что такое умножение, свойства 0, можно ли делить на 0
Ещё в школе учителя нам всем старались вбить в голову простейшее правило: «Любое число, умноженное на ноль, равняется нулю!», — но всё равно вокруг него постоянно возникает куча споров. Кто-то просто запомнил правило и не забивает себе голову вопросом «почему?». «Нельзя и всё тут, потому что в школе так сказали, правило есть правило!» Кто-то может исписать полтетради формулами, доказывая это правило или, наоборот, его нелогичность.
Вконтакте
Одноклассники
Мой мир
Кто в итоге прав
Во время этих споров оба человека, имеющие противоположные точки зрения, смотрят друг на друга, как на барана, и доказывают всеми силами свою правоту. Хотя, если посмотреть на них со стороны, то можно увидеть не одного, а двух баранов, упирающихся друг в друга рогами. Различие между ними лишь в том, что один чуть менее образован, чем второй.
Это интересно: разрядные слагаемые — что это?
Чаще всего, те, кто считают это правило неверным, стараются призвать к логике вот таким способом:
У меня на столе лежит два яблока, если я положу к ним ноль яблок, то есть не положу ни одного, то от этого мои два яблока не исчезнут! Правило нелогично!
Действительно, яблоки никуда не исчезнут, но не из-за того, что правило нелогично, а потому что здесь использовано немного другое уравнение: 2+0 = 2. Так что такое умозаключение отбросим сразу — оно нелогично, хоть и имеет обратную цель — призвать к логике.
Это интересно: Как найти разность чисел в математике?
Что такое умножение
Изначально правило умножения было определено только для натуральных чисел: умножение — это число, прибавленное к самому себе определённое количество раз, что подразумевает натуральность числа. Таким образом, любое число с умножением можно свести вот к такому уравнению:
- 25×3 = 75
- 25 + 25 + 25 = 75
- 25×3 = 25 + 25 + 25
Из этого уравнения следует вывод, что умножение — это упрощённое сложение.
Это интересно: что такое хорда окружности в геометрии, определение и свойства.
Что такое ноль
Любой человек с самого детства знает: ноль — это пустота, Несмотря на то, что эта пустота имеет обозначение, она не несёт за собой вообще ничего. Древние восточные учёные считали иначе — они подходили к вопросу философски и проводили некие параллели между пустотой и бесконечностью и видели глубокий смысл в этом числе. Ведь ноль, имеющий значение пустоты, встав рядом с любым натуральным числом, умножает его в десять раз. Отсюда и все споры по поводу умножения — это число несёт в себе столько противоречивости, что становится сложно не запутаться. Кроме того, ноль постоянно используется для определения пустых разрядов в десятичных дробях, это делается и до, и после запятой.
Это интересно: какой четырёхугольник называется квадратом?
Можно ли умножать на пустоту
Умножать на ноль можно, но бесполезно, потому что, как ни крути, но даже при умножении отрицательных чисел всё равно будет получаться ноль. Достаточно просто запомнить это простейшее правило и никогда больше не задаваться этим вопросом. На самом деле всё проще, чем кажется на первый взгляд. Нет никаких скрытых смыслов и тайн, как считали древние учёные. Ниже будет приведено самое логичное объяснение, что это умножение бесполезно, ведь при умножении числа на него всё равно будет получаться одно и то же — ноль.
Это интересно: что такое модуль числа?
Возвращаясь в самое начало, к доводу по поводу двух яблок, 2 умножить на 0 выглядит вот так:
- Если съесть по два яблока пять раз, то съедено 2×5 = 2+2+2+2+2 = 10 яблок
- Если их съесть по два трижды, то съедено 2×3 = 2+2+2 = 6 яблок
- Если съесть по два яблока ноль раз, то не будет съедено ничего — 2×0 = 0×2 = 0+0 = 0
Ведь съесть яблоко 0 раз — это означает не съесть ни одного. Это будет понятно даже самому маленькому ребёнку. Как ни крути — выйдет 0, двойку или тройку можно заменить абсолютно любым числом и выйдет абсолютно то же самое. А если проще говоря, то ноль — это ничего, а когда у вас ничего нет, то сколько ни умножай — всё равно будет ноль. Волшебства не бывает, и из ничего не получится яблоко, даже при умножении 0 на миллион. Это самое простое, понятное и логичное объяснение правила умножения на ноль. Человеку, далёкому от всех формул и математики будет достаточно такого объяснения, для того чтобы диссонанс в голове рассосался, и всё встало на свои места.
