Решить уравнение с параметром значит, как правило, решить бесконечное множество уравнений.
Однако, придерживаясь определенного алгоритма, можно легко решить такие уравнения:
1. Определить «контрольные» значения параметра.
2. Решить исходное уравнение относительно [\x\] при значениях параметра, определенных в первом пункте.
3. Решить исходное уравнение относительно [\x\] при значениях параметра, отличающихся от выбранных в первом пункте.
Допустим, дано такое уравнение:
\[\mid 6 — x \mid = a.\]
Проанализировав исходные данные, видно, что a \[\ge 0.\]
По правилу модуля \ выразим \
Ответ: \ где \
Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте.
Заметим, что не может получиться так, что пара корней первого из квадратных уравнений совпадает с парой корней второго квадратного уравнения, так как сумма корней первого равна $-1$, а второго 1.
Значит, нужно, чтобы у каждого из этих уравнений было по одному корню, тогда у исходной системы их будет два решения. То есть $D = 16a — 4 = 0$.
Ответ. $a=\dfrac{1}{4}$
Найдите все значения параметра $a$, при каждом из которых уравнение $4x-|3x-|x+a||=9|x-3|$ имеет два корня.
Решение
Перепишем уравнение в виде:
$ 9|x-3|-4x+|3x-|x+a|| = 0. $
Рассмотрим функцию $f(x) = 9|x-3|-4x+|3x-|x+a||$.
При $x\geqslant 3$ первый модуль раскрывается со знаком плюс, и функция принимает вид: $f(x) = 5x-27+|3x-|x+a||$. Очевидно, что при любом раскрытии модулей в итоге будет получаться линейная функция с коэффициентом $k\geqslant 5-3-1=1>0$, то есть эта функция на данном промежутке неограниченно возрастает.
{-1}}\right\}$К задачам с параметром можно отнести, например, поиск решения линейных и квадратных уравнений в общем виде, исследование уравнения на количество имеющихся корней в зависимости от значения параметра.
Не приводя подробных определений, в качестве примеров рассмотрим следующие уравнения:
у = kx, где x, y – переменные, k – параметр;
у = kx + b, где x, y – переменные, k и b – параметр;
аx 2 + bх + с = 0, где x – переменные, а, b и с – параметр.
Решить уравнение (неравенство, систему) с параметром это значит, как правило, решить бесконечное множество уравнений (неравенств, систем).
Задачи с параметром можно условно разделить на два типа:
а) в условии сказано: решить уравнение (неравенство, систему) – это значит, для всех значений параметра найти все решения. Если хотя бы один случай остался неисследованным, признать такое решение удовлетворительным нельзя.
б) требуется указать возможные значения параметра, при которых уравнение (неравенство, система) обладает определенными свойствами. Например, имеет одно решение, не имеет решений, имеет решения, принадлежащие промежутку и т. д. В таких заданиях необходимо четко указать, при каком значении параметра требуемое условие выполняется.
Параметр, являясь неизвестным фиксированным числом, имеет как бы особую двойственность. В первую очередь, необходимо учитывать, что предполагаемая известность говорит о том, что параметр необходимо воспринимать как число. Во вторую очередь, свобода обращения с параметром ограничивается его неизвестностью. Так, например, операции деления на выражение, в котором присутствует параметр или извлечения корня четной степени из подобного выражения требуют предварительных исследований. Поэтому необходима аккуратность в обращении с параметром.
Например, чтобы сравнить два числа -6а и 3а, необходимо рассмотреть три случая:
1) -6a будет больше 3a, если а отрицательное число;
2) -6а = 3а в случае, когда а = 0;
3) -6а будет меньше, чем 3а, если а – число положительное 0.
Решение и будет являться ответом.
Пусть дано уравнение kx = b. Это уравнение – краткая запись бесконечного множества уравнений с одной переменной.
При решении таких уравнений могут быть случаи:
1. Пусть k – любое действительное число не равное нулю и b – любое число изR, тогда x = b/k.
2. Пусть k = 0 и b ≠ 0, исходное уравнение примет вид 0 · x = b. Очевидно, что у такого уравнения решений нет.
3. Пусть k и b числа, равные нулю, тогда имеем равенство 0 · x = 0. Его решение – любое действительное число.
Алгоритм решения такого типа уравнений:
1. Определить «контрольные» значения параметра.
