейшее уравнение,
содержащее модуль, где b>0:
f ( x) b,
f ( x) b
f ( x) b.
2.Уравнение более общего вида,
содержащее модуль:
g ( x) 0,
f ( x) g ( x) f ( x) g ( x),
f ( x) g ( x).
5. Простейшие уравнения вида ,b>0.
Простейшие уравнения вида f ( x) b ,b>0.1.
По определению модуля
2 x 3 5,
2 x 8,
x 4,
2x 3 5
2 x 3 5 2 x 2 x 1.
Ответ : 1;4
6. Уравнения более общего вида
f ( x) g ( x)Условие
g ( x) 0
2 x 0,
x 2,
x 2,
x 2,
3. x 4 3(2 x) x 4 3(2 x), x 4 6 3x, 4 x 2, x 0,5, x 0,5.
x 4 3(2 x) x 4 6 3x 2 x 10 x 5
Ответ : 0,5.
7. Уравнения вида
f ( x) g ( x) .уравнение
f ( x) g ( x) 0, f ( x) g ( x),
f ( x) g ( x) f ( x) g ( x) ( f ( x) g ( x))( f ( x) g ( x)) 0
f ( x) g ( x) 0. f ( x) g ( x).
2
2
4
x ,
6 x 5 7 3 x ,
9 x 12,
3
12. 6 x 5 7 3 x
6 x 5 (7 3 x) 3 x 2
x 2 .
3
2 1
Ответ : ,1 .
3 3
8. Уравнения, приводимые к уравнениям, содержащим модуль.
Иррациональное уравнение2 x 5 3x 10,
8. 4 x 20 x 25 3x 10 (2 x 5) 3x 10
3x 10 0
2
2
x 3,
2 x 5 3x 10, 5 x 15,
x 5,
2 x 5 3x 10, x 5,
x 5.
1
3x 10 0
3x 10
x
3
3
Ответ : 5.
9. Уравнения, приводимые к уравнениям, содержащим модуль.
f ( x) b f ( x) b2
log a f ( x) b 2 log a f ( x) b
2
10. Уравнения, приводимые к уравнениям, содержащим модуль
Логарифмическое уравнениеx 27,
9. log 3 x 6 2 log 3 x 6 log 3 x 3 x 27
x 27.
Ответ : 27;27.
2
11. Иррациональные уравнения, содержащие модуль.
В силу того, чтооднозначно
.
x 2,5 модуль x 4
раскрывается
2
2
5
9
x
x
4
4
x
2
0
x
2
5
,
2
5
9
x
x
4
5
2
x
2
5
9
x
x
4
2
x
5
2
x
5
0
;
x
0
,
2
2 2
2
9
x
x
4
4
x
2
0
x
,
9
x
3
6
x
4
x
2
0
x
0
,
5
x
1
6
x
0
,
1
x
0
.
x
3
,
x
2
,
5
;
x
2
,
5
;
5
x
2
,
5
;
x
2
,
5
;
12.
Замена модуля.x 2 1 t,x2 1 t,
2
( x 2 1) 2 7 x 2 1 18 0 x 2 1 7 x 2 1 18 0 t 0,
t 0,
t 2 7t 18 0 t 9,
t 2
2
2
x 10,
x
1
9
,
x
10,
2
2
x 1 9 2
2
x 10
x 1 9 x 8
x 10.
Îòâåò : 10 ; 10.
Уравнения, содержащие несколько модулей
и те, которые не сводятся к виду │f(x) │= g(x) решаются
с помощью метода интервалов:
1.Найдём значения x, при которых значение выражений,
стоящих под знаком модуля, равны нулю.
2.Найденные значения x разбивают ОДЗ на промежутки.
3.Запишем на каждом из промежутков уравнение без
знаков модуля. Получим совокупность систем.
14. Уравнения, содержащие несколько модулей. ( Решаемые с помощью метода интервалов)
10. x 1 x 2 x 31.Найдём значения х, при которых значения
выражений, стоящих под знаком модуля, равны 0:
х -1 = 0 при х = 1.