Это интересно: формулировка и доказательство признаков параллелограмма.
Деление
Из всего вышеперечисленного вытекает и другое важное правило:
На ноль делить нельзя!
Это правило нам тоже с самого детства упорно вбивают в голову. Мы просто знаем, что нельзя и всё, не забивая себе голову лишней информацией. Если вам неожиданно зададут вопрос, по какой причине запрещено делить на ноль, то большинство растеряется и не сможет внятно ответить на простейший вопрос из школьной программы, потому что вокруг этого правила не ходит столько споров и противоречий.
Все просто зазубрили правило и не делят на ноль, не подозревая, что ответ кроется на поверхности. Сложение, умножение, деление и вычитание — неравноправны, полноценны из перечисленного только умножение и сложение, а все остальные манипуляции с числами строятся из них. То есть запись 10: 2 является сокращением уравнения 2 * х = 10. Значит, запись 10: 0 такое же сокращение от 0 * х = 10. Получается, что деление на ноль — это задание найти число, умножая которое на 0, получится 10. А мы уже разобрались, что такого числа не существует, значит, у этого уравнения нет решения, и оно будет априори неверным.
Расскажу тебе позволь,
Чтобы не делил на 0!
Режь 1 как хочешь, вдоль,
Только не дели на 0!
obrazovanie.guru
можно ли умножать на 0 и что при этом получается
Впервые с таким арифметическим действием, как умножение, ученики знакомятся на школьной скамье. Учитель математики среди многочисленных правил поднимает тему «умножение на ноль». Несмотря на однозначность формулировки, у учащихся возникает множество вопросов. Давайте рассмотрим, что будет, если умножить на 0.
По две стороны спора
Правило, согласно которому умножать на ноль нельзя, порождает массу споров между преподавателями и их учащимися. Важно понимать, что умножение на ноль является спорным аспектом ввиду своей неоднозначности.
В первую очередь акцентируется внимание на отсутствии достаточного уровня знаний у учеников средней общеобразовательной школы. Переступая порог учебного заведения, участник образовательного процесса в большинстве случаев не задумывается о главной цели, которую необходимо преследовать.
Это интересно! Как раскрыть модуль действительного числа и что это такое
В течение обучения преподаватель освещает различные вопросы. В их число входит ситуация, что получится, если умножать на 0. Стремясь предвосхитить повествование преподавателя, некоторые ученики вступают в полемику. Они доказывают, по крайней мере, стараются, что умножение на 0 допустимо. Но, к сожалению, это не так. При умножении на 0 любого числа получается ровным счетом ничего. В некоторых литературных источниках даже встречается упоминание, что любое число, умноженное на ноль, образует пустоту.
Важно! Внимательные слушатели аудитории сразу схватывают, что если число умножить на 0, то в результате получится 0. Иное развитие событий прослеживается в случае тех учеников, кто систематически пропускает занятия. Невнимательные или недобросовестные учащиеся чаще остальных задумываются, сколько будет, если умножать на ноль.
В результате отсутствия знаний по теме преподаватель и нерадивый ученик оказываются по противоположные стороны противоречивой ситуации.
Различие во взглядах на тему спора заключается в степени образованности на предмет того, можно умножать на 0 или все-таки нет. Единственный допустимый выход из сложившейся ситуации – попытаться воззвать к логическому мышлению для поиска верного ответа.