2. Решить исходное уравнение относительно х при тех значениях параметра, которые были определены в первом пункте.
3. Решить исходное уравнение относительно х при значениях параметра, отличающихся от выбранных в первом пункте.
4. Записать ответ можно в следующем виде:
1) при … (значения параметра), уравнение имеет корни …;
2) при … (значения параметра), в уравнении корней нет.
Пример 1.
Решить уравнение с параметром |6 – x| = a.
Решение.
Легко видеть, что здесь a ≥ 0.
По правилу модуля 6 – x = ±a, выразим х:
Ответ: х = 6 ± a, где a ≥ 0.
Пример 2.
Решить уравнение a(х – 1) + 2(х – 1) = 0 относительно переменной х.
Решение.
Раскроем скобки: aх – а + 2х – 2 = 0
Запишем уравнение в стандартном виде: х(а + 2) = а + 2.
В случае, если выражение а + 2 не нуль, т. е. если а ≠ -2, имеем решение х = (а + 2) / (а + 2), т.е. х = 1.
В случае, если а + 2 равно нулю, т.е. а = -2, то имеем верное равенство 0 · x = 0, поэтому х – любое действительное число.
Ответ: х = 1 при а ≠ -2 и х € R при а = -2.
Пример 3.
Решить уравнение x/a + 1 = а + х относительно переменной х.
Решение.
Если а = 0, то преобразуем уравнение к виду а + х = а 2 + ах или (а – 1)х = -а(а – 1). Последнее уравнение при а = 1 имеет вид 0 · x = 0, следовательно, х – любое число.
Если а ≠ 1, то последнее уравнение примет вид х = -а.
Данное решение можно проиллюстрировать на координатной прямой (рис. 1)
Ответ: нет решений при а = 0; х – любое число при а = 1; х = -а при а ≠ 0 и а ≠ 1.
Графический метод
Рассмотрим еще один способ решения уравнений с параметром – графический. Этот метод применяется достаточно часто.
Пример 4.
Сколько корней в зависимости от параметра a имеет уравнение ||x| – 2| = a?
Решение.
Для решения графическим методом строим графики функций y = ||x| – 2| и y = a (рис. 2) .
На чертеже наглядно видны возможные случаи расположения прямой y = a и количество корней в каждом из них.
Ответ: корней у уравнения не будет, если а 2 и а = 0; три корня уравнение будет иметь в случае а = 2; четыре корня – при 0
Пример 5.
При каком а уравнение 2|x| + |x – 1| = a имеет единственный корень?
Решение.
Изобразим графики функций y = 2|x| + |x – 1| и y = a. Для y = 2|x| + |x – 1|, раскрыв модули методом промежутков, получим:
{-3x + 1, при x
y = {x + 1, при 0 ≤ x ≤ 1,
{3x – 1, при x > 1.
На рисунке 3 хорошо видно, что единственный корень уравнение будет иметь только при а = 1.
Ответ: а = 1.
Пример 6.
Определить число решений уравнения |x + 1| + |x + 2| = a в зависимости от параметра а?
Решение.
График функции y = |x + 1| + |x + 2| будет представлять собой ломаную. Ее вершины будут располагаться в точках (-2; 1) и (-1; 1) (рисунок 4) .
Ответ: если параметр a будет меньше единицы, то корней у уравнения не будет; если а = 1, то решение уравнения является бесконечное множество чисел из отрезка [-2; -1]; если значения параметра а будут больше одного, то уравнение будет иметь два корня.
Остались вопросы? Не знаете, как решать уравнения с параметром?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Примеры с параметрами и методы их решения. Уравнения с параметрами Решение уравнений при заданных параметрах
Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют задачи, в которых необходимо произвести поиск решений линейных и квадратных уравнений в общем виде или произвести поиск количества корней, которое имеет уравнение в зависимости от значения параметра. Все эти задачи с параметрами.
Рассмотрим следующие уравнения в качестве наглядного примера:
\[у = kx,\] где \ — переменные, \- параметр;
\[у = kx + b,\] где \ — переменные, \ — параметр;
\[аx^2 + bх + с = 0,\] где \ — переменная, \[а, b, с\] — параметр.
Решить уравнение с параметром значит, как правило, решить бесконечное множество уравнений.
Однако, придерживаясь определенного алгоритма, можно легко решить такие уравнения:
1. Определить «контрольные» значения параметра.