х – 2=0 при х = 2.
2. Эти значения разбивают ОДЗ на промежутки:
( ;1), 1;2 , (2; ).
3.Запишем на каждом из промежутков данное
уравнение без знаков модуля.
Получим совокупность систем.
15. Уравнение, содержащее несколько модулей.
Метод интерваловx 1,
x 1,
x 1,
(
x
1
)
(
x
2
)
x
3
,
x
1
x
2
x
3
,
3x 0,
1 x 2,
1 x 2,
1 x 2, x 0,
x 1 x 2 x 3
( x 1) ( x 2) x 3,
x 1 x 2 x 3,
x 2,
x 6.
x
2
,
x
2
,
x 2,
( x 1) ( x 2) x 3
x 1 x 2 x 3
x 6
Îòâåò : 0;6.
16. Домашнее задание: Решите уравнения
1. 2 x 3 52. 1
x 3
5
4
3. x 4 3( 2 x )
4. 8 5 x 2
5. 36 5 x x 3 6 x
6.( x 2 1) 7 x 2 1 18 0
7. x 2 x 3 5
8. 4 x 2 20 x 25 3 x 10
9.9 log 3 x 2 6
10. x 1 x 2 x 3
11. log 22 ( x ) 3 log 2 x 2 5 0
12. 6 x 5 7 3 x
13. 8 x 1 4 x `13
14. 25 9 x x 4 5 2 x
Решение уравнений с модулями и параметрами
Цель урока. Решение уравнений с параметрами и модулями, применяя свойства функций в неожиданных ситуациях и освоение геометрических приемов решения задач. Нестандарные уравнения.
Задачи:
- Образовательные: научить решать некоторые виды уравнений уравнений модулями и параметрами;
- Развивающие: развивать культуру мысли, культуру речи и умение работать с тетрадью и доской.
- Воспитательные: воспитывать самостоятельность и умение преодолевать трудности.
Оборудование: наглядный материал для устного счёта и объяснения новой темы. Интерактивная доска, мультимедийное оборудование урока.
Структура урока:
- Повторение изученного материала (устный счёт).
- Изучение нового материала.
- Закрепление изученного материала.
- Итог урока.
- Домашнее задание.
ХОД УРОКА
1. Повторение важнейшего теоретического материала по темам: «Уравнения, содержащие модуль», «Решение уравнений с параметрами»
1) «Уравнения, содержащие модуль»
Абсолютной величиной или модулем числа a называется число a, если a > 0, число – a, если a < 0, нуль, если a = 0. Или
| a | ={ | a, если a > 0 |
0, если a = 0 | |
– a, если a < 0 |
Из определения следует, что | a | > 0
и | a | > a для всех a € R .
Неравенство | x | < a, (если a
> 0) равносильно двойному неравенству – a <
х < a.
Неравенство | x | < a, (если a < 0)
не имеет смысла, так как | х | >0.
Неравенство | x | > a, (если a > 0)
равносильно двум неравенствам
Неравенство | x | > a, (если a < 0)
справедливо для любого х € R.
2) «Решение уравнений с параметрами»
Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.
а) определить множество допустимых значений неизвестного и параметров;
б) для каждой допустимой системы значений параметров найти соответствующие множества решений уравнения.
2. Устные упражнения
1. Решить уравнение | x – 2 | = 5; Ответ: 7; – 3
| x – 2 | = – 5; Ответ: решения нет
| x – 2 | = х + 5; Ответ: решения нет; 1,5
| x – 2 | = | x + 5 |; Ответ: решения нет; – 1,5; решения нет; – 1,5;
2. Решить уравнение: | x + 3 | + | y – 2 | = 4;
Расcмотрим четыре случая
1.
{ | x + 3 > 0 | { | x > – 3 |
y – 2 > 0 | y > 2 | ||
x + 3 + y – 2 = 4 | y = – x + 3 |
2.