Для объяснения правила не рекомендуется использовать следующий пример. У Вани в сумке лежат 2 яблока на перекус. В обед он задумался о том, чтобы положить в портфель еще сколько-нибудь яблок. Но в тот момент рядом не оказалось ни одного фрукта. Ваня не положил ничего. Иными словами, к 2 яблокам он поместил 0 яблок.
Это интересно! Считаем правильно: как находить процент от суммы и числа
В плане арифметики в данном примере получается, что если 2 умножить на 0, то не получается пустоты. Ответ в этом случае однозначный. Для этого примера правило умножения на ноль не актуально. Верное решение заключается в суммировании. Именно поэтому правильный ответ заключается в 2 яблоках.
В противном случае учителю не остается ничего иного, кроме как составить ряд заданий. Последняя мера – повторно задать прохождение темы и провести опрос на исключения в умножении.
Суть действия
Изучение алгоритма действий при умножении на ноль целесообразно начинать с обозначения сути арифметического действия.
Сущность действия умножить изначально определялась исключительно для натурального числа. Если раскрывать механизм действия, то определенное число, участвующее в вычислении, прибавляется к самому себе.
При этом важно учитывать количество прибавлений. В зависимости от данного критерия получается различный результат. Прибавление числа относительно самого себя определяет такое его свойство, ка натуральность.
Это интересно! Как разложить на множители квадратный трехчлен: формула
Рассмотрим на примере. Необходимо число 15 умножить на 3. При умножении на 3 число 15 троекратно увеличивается в своей величине. Иными словами, действие выглядит как 15 * 3 = 15 + 15 + 15 = 45. Основываясь на механизме расчета, становится очевидным, если число умножить на другое натуральное число, возникает подобие сложения в упрощенном виде.
Алгоритм действий при умножении на 0 целесообразно начинать с предоставления характеристики на ноль.
Обратите внимание! Согласно общепринятому мнению ноль обозначает целое ничто. Для пустоты подобного рода в арифметике предусмотрено обозначение. Несмотря на данный факт, нулевое значение не несет под собой ничего.
Следует отметить, что подобное мнение в современном мировом научном обществе отличается от точки зрения древних восточных ученых. Согласно теории, которой они придерживались, ноль приравнивался к бесконечности.
Иными словами, если умножить на ноль, то получится многообразие вариантов. В нулевом значении ученые рассматривали некое подобие глубины мироздания.
В качестве подтверждения возможности умножить на 0 математики приводили следующий факт. Если рядом с любым натуральным числом поставить 0, то получится значение, превышающее исходное в десятки раз.
Приведенный пример является одним из аргументов. Кроме доказательства подобного рода, существует множество других примеров. Именно они лежат в основе непрекращающихся споров при умножении на пустоту.
Это интересно! Как найти и чему будет равна длина окружности
Целесообразность попыток
Среди учеников довольно часто на первых порах освоения учебного материала встречаются попытки число умножить на 0. Подобное действие является грубейшей ошибкой.
По существу от таких попыток ничего не произойдет, но и пользы не будет. Если произвести умножение на нулевое значение, то получится в дневнике неудовлетворительная отметка.
Единственная мысль, которая должна возникать при умножении на пустоту, – невозможность действия. Запоминание в данном случае играет немаловажную роль. Выучив правило раз и навсегда, учащийся предотвращает появление спорных ситуаций.
В качестве примера, применяемого при умножении на нулевое значение, разрешается использовать следующую ситуацию. Саша решила купить яблоки. Пока она была в супермаркете, она остановила выбор на 5 крупных спелых яблоках. Сходив в отдел молочной продукции, она посчитала, что этого ей будет недостаточно. Девочка положила к себе в корзину еще 5 штук.
Поразмыслив еще чуть-чуть, она взяла еще 5. В результате на кассе у Саши получилось: 5 * 3 = 5 + 5 + 5 = 15 яблок. Если бы она положила по 5 яблок только 2 раза, то было бы 5 * 2 = 5 + 5 = 10. В том случае, если бы Саша не положила в корзинку ни разу по 5 яблок, было бы 5 * 0 = 0 + 0 + 0 + 0 + 0 = 0. Иными словами, купить яблоки 0 раз значит не купить ни одного.