2. Решить исходное уравнение относительно [\x\] при значениях параметра, определенных в первом пункте.
3. Решить исходное уравнение относительно [\x\] при значениях параметра, отличающихся от выбранных в первом пункте.
Допустим, дано такое уравнение:
\[\mid 6 — x \mid = a.\]
Проанализировав исходные данные, видно, что a \[\ge 0.\]
По правилу модуля \ выразим \
Ответ: \ где \
Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk. com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
К задачам с параметром можно отнести, например, поиск решения линейных и квадратных уравнений в общем виде, исследование уравнения на количество имеющихся корней в зависимости от значения параметра.
Не приводя подробных определений, в качестве примеров рассмотрим следующие уравнения:
у = kx, где x, y – переменные, k – параметр;
у = kx + b, где x, y – переменные, k и b – параметр;
аx 2 + bх + с = 0, где x – переменные, а, b и с – параметр.
Решить уравнение (неравенство, систему) с параметром это значит, как правило, решить бесконечное множество уравнений (неравенств, систем).
Задачи с параметром можно условно разделить на два типа:
а) в условии сказано: решить уравнение (неравенство, систему) – это значит, для всех значений параметра найти все решения. Если хотя бы один случай остался неисследованным, признать такое решение удовлетворительным нельзя.
б) требуется указать возможные значения параметра, при которых уравнение (неравенство, система) обладает определенными свойствами. Например, имеет одно решение, не имеет решений, имеет решения, принадлежащие промежутку и т. д. В таких заданиях необходимо четко указать, при каком значении параметра требуемое условие выполняется.
Параметр, являясь неизвестным фиксированным числом, имеет как бы особую двойственность. В первую очередь, необходимо учитывать, что предполагаемая известность говорит о том, что параметр необходимо воспринимать как число. Во вторую очередь, свобода обращения с параметром ограничивается его неизвестностью. Так, например, операции деления на выражение, в котором присутствует параметр или извлечения корня четной степени из подобного выражения требуют предварительных исследований. Поэтому необходима аккуратность в обращении с параметром.
Например, чтобы сравнить два числа -6а и 3а, необходимо рассмотреть три случая:
1) -6a будет больше 3a, если а отрицательное число;
2) -6а = 3а в случае, когда а = 0;
3) -6а будет меньше, чем 3а, если а – число положительное 0.
Решение и будет являться ответом.
Пусть дано уравнение kx = b. Это уравнение – краткая запись бесконечного множества уравнений с одной переменной.
При решении таких уравнений могут быть случаи:
1. Пусть k – любое действительное число не равное нулю и b – любое число изR, тогда x = b/k.
2. Пусть k = 0 и b ≠ 0, исходное уравнение примет вид 0 · x = b. Очевидно, что у такого уравнения решений нет.
3. Пусть k и b числа, равные нулю, тогда имеем равенство 0 · x = 0. Его решение – любое действительное число.
Алгоритм решения такого типа уравнений:
1. Определить «контрольные» значения параметра.
2. Решить исходное уравнение относительно х при тех значениях параметра, которые были определены в первом пункте.
3. Решить исходное уравнение относительно х при значениях параметра, отличающихся от выбранных в первом пункте.
4. Записать ответ можно в следующем виде:
1) при … (значения параметра), уравнение имеет корни …;
2) при … (значения параметра), в уравнении корней нет.
Пример 1.
Решить уравнение с параметром |6 – x| = a.
Решение.
Легко видеть, что здесь a ≥ 0.
По правилу модуля 6 – x = ±a, выразим х:
Ответ: х = 6 ± a, где a ≥ 0.
Пример 2.
Решить уравнение a(х – 1) + 2(х – 1) = 0 относительно переменной х.
Решение.
Раскроем скобки: aх – а + 2х – 2 = 0
Запишем уравнение в стандартном виде: х(а + 2) = а + 2.
В случае, если выражение а + 2 не нуль, т. е. если а ≠ -2, имеем решение х = (а + 2) / (а + 2), т.е. х = 1.
В случае, если а + 2 равно нулю, т.е. а = -2, то имеем верное равенство 0 · x = 0, поэтому х – любое действительное число.
Ответ: х = 1 при а ≠ -2 и х € R при а = -2.
Пример 3.
Решить уравнение x/a + 1 = а + х относительно переменной х.