{ | x + 3 > 0 | { | x > – 3 |
y – 2 < 0 | y < 2 | ||
x + 3 – y + 2 = 4 | y = x + 1 |
3.
{ | x + 3 < 0 | { | x < – 3 |
y + 2 > 0 | |||
– x – 3 – y – 2 = 4 | y = x + 9 |
4.
{ | x + 3 < 0 | { | x < – 3 |
y + 2 < 0 | y < – 2 | ||
– x – 3 – y – 2 = 4 | y = – x – 9 |
В результате мы получаем квадрат, центр которого (–3; 2), а длина диагонали равна 8, причем диагонали параллельны осям координат.
Из наглядных соображений можно сделать вывод: что уравнение вида | х + a | + | у + b | = с; задает на плоскости квадрат с центром в точке (– а; – b), диагоналями параллельными осям OX и ОУ, и длина каждой диагонали равна 2с. Ответ: (– 3; 2).
2. Решить уравнение aх = 1
Ответ: если a = 0, то нет решения; если a = 0, то х = 1/ a
3. Решить уравнение (а2 – 1) х = а + 1.
Решение.
Нетрудно сообразить, что при решении этого уравнения достаточно рассмотреть такие случаи:
1) а = 1; тогда уравнение принимает вид ОX = 2 и не имеет решения
2) а = – 1; получаем ОX = О , и очевидно х – любое.
1
3) если а = + 1, то х = –––
а
– 1
Ответ:
если
если а = 1, то нет решения;
1
если а = + 1 , то х = –––
а
– 1
3. Решения примеров (из вариантов С)
1. При каком значении параметра р уравнение | х2 – 5х + 6 | + | х2 – 5х + 4 | = р имеет четыре корня.
Решение.
Рассмотрим функцию у = | х2 – 5х + 6 | + | х2 – 5х + 4 |
Так как х2 – 5х + 6 = (х – 2)(х – 3) и х2 – 5х + 4 = (х – 1)(х – 4), то y = | ( х – 2)(х – 3) | + | (х – 1)(х – 4) |, корни квадратных трехчленов отметим на числовой прямой
1 2 3 4 х
Числовая прямая при этом разбивает на 5 промежутков
1.
{ | x < 1 | { | x < 1 |
y = x2 – 5x + 6 + x2 – 5x + 4 | y = 2x2 – 10x + 10 |
2.
{ | 1 < x < 2 | 1 < x < 2 | |
y = x2 – 5x + 6 – x2 + 5x – 4 | y = 2 |
3.
{ | 2 < x < 3 | { | 2 < x <3 |
y = – 2x2 + 10x – 10 | y = – x2 + 5x – 6 – x2 + 5x – 4 |
4.
{ | 3 < x < 4 | { | 3 < x < 4 |
y = 2 | y = x2 – 5x + 6 – x2 + 5x – 4 |
5.
{ | x > 4 | { | x > 4 |
y = 2x2 – 10x + 10 | y= x2 – 5x + 6 + x2 –5x + 4 |
Для случая 3) х0 = – b | 2a = 2, y0 = 25 : 2 + 25 – 10 = 2,5
Итак, (2,5; 2,5) – координаты вершины параболы y = – 2x2 + 10x – 10.
Построим график функции, заданной равенством
Как видно из рисунка, исходное уравнение имеет
четыре корня, если 2
Ответ: при 2 < а < 2,5
4. Самостоятельная работа по уровням
1 уровень
1. Решить уравнение х2 – | x | = 6
2. При каких целых значениях а имеет единственное
решение уравнение ах2 – (а + 1) + а2
+ а = 0?
2 уровень
1. Решить уравнение: | x – 5 | – | 2x + 3 | = 10
2. Найти все значениях параметра а, при
которых уравнение (а –12) х2 + 2 =
2(12 – а) имеет два различных корня?
3 уровень
1. Решить уравнение | x – 5 | – | 2x + 3| = 10
2. Найти все значениях параметра а, при
которых уравнение (а – 12) х2 + 2 = 2(12
– а) имеет два различных корня?