Полезное видео
Подведем итоги
Правило умножения на нулевое значение порождает множество споров. Для понимания его сути достаточно рассмотреть пару примеров. Только запоминание формулировки позволит уяснить, можно умножать на 0 или нет.
Вконтакте
Одноклассники
Мой мир
znaniya.guru
Умножение на 1 и на 0. Видеоурок. Математика 3 Класс
На данном уроке учащимся предоставляется возможность познакомиться с особыми случаями умножения на 0 и 1, потренироваться в решении примеров в случаях умножения на 0 и на 1.
Как вы думаете, какую из данных сумм можно заменить произведением?
5+5+5+5
6+5+2+4
Будем рассуждать так. В первой сумме слагаемые одинаковые, число пять повторяется четыре раза. Значит, можно заменить сложение умножением. Первый множитель показывает, какое слагаемое повторяется, второй множитель – сколько раз это слагаемое повторяется. Заменяем сумму произведением.
Запишем решение.
5+5+5+5=5*4=20
Во второй сумме слагаемые разные, поэтому заменить её произведением нельзя. Складываем слагаемые и получаем ответ 17.
Запишем решение.
6+5+2+4=17
Можно ли произведение заменить суммой одинаковых слагаемых?
Рассмотрим произведения.
1*2
1*4
1*5
Выполним действия и сделаем вывод.
1*2=1+1=2
1*4=1+1+1+1=4
Можно сделать вывод: всегда количество единиц-слагаемых равно числу, на которое умножается единица.
Значит, при умножении числа один на любое число получается то же самое число.
Запишем этот вывод в виде равенства.
1 * а = а
Рассмотрим произведения.
2*1=2
4*1=4
5*1=5
Эти произведения невозможно заменить суммой, так как в сумме не может быть одно слагаемое.
Сравним произведения и их значения.
1*2=2
1*4=4
1*5=5
2*1=2
4*1=4
5*1=5
Произведения во втором столбике отличаются от произведений в первом столбике только порядком множителей.
Значит, чтобы не нарушалось переместительное свойство умножения, их значения также должны быть равны соответственно первому множителю.
Сделаем вывод: при умножении любого числа на число один получается то число, которое умножали.
Запишем этот вывод в виде равенства.
а * 1= а
Решите примеры.
Подсказка: не забудьте выводы, которые мы сделали на уроке.
9*1
54*1
1*3
1*706
52*(48-47)
(70-69)*14
Проверьте себя.
9*1=9
54*1=54
1*3=3
1*706=706
52*(48-47)=52
(70-69)*14=14
Теперь давайте понаблюдаем за произведениями, где один из множителей нуль.
Рассмотрим произведения, где первый множитель – нуль.
0*3
0*6
0*4
Заменим произведения суммой одинаковых слагаемых. Выполним действия и сделаем вывод.
0*3=0+0+0=0
0*6=0+0+0+0+0+0=0
Всегда количество нулей-слагаемых равно числу, на которое умножается нуль.
Значит, при умножении нуля на число получается нуль.
Запишем этот вывод в виде равенства.
0 * а = 0
Рассмотрим произведения, где второй множитель – нуль.
3*0=0
6*0=0
4*0=0
Эти произведения невозможно заменить суммой, так как в сумме не может быть нуль слагаемых.
Сравним произведения и их значения.
0*3=0
0*6=0
0*4=0
3*0=0
6*0=0
4*0=0
Произведения второго столбика отличаются от произведений первого столбика только порядком множителей.
Значит, чтобы не нарушалось переместительное свойство умножения, их значения также должны быть равны нулю.
Сделаем вывод: при умножении любого числа на нуль получается нуль.
Запишем этот вывод в виде равенства.
а * 0 = 0
А вот делить на нуль нельзя.
Решите примеры.
7*0
15 *0
0*9
0*346
72:9*0
(6:6)*9
1*49:7
8*(5-5)
Подсказка: не забудьте выводы, сделанные на уроке. При вычислении значений второго столбика будьте внимательны при определении порядка действий.