Решение.
Если а = 0, то преобразуем уравнение к виду а + х = а 2 + ах или (а – 1)х = -а(а – 1). Последнее уравнение при а = 1 имеет вид 0 · x = 0, следовательно, х – любое число.
Если а ≠ 1, то последнее уравнение примет вид х = -а.
Данное решение можно проиллюстрировать на координатной прямой (рис. 1)
Ответ: нет решений при а = 0; х – любое число при а = 1; х = -а при а ≠ 0 и а ≠ 1.
Графический метод
Рассмотрим еще один способ решения уравнений с параметром – графический. Этот метод применяется достаточно часто.
Пример 4.
Сколько корней в зависимости от параметра a имеет уравнение ||x| – 2| = a?
Решение.
Для решения графическим методом строим графики функций y = ||x| – 2| и y = a (рис. 2) .
На чертеже наглядно видны возможные случаи расположения прямой y = a и количество корней в каждом из них.
Ответ: корней у уравнения не будет, если а 2 и а = 0; три корня уравнение будет иметь в случае а = 2; четыре корня – при 0
Пример 5.
При каком а уравнение 2|x| + |x – 1| = a имеет единственный корень?
Решение.
Изобразим графики функций y = 2|x| + |x – 1| и y = a. Для y = 2|x| + |x – 1|, раскрыв модули методом промежутков, получим:
{-3x + 1, при x
y = {x + 1, при 0 ≤ x ≤ 1,
{3x – 1, при x > 1.
На рисунке 3 хорошо видно, что единственный корень уравнение будет иметь только при а = 1.
Ответ: а = 1.
Пример 6.
Определить число решений уравнения |x + 1| + |x + 2| = a в зависимости от параметра а?
Решение.
График функции y = |x + 1| + |x + 2| будет представлять собой ломаную. Ее вершины будут располагаться в точках (-2; 1) и (-1; 1) (рисунок 4) .
Ответ: если параметр a будет меньше единицы, то корней у уравнения не будет; если а = 1, то решение уравнения является бесконечное множество чисел из отрезка [-2; -1]; если значения параметра а будут больше одного, то уравнение будет иметь два корня.
Остались вопросы? Не знаете, как решать уравнения с параметром?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
1. Задача.
При каких значениях параметра a уравнение
(a — 1)x 2 + 2x + a — 1 = 0
имеет ровно один корень?
1. Решение.
При a = 1 уравнение имеет вид
2x = 0 и, очевидно, имеет единственный корень x = 0. Если a №
1, то данное уравнение является квадратным и
имеет единственный корень при тех значениях параметра, при которых
дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к
нулю, получаем уравнение относительно параметра a 4a 2 — 8a = 0,
откуда a = 0 или a = 2.
1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.
2. Задача.
Найти все значения параметра a , при
которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два
различных корня тогда и только тогда, когда D =
16a 2 -4(8a +3) > 0. Получаем (после сокращения
на общий множитель 4) 4a 2 -8a -3 > 0,
откуда
2. Ответ:
a О (-Ґ ; 1 – | Ц
7 2 | ) И (1 + | Ц
7 2 | ; Ґ ). |
3. Задача.
Известно, что
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?
3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a №
0) пересекаются в единственной точке
тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень.
Используя представление f 1 из 3.а , приравняем
дискриминант уравнения a = 6
4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і
0
содержит отрезок .
4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і
0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?
5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x — 3a +7 = 0.
Это квадратное уравнение, оно
имеет ровно два решения, если его дискриминант строго больше нуля.
Вычисляя дискриминант, получаем, что условием наличия ровно двух корней
является выполнение неравенства a 2 +a -6 > 0.
Решая неравенство, находим a a
> 2. Первое из
неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим
натуральным решением второго является число 3.
5. Ответ: 3.
6. Задача (10 кл.)
Найти все значения a , при которых
график функции
или, после очевидных преобразований, a -2 = |
2-a |
. Последнее
уравнение равносильно неравенству a і
2.
6. Ответ: a О }
Решение систем с двумя параметрами.
2 + bх + с = 0,\] где \ — переменная, \[а, b, с\] — параметр.Решить уравнение с параметром значит, как правило, решить бесконечное множество уравнений.
Однако, придерживаясь определенного алгоритма, можно легко решить такие уравнения:
1. Определить «контрольные» значения параметра.