5. Итог урока
1. Определение модуля.
2. Что значит решить уравнение с параметром?
6. Задание на дом. C5 варианта №11 Ф.Ф. Лысенко. Математика, 2012
Дифференциальные уравнения — Понижение порядка
Понижение порядка требует, чтобы решение уже было известно. Без этого известного решения мы не сможем сделать понижение порядка.
Как только мы получим это первое решение, мы предположим, что второе решение будет иметь форму
\[\begin{equation}{y_2}\left( t \right) = v\left( t \right){y_1}\left( t \right)\label{eq:eq1}\end{equation}\]
для правильного выбора \(v(t)\). Чтобы определить правильный выбор, мы подставляем предположение в дифференциальное уравнение и получаем новое дифференциальное уравнение, которое можно решить относительно \(v(t)\). 9{ — 1}}} \right)v & = 0\\ 2tv» — 3v’ & = 0\end{align*}\]
Обратите внимание, что при упрощении остаются только члены, включающие производные от \(v\). Член, включающий \(v\), выпадает. Если вы сделали всю свою работу правильно, это всегда должно происходить. Иногда, как в случае повторяющихся корней, выпадает и первый член производной.
Таким образом, чтобы \(\eqref{eq:eq1}\) было решением, \(v\) должно удовлетворять
\[\begin{уравнение}2tv» — 3v’ = 0\label{eq:eq2}\end{уравнение}\]
Похоже, это проблема. Чтобы найти решение дифференциального уравнения второго порядка с непостоянными коэффициентами, нам нужно решить другое дифференциальное уравнение второго порядка с непостоянными коэффициентами.
Однако проблема не в этом, как кажется. Поскольку член, включающий \(v\), выпадает, мы действительно можем решить \(\eqref{eq:eq2}\), и мы можем сделать это со знаниями, которые у нас уже есть на данный момент. Мы решим это, сделав следующие изменение переменной .
\[w = v’\hspace{0,25 дюйма} \Rightarrow \hspace{0,25in}w’ = v»\]
С этим изменением переменной \(\eqref{eq:eq2}\) становится
\[2tw’ — 3w = 0\]
и это линейное дифференциальное уравнение первого порядка, которое мы можем решить. Это также объясняет название этого метода. Нам удалось свести дифференциальное уравнение второго порядка к дифференциальному уравнению первого порядка. 9{\ гидроразрыва {5} {2}}} + к \]
Это наиболее общее возможное \(v(t)\), которое мы можем использовать для получения второго решения. Итак, как и в разделе с повторяющимися корнями, мы можем выбрать константы, которые захотим, поэтому выберите их, чтобы очистить все посторонние константы. В этом случае мы можем использовать
\[c = \frac{5}{2}\hspace{0,25 дюйма}k = 0\]
Их использование дает следующее для \(v(t)\) и для второго решения. 9{\ гидроразрыва {3} {2}}} \]
Если бы нам были заданы начальные условия, мы могли бы дифференцировать, применить начальные условия и найти константы.
Обзор системных решений | Колледж Алгебра
Результаты обучения
- Определите три типа возможных решений системы двух линейных уравнений.
- Используйте график, чтобы найти решение(я) системы двух линейных уравнений.
Чтобы исследовать такие ситуации, как ситуация с производителем скейтбордов, мы должны понимать, что имеем дело с более чем одной переменной и, вероятно, с более чем одним уравнением. А система линейных уравнений состоит из двух или более линейных уравнений, составленных из двух или более переменных, так что все уравнения в системе рассматриваются одновременно. Чтобы найти единственное решение системы линейных уравнений, мы должны найти числовое значение для каждой переменной в системе, которое будет удовлетворять всем уравнениям в системе одновременно. Некоторые линейные системы могут не иметь решения, а другие могут иметь бесконечное число решений. Чтобы линейная система имела единственное решение, в ней должно быть не меньше уравнений, чем переменных. Тем не менее, это не гарантирует уникальности решения.