Проверьте себя.
7*0=0
15*0=0
0*9=0
0*346=0
72:9*0=0
(6:6)*9=9
1*49:7=7
8*(5-5)=0
Сегодня на уроке мы познакомились с особыми случаями умножения на 0 и 1, потренировались умножать на 0 и на 1.
Список литературы
- М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. – М.: «Просвещение», 2012.
- М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. – М.: «Просвещение», 2012.
- М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. – М.: Просвещение, 2012.
- Нормативно-правовой документ. Контроль и оценка результатов обучения. – М.: «Просвещение», 2011.
- «Школа России»: Программы для начальной школы. – М.: «Просвещение», 2011.
- С.И. Волкова. Математика: Проверочные работы. 3 класс. – М.: Просвещение, 2012.
- В.Н. Рудницкая. Тесты. – М.: «Экзамен», 2012.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Nsportal.ru (Источник).
- Prosv.ru (Источник).
- Do.gendocs.ru (Источник).
Домашнее задание
1. Найдите значения выражений.
8*1
45*1
1*6
1*820
25*(28-27)
(80-79)*147
2. Найдите значения выражений.
7*0
23*0
0*8
0*321
25:5*0
0*(240-239)
3. Сравните значения выражений.
8*0 … 8*1
567*0 … 567*1
(56-54)*1 … (78-70)*1
4. Составьте задание по теме урока для своих товарищей.
interneturok.ru
Почему при умножении на ноль получается ноль?!?!
Как не увеличивай НИЧЕГО, НИЧЕГО и получишь!
0- это черная дыра, попадая в нее исчезаешь.
Сколько не бросай в бездонную пропасть, все равно будет мало.Ноль это математическая «абстрактная» величина, введенная арабами для удобства вычиcлений. Никакой особой философской «сущности» не имеет. Если вы хотите, провести «философскую» аналогию, пожалуйста — «Как бы дурак не умножал свои знания, дураком и останется».
у Фонвизина был Митрофанушка (только почему не женского рода?) Он тоже, умножал: Нулежды нуль-нуль
потому что-нуль (зеро) -это тайна всемогущая и нет её выше. Поэтому любое соприкосновение с ней-чревато… Это непознанный вакуум… Начало причины… Чёрная дыра…Настенька, пойми, 5*0 = 0 потому, что ты хочешь взять пять раз то, чего нет. Раз пустота, два пустота, три пустота.. . и т. д. Сколько не бери ноль, хоть миллион раз, результатом будет ноль. От перемены мест множителей сумма также не поменяется.
если ты берешь единицу в физическом воплощении как яблоко, тогда что ты возьмешь за ноль, каково будет облачение нуля?
Умножая на ноль, ты уже создаешь иллюзию: если у тебя яблоко — 1 шт. — реальность — потрогай его. — есть оно ты можешь умножить одно яблоко на один — получишь яблоко — одно — оно есть — реальность — съешь его Ноль — ничего — пустота — ничего не берем — нет ничего реального — абстракция — придумываем яблоко из ничего — из нереальности — из нуля — даже взятое при нуле яблоко и умноженное на ноль — это «ничего» — такого яблока нет — мы его выдумали — фантазия — нереальность — нет ничего — пустота — ноль.
Прикинь, сколько народу заморочила
10Х0 = 0 почему — Умножить на 2 — взять число (10) два раза, умножить на 1 — один раз, а ноль — это ничто, если число (10 ) брать 0 раз в руках так и останется 0
мы 5 яблок увеличиваем в 3 раза=15 яблок… мы 5 яблок увеличиваем в 0 раз, то есть ничего не делаем, так и остается 5 яблок???
Представим ноль в виде разности чисел, например 3 — 3 = 0, таким образом умножая например на ноль число -4- получим 4 * (3 — 3), далее раскрываем скобки 4 * (3 — 3) = 12 — 12 = 0. Вот и все. Как говориться, всё правильно, но все равно нихоа не понятно. )))
Как же мы умножаем пустоту если мы берем определенное число???? например 2 или 3. И как же я свои 5 яблок умножая на ноль, потеряю????