2. Решить исходное уравнение относительно [\x\] при значениях параметра, определенных в первом пункте.
3. Решить исходное уравнение относительно [\x\] при значениях параметра, отличающихся от выбранных в первом пункте.
Допустим, дано такое уравнение:
\[\mid 6 — x \mid = a.\]
Проанализировав исходные данные, видно, что a \[\ge 0.\]
По правилу модуля \ выразим \
Ответ: \ где \
Где можно решить уравнение с параметром онлайн?
Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
Замечание . В приведенном примере вычисление всех определителей заканчивалось представлением в виде произведения сомножителей, один из которых (13) сократился при делении. Такая ситуация является весьма общей. Поэтому не надо торопиться перемножать сомножители, хотя чаще всего они не сокращаются.
Задача 4.4. Решить системы уравнений, используя правило Крамера:
1 + 4x 2 + x 3 = 21 | 1 + x 2 − x 3 = 2 | 2x 1 + x 2 + x 3 = 7 | ||||
3x 2 − 3×3 = 1 | ||||||
1) 4×1 + 2×2 + x3 = 27 | 3) x1 + 4×2 − 5×3 | |||||
3x 2 + 2×3 = 19 | − 2×2 + 3×3 = 7 | |||||
4×1 + 10×2 − x3 |
Решение приведенных задач показывает, что формулы Крамера представляют собой единый и удобный метод отыскания решений систем линейных уравнений.
Указание . Использование формул Крамера значительно упрощается, если надо найти только одно из неизвестных: в этом случае надо сосчитать только два определителя.
Выше всюду рассматривались системы линейных алгебраических уравнений с фиксированными коэффициентами при неизвестных и правыми частями уравнений. В практических задачах очень часто эти коэффициенты и значения правых частей известны неточно. Поэтому приходится анализировать влияние таких параметров на решение систем.
Пример 4.5. Исследовать зависимость решения системы уравнений
3 x + 8 y = a5 x + 9 y = b
от параметров a и b .
Здесь от параметров зависят только правые части уравнений. Поскольку
27 − 40 = − 13 ≠ 0 | |||||||
для отыскания решения можно воспользоваться формулами Крамера. Имеем:
∆1 | 9a − 8b,∆ 2 | 3b − 5a | ||||||
x = x | = ∆ 1 | 9a − 8b | 8b − 9a | Y = x | ∆ 2 = | 5a − 3b | ||||||||||||||||
− 13 | ||||||||||||||||||||||
Подстановкой убеждаемся, что полученное решение верно: | ||||||||||||||||||||||
8b − 9a | 5a − 3b | a(− 27 + 40) | B(24 − 24) | |||||||||||||||||||
8b − 9a | 5a − 3b | a(− 45 + 45) | − 27) | |||||||||||||||||||
В частности, если a = 11, b = 14 получаем: x = | 8× 14 − 9× 11 | 1 и y = 1. | ||||||||||||||||||||
y (a , b )
x (a , b )
Таким образом, каждой паре параметров a и b соответствует единственная пара чисел x и y , удовлетворяющая заданной системе уравнений. Это значит, что решением системы уравнений является упорядоченная пара и двух функций от двух переменных (параметров a и b ). Обе функции определены для любых значений этих параметров и линейно зависят от независимых переменных a и b . Кроме того, x – монотонно возрас-
тающая функция b и монотонно убывающая функция a , | – наоборот, | ||||
возрастающая функция a и монотонно убывающая функция b . | |||||
Задача 4.5. Найти решение систем уравнений | |||||
8 x + 5 y = 2 a + 1 | 4 x + 9 y = a + b | 9x + 4 y | |||
3 x + 2 y = a | 3 x + 8 y = 3 a − b | 8 x + 3 y |
и исследовать зависимость их решения от параметров a и b . Рекомендация . Постройте графики полученных решений x (a , b ) и y (a , b )
как функций переменных параметров a и b . Объясните, почему во всех задачах решения линейно зависят от параметров a и b .