В этом разделе мы рассмотрим системы линейных уравнений с двумя переменными, которые состоят из двух уравнений, содержащих две разные переменные. Например, рассмотрим следующую систему линейных уравнений с двумя переменными.
[латекс]\begin{align}2x+y&=15\\[1mm] 3x-y&=5\end{align}[/latex]
Решение системы линейных уравнений с двумя переменными: любая упорядоченная пара, удовлетворяющая каждому уравнению независимо. В этом примере упорядоченная пара [латекс](4,7)[/латекс] является решением системы линейных уравнений. Мы можем проверить решение, подставив значения в каждое уравнение, чтобы увидеть, удовлетворяет ли упорядоченная пара обоим уравнениям. Вскоре мы исследуем методы нахождения такого решения, если оно существует.
[латекс]\begin{align}2\left(4\right)+\left(7\right)&=15 &&\text{True} \\[1mm] 3\left(4\right)-\ left(7\right)&=5 &&\text{True} \end{align}[/latex]
Помимо учета количества уравнений и переменных, мы можем классифицировать системы линейных уравнений по количеству решений. непротиворечивая система уравнений имеет хотя бы одно решение. Непротиворечивая система считается независимой системой , если она имеет единственное решение, как в примере, который мы только что рассмотрели. Две линии имеют разные наклоны и пересекаются в одной точке плоскости. Непротиворечивая система считается зависимая система , если уравнения имеют одинаковый наклон и одинаковые и -перехваты. Другими словами, прямые совпадают, поэтому уравнения представляют одну и ту же прямую. Каждая точка на прямой представляет собой пару координат, удовлетворяющую системе. Таким образом, существует бесконечное множество решений.
Другим типом системы линейных уравнений является противоречивая система , в которой уравнения представляют две параллельные линии. Линии имеют одинаковый наклон и разные г- перехватов. Нет общих точек для обеих прямых; следовательно, система не имеет решений.
A Общее примечание: Типы линейных систем
Существует три типа систем линейных уравнений с двумя переменными и три типа решений.
- Независимая система имеет ровно одну пару решений [латекс]\влево(х,у\вправо)[/латекс]. Точка пересечения двух прямых является единственным решением.
- несогласованная система не имеет решения. Обратите внимание, что две линии параллельны и никогда не пересекаются.
- зависимая система имеет бесконечно много решений. Линии совпадают. Это одна и та же линия, поэтому каждая пара координат на линии является решением обоих уравнений.
Ниже приведено сравнение графических представлений каждого типа системы.
Как: Имея систему линейных уравнений и упорядоченную пару, определить, является ли упорядоченная пара решением.
- Подставьте упорядоченную пару в каждое уравнение в системе.
- Определить, верны ли утверждения в результате замены в обоих уравнениях; если да, то упорядоченная пара является решением.
Пример. Определение того, является ли упорядоченная пара решением системы уравнений
Определить, является ли упорядоченная пара [латекс]\влево(5,1\вправо)[/латекс] решением данной системы уравнений.
[латекс]\begin{align}x+3y&=8\\ 2x-9&=y \end{align}[/latex]
Показать решение
Попробуйте
Определите, является ли упорядоченная пара [латекс]\левый(8,5\правый)[/латекс] решением следующей системы.
[латекс]\начало{собрано}5x — 4y=20\\ 2x+1=3y\конец{собрано}[/латекс]
Показать решение
Решение систем уравнений с помощью графика
Существует несколько методов решения систем линейных уравнений. Для системы линейных уравнений с двумя переменными мы можем определить как тип системы, так и решение, построив график системы уравнений на одном и том же наборе осей.
Пример. Решение системы уравнений с двумя переменными с помощью графика
Решите следующую систему уравнений с помощью графика. Определите тип системы.
[латекс]\begin{align}2x+y&=-8\\ x-y&=-1\end{align}[/latex]
Показать решение
Попробуйте
Решите следующую систему уравнений с помощью графика.