Дело в том, что если мы 5 яблок умножаем на 1, то получаем лишь 5 яблоко. 5 и 1 взаимосвязаны так как мы что-то что существует берем лишь один раз. Если мы 5 яблок берем 0 раз, значит мы вообще не берем яблоки. Получается что мы берем яблоки только теоретически, и когда мы смотрим на то, сколько раз мы их взяли, то видим, что мы их вообще не взяли (забыли дома например, но думали что взяли)
touch.otvet.mail.ru
Действия с нулём
В математике число ноль занимает особое место. Дело в том, что оно, по сути дела, означает «ничто», «пустоту», однако его значение действительно трудно переоценить. Для этого достаточно вспомнить хотя бы то, что именно с нулевой отметки начинается отсчет координат положения точки в любой системе координат.
Ноль широко используется в десятичных дробях для определения значений «пустых» разрядов, находящихся как до, так и после запятой. Кроме того, именно с ним связано одно из основополагающих правил арифметики, гласящее о том, что на ноль делить нельзя. Его логика, собственно говоря, проистекает из самой сути этого числа: действительно, невозможно представить, чтобы некая отличное от него значение (да и само оно – тоже) было разделено на «ничто».
Примеры вычисленияС нулем осуществляются все арифметические действия, причем в качестве его «партнеров» по ним могут использоваться целые числа, обычные и десятичные дроби, причем все они могут иметь как положительное, так и отрицательное значение. Приведем примеры их осуществления и некоторые пояснения к ним.
СЛОЖЕНИЕПри прибавлении нуля к некоторому числу (как целому, так и к дробному, как к положительному, так и к отрицательному) его значение остается абсолютно неизменным.
Пример 1Двадцать четыре плюс ноль равняется двадцать четыре.
24
+ 0
= 24
Семнадцать целых три восьмых плюс ноль равняется семнадцать целых три восьмых.
ВЫЧИТАНИЕПри вычитании нуля из некоторого числа (целого, дробного, положительного или отрицательного) оставляет его полностью неизменным.
Пример 1Две тысячи сто пятьдесят два минус ноль равняется две тысячи сто пятьдесят два.
2152
– 0
= 2152
Сорок одна целая три пятых минус ноль равняется сорок одна целая три пятых.
УМНОЖЕНИЕПри умножении любого числа (целого, дробного, положительного или отрицательного) на ноль получается ноль.
Пример 1Пятьсот восемьдесят шесть умножить на ноль равняется ноль.
586
× 0
= 0
Ноль умножить на сто тридцать пять целых шесть седьмых равняется ноль.
0
× 135
= 0
Ноль умножить на ноль равняется ноль.
0
× 0
= 0
Правила деления чисел друг на друга в тех случаях, когда одно из них представляет собой ноль, различаются в зависимости от того, в какой именно роли выступает сам ноль: делимого или делителя?
В тех случаях, когда ноль представляет собой делимое, результат всегда равен ему же, причем вне зависимости от значения делителя.
Пример 1Ноль разделить на двести шестьдесят пять равняется ноль.
0
: 265
= 0
Ноль разделить на семнадцать пятьсот девяносто шестых равняется ноль.
Делить ноль на ноль согласно правилам математики нельзя. Это означает, что при совершении такой процедуры частное является неопределенным. Таким образом, теоретически оно может представлять собой абсолютно любое число.
0
: 0
= 8
ибо 8
× 0
= 0
В математике такая задача, как деление нуля на ноль, не имеет никакого смысла, поскольку ее результат представляет собой бесконечное множество. Это утверждение, однако, справедливо в том случае, если не указаны никакие дополнительные данные, которые могут повлиять на итоговый результат.