Пример 4.6. Исследовать зависимость решения системы уравнений
(a + 3) x + 2 ay = 5 | |||||
от параметров a и b . | x + 5 y = b | ||||
В этом примере коэффициенты при неизвестных зависят от параметра | |||||
a , а правые части – от параметра b . | |||||
Найдем определитель матрицы коэффициентов при неизвестных: | |||||
a + 3 2 | 5(a + 3) − 2a = 3(a + 5) | ||||
Этот определитель не равен нулю только тогда, когда a ≠ − 5. Поэтому пользоваться формулами Крамера можно только тогда, когда a ≠ − 5. В этом случае:
∆1 = | 25 − 2ab , ∆ 2 = | a + 3 | Ab + 3b − 5 | |||||||
x = x | 25 − 2ab | y = x | 3 b − 5 + ab | |||
3(a + 5) | 3(a + 5) | |||||
Рассмотрим отдельно случай a = − 5 . Тогда исходная система есть:
− 2 x −10 y = 5 x +5 y = b
− 5 − c x = c , y = 2
Конечно, здесь имеется произвол в выборе значения любой из неизвестных, а решение можно записать и в виде:
x = − 5 2 − 5 c , y = c
Таким образом, зависимость от параметра коэффициентов при неизвестных исходной системы может порождать отсутствие решения или наличие бесконечного множества решений. Обнаруженный факт представляет собой обобщение известного ранее для одного уравнения ax = b и для систем двух линейных уравнений с двумя неизвестными.
Замечание 1. Введение константы c в решение системы уравнений напоминает произвол в выборе константы интегрирования.
Замечание 2 . Рассмотренный пример показывает, что как и для одного уравнения, для линейных алгебраических систем с большим числом уравнений и неизвестных возможны только три разных случая: единственное решение, отсутствие решения или бесконечно много решений.
Задача 4.6. Исследовать решения системы уравнений:
4 x + 5 ay = 2 a | 4 x + 5 ay = 2 a | 4 x + 5 ay = 2 a | ||||
8 x + 10 y | 8 x + 10 y | 8 x + 10 y = b |
Задача 4. 7. Придумать собственную систему двух алгебраических уравнений с двумя неизвестными и двумя параметрами и исследовать ее в зависимости от значений параметров.
Вопросы для самостоятельного контроля
1) Что такое минор элемента определителя?
2) Чем отличаются алгебраическое дополнение и минор элемента определителя?
3) Что называется присоединенной матрицей?
4) Как найти присоединенную матрицу для заданной матрицы?
5) Чему равен порядок присоединенной матрицы?
6) В каком случае обратная матрица не существует?
7) Какая матрица называется невырожденной?
8) При каких условиях можно использовать формулы Крамера?
9) Что такое решение системы линейных алгебраических уравнений?
10) Какие определители входят в формулы Крамера?
11) Когда определители зависят от параметров?
12) Может ли произведение присоединенной и исходной матрицы быть скалярной матрицей?
13) Как влияет на результат перестановка множителей при умножении присоединенной и исходной матрицы?
14) Что такое формулы Крамера?
15) При каких условиях решение системы линейных алгебраических уравнений можно найти с помощью правила (формул) Крамера?
1. Системы линейных уравнений с параметром
Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.
Пример 1.
Найти все значения для параметра а, при которых система уравнений не имеет решений.
{х + (а 2 – 3)у = а,
{х + у = 2.
Решение.
Рассмотрим несколько способов решения данного задания.
1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:
1/1 = (а 2 – 3)/1 ≠ а/2 или систему
{а 2 – 3 = 1,
{а ≠ 2.
Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.
Ответ: а = -2.
2 способ . Решаем методом подстановки.
{2 – у + (а 2 – 3)у = а,
{х = 2 – у,
{(а 2 – 3)у – у = а – 2,
{х = 2 – у.
После вынесения в первом уравнении общего множителя у за скобки, получим:
{(а 2 – 4)у = а – 2,
{х = 2 – у.
Система не имеет решений, если первое уравнение не будет иметь решений, то есть
{а 2 – 4 = 0,
{а – 2 ≠ 0.
Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.
Ответ: а = -2.
Пример 2.
Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.
{8х + ау = 2,
{ах + 2у = 1.
Решение.
По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.
Ответ: а = 4.
2. Системы рациональных уравнений с параметром
Пример 3.
{3|х| + у = 2,
{|х| + 2у = a.
Решение.
Умножим первое уравнение системы на 2:
{6|х| + 2у = 4,
{|х| + 2у = a.
Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а 4).
Ответ: а = 4.
Пример 4.
Найти все значения параметра а, при которых система уравнений имеет единственное решение.
{х + у = а,
{у – х 2 = 1.
Решение.
Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:
1,25 = 0,5 + а;
Ответ: а = 0,75.
Пример 5.
Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.
{ах – у = а + 1,
{ах + (а + 2)у = 2.
Решение.
Из первого уравнения выразим у и подставим во второе:
{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.
Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:
ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;
а 2 х + 3ах = 2 + а 2 + 3а + 2.
Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок
(а + 2)(а + 1), а слева вынесем х за скобки:
(а 2 + 3а)х = 2 + (а + 2)(а + 1).
Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,
а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.
Ответ: а ≠ 0; ≠ -3.
Пример 6.
Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.
{х 2 + у 2 = 9,
{у – |х| = а.
Решение.
Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы
х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.
Ответ: а = 3.
Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .
Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.
Пример 1. ах = 0
Пример 2. ах = а
Пример 3.
х + 2 = ах
х – ах = -2
х(1 – а) = -2
Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет
Если 1 – а 0, т.е. а 1, то х =
Пример 4.
(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)
Если а = 1, то 0х = 0
х – любое действительное число
Если а = -1, то 0х = -2
Корней нет
Если а 1, а -1, то х = (единственное решение).
Это значит, что каждому допустимому значению а соответствует единственное значение х .
Например:
если а = 5, то х = = ;
если а = 0, то х = 3 и т. д.
Дидактический материал
1. ах = х + 3
2. 4 + ах = 3х – 1
3. а = +
при а = 1 корней нет.
при а = 3 корней нет.
при а = 1 х – любое действительное число, кроме х = 1
при а = -1, а = 0 решений нет.
при а = 0, а = 2 решений нет.
при а = -3, а = 0, 5, а = -2 решений нет
при а = —с , с = 0 решений нет.
Квадратные уравнения с параметром
Пример 1. Решить уравнение
(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0
При а = 1 6х + 7 = 0
В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.
Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16
20а + 16 = 0
20а = -16
Если а Д
Если а > -4/5 и а 1, то Д > 0,
х =
Если а = 4/5, то Д = 0,
Пример 2. При каких значениях параметра а уравнение
х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?
Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)
4(а – 1)(а – 6) > 0
по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5
По условию х 1 х 2 а + 1) а – 5 > 0
В итоге | 4(а – 1)(а – 6) > 0 — 2(а + 1) 9а – 5 > 0 | а 6 а > — 1 а > 5/9 | (Рис. 1 ) a a > 6 |
Пример 3. Найдите значения а , при которых данное уравнение имеет решение.
х 2 – 2(а – 1)х + 2а + 1 = 0
Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а
4а 2 – 16 0
4а (а – 4) 0
а(а – 4)) 0
а(а – 4) = 0
а = 0 или а – 4 = 0
а = 4
(Рис. 2 )
Ответ: а 0 и а 4
Дидактический материал
1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?
2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?
3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а – а 2) = 0 имеет более двух корней?
4. При каких значениях а уравнение 2х 2 + х – а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?
5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?
1. При а = — 1/7, а = 0, а = 1
2. При а = 0
3. При а = 2
4. При а = 10
5. При а = — 2
Показательные уравнения с параметром
Пример 1 .Найти все значения а , при которых уравнение
9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.
Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение
3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)
Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или
(у – 2)(у – а ) = 0, откуда у 1 =2, у 2 = а .
Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.
Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4
Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)
Уравнение (3) имеет ровно два корня тогда и только тогда, когда
Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.
Если log 3 а > 2, то а > 9, а если log 3 а а
Ответ: 0 а а > 9.
Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?
Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >
а – положительное число.
Ответ: при а > 0
Дидактический материал
1. Найти все значения а, при которых уравнение
25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.
2. При каких значениях а уравнение
2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?
3. При каких значениях параметра а уравнение
4 х — (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?
Логарифмические уравнения с
параметром
Пример 1. Найти все значения а , при которых уравнение
log 4x (1 + ах ) = 1/2 (1)
имеет единственное решение.
Решение. Уравнение (1) равносильно уравнению
1 + ах = 2х при х > 0, х 1/4 (3)
х = у
ау 2 –у + 1 = 0 (4)
Не выполняется (2) условие из (3).
Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990
Equation Solver — Калькулятор решения для x
Поиск инструмента
Найдите инструмент в dCode по ключевым словам:Просмотрите полный список инструментов dCode
Equation Solver
Инструмент/решатель для решения одного или нескольких уравнений. Уравнение — это математическое выражение, представленное как равенство между двумя элементами с неизвестными переменными.
Результаты
Решатель уравнений — dCode
Теги: Символьные вычисления
Поделиться
dCode и другие 92+1=2
Переменные/неизвестные для решения
Набор областей решения ∈ | ℝ (действительные R) ℤ (целые числа Z) ℂ (комплекс C) |
Формат результата | Автоматический выбор Точное значение (если возможно) Приблизительное числовое значение Научное обозначение См. также: Решатель неравенств — Решатель криптарифмов Решение дифференциального уравнения⮞ Перейти: Решение дифференциальных уравнений Решить логическое уравнение⮞ Перейти: Калькулятор логических выражений Ответы на вопросы (FAQ)Что такое уравнение? (Определение)Уравнение представляет собой математическое равенство между двумя элементами, распределенными по обе стороны от знака равенства, каждый из которых может содержать переменные/неизвестные. Как решить уравнение?Калькулятор dCode может решать уравнения (а также неравенства или другие математические вычисления) и находить неизвестные переменные. Уравнения должны содержать символ сравнения, например, равно , т.е. = (или или > ). Пример: $ 2x=1 $ возвращает для решения $ x = 1/2 $ dCode возвращает точные решения (целые числа, дроби и т. д.) по умолчанию (для линейных и нелинейных систем уравнений ), если уравнение содержит запятые, тогда dCode вернет решение с десятичными числами. Пример: 92+1 = 3 && 3x-1 = 2 дает x=1 Как решить несколько уравнений с несколькими переменными?Чтобы решить систему уравнений , уравнения нужно разделить с помощью && или ⋀ . Переменные должны быть перечислены и разделены в поле ввода переменных. Как проверить равенство?Используйте специальный инструмент для проверки равенства или введите уравнение и нажмите «Решить», решатель ответит true , если равенство проверяется независимо от переменной (существует бесконечное число возможных решений для переменной). Пример: 2n+18n+4=2(n+9n+2) равно TRUE для любого значения n Решатель вернет false если равенство невозможно не является решением переменной) Пример: 5(x-7)=3(x+2)+2x равно FALSE для любого значения x 92-2 = 0 \ \&\& \ x > 0 $, если уравнение справедливо только для $ x > 0 $ строго положительных чисел. Как шаг за шагом решить уравнение?Шаги расчета решателя не показаны, поскольку они не соответствуют шагам, которые сделал бы человек. Операции, выполняемые решателем, представляют собой побитовые бинарные вычисления, сильно отличающиеся от операций, выполняемых математиком вручную. Исходный код dCode сохраняет за собой право собственности на исходный код «Решателя уравнений». За исключением явной лицензии с открытым исходным кодом (указано Creative Commons/бесплатно), алгоритма «Решатель уравнений», апплета или фрагмента (конвертер, решатель, шифрование/дешифрование, кодирование/декодирование, шифрование/дешифрование, транслятор) или «Решателя уравнений». функции (вычисление, преобразование, решение, расшифровка/шифрование, расшифровка/шифрование, декодирование/кодирование, перевод), написанные на любом информационном языке (Python, Java, PHP, C#, Javascript, Matlab и т. д.) и загрузка всех данных, скрипт, или доступ к API для «Equation Solver» не является общедоступным, то же самое для автономного использования на ПК, мобильных устройствах, планшетах, iPhone или в приложениях для Android! Cite dCode Копирование и вставка страницы «Решатель уравнений» или любых его результатов разрешено, если вы цитируете dCode! Сводка
Похожие страницы
Support
Forum/Help Keywords equation ,равенство,равно,неизвестно,переменная,х,число,калькулятор,линейная,система Ссылки ▲ Equation Solver — Решите для x КалькуляторПоиск инструмента Найдите инструмент в dCode по ключевым словам:Просмотрите полный список инструментов dCode Equation Solver Инструмент/решатель для решения одного или нескольких уравнений. Уравнение — это математическое выражение, представленное как равенство между двумя элементами с неизвестными переменными. Результаты Equation Solver — dCode Метки: Символьные вычисления Поделиться dCode и многое другое dCode бесплатен, и его инструменты являются ценным помощником в играх, математике и задачах для решения геокэшинга ежедневно! 92+1=2
|