Таковые, при их наличии, должны состоять в том, чтобы указывать на степень изменения величины как делимого, так и делителя, причем еще до наступления того момента, когда они превратились в ноль. Если это определено, то такому выражению, как ноль разделить на ноль, в подавляющем большинстве случаев можно придать некий смысл.
simple-math.ru
ЧИСЛО УМНОЖИТЬ НА НОЛЬ… Математика для блондинок: Умножение на ноль
Рассмотрим пример умножения на ноль целого числа. Сколько будет, если 2 (два) умножить на 0 (ноль)? Любое число, умноженное на ноль, равняется нулю. И не важно, известно нам это число, или не известно.
Согласно общепринятому определению, ноль — это число, отделяющее положительные числа от отрицательных на числовой прямой. Ноль — это самое проблематичное место в математике, которое не подчиняется логике, а все математические действия с нулём основаны не на логике, а на общепринятых определениях.
Ноль является первой цифрой во всех стандартных системах счисления. С нулевого дня в календаре майя начинался каждый месяц. Интересно, что тем же самым знаком ноль математики майя обозначали и бесконечность — вторую проблему современной математики. Ноль без палочки. Абсолютный нуль. Ноль целых пять десятых. Пять умножить на ноль — равняется нулю 5 х 0 = 0 Правило умножения на ноль смотрите выше по тексту. Чатыри умножить на ноль бесплатно — бесплатно отвечаю, что будет ноль. В нагрузку бесплатная справка — слово «четыре» пишется чуть-чуть иначе, чем пишите вы в своем поисковом запросе.
https://youtu.be/EGpr23Tc8iY
Там, где в математике встречается ноль, логика бессильна
Если вам понравилась публикация и вы хотите знать больше, помогите мне в работе над другими материалами. Оно появилось в комментариях и чем-то меня зацепило. Вопрос Студента: А теперь, уважаемый автор, умножьте, пожалуйста, ноль на ноль и скажите, сколько получится в результате?
Я в своей статье «Что есть ноль» уже объяснил где её можно применять. Нужно просто брать те ответы, которые пишут в учебниках: ноль, умноженный на ноль, равняется нулю; на ноль делить запрещено. Из всех обозримых вариантов умножения и деления на ноль ученые неучи выбрали самый приемлемый и удобоваримый вариант.
С делением на ноль у меня лично никаких проблем нет. Про связь между формулой Герона и 0/0=1 слышу впервые. Однако есть что-то нечистое в математике. Проблемы с возведением нуля в нулевую и отрицательную степень. Но с таким же успехом можно сказать, что 0^2 тоже не имеет смысла, потому как 0^2=0^5/0^3=0/0, а на ноль делить нельзя.
Ноль в нулевой степени — выражение, не имеющее смысла. Ноль в нулевой степени равняется единице — так показывают формулы. Это количество чего угодно, каких-то реальных, материальных вещей, можно умножить на число. При этом количество чего-то выражается только нулем или положительным числом.
Все в единицах и в математике на данном уровне в порядке. Это условность, градусы не могут быть выражены количеством, поэтому умножить их на число нельзя. Где-то на этом сайте есть Дурнев со своими вопросами по школьной программе, в том числе и по математике. Может, его придумали точно так же, как и ноль? Чтобы наложить определенные правила и подчинить им всех остальных людей. Чего только человек не сделает ради себя, любимого.
Достаточно того, что в учебниках часто пишут «принадлежит множеству натуральных чисел» даже тогда, когда это выполняется для всех чисел, за исключением комплексных. Бесконечное число нулей в нуле — это выдумки шаманов для пещерных людей:) Если закрыть глаза, то всё, на что мы смотрим, будет выглядеть одинаково черным. Умножение на ноль нужно начинать рассматривать совсем с другого конца. Что такое умножение?
Достаточно понять, что такое умножение, тогда вопрос с результатом умножения на ноль сам собою решится. 2 яблока, и пытаясь умножить их на 0 яблок, в результате мы теряет свои 2 яблока. Судя по всему, те, кто это спрашивает, потеряли как минимум по одной цифре в начале каждого числа. 10 и 11 — здесь уместно говорить о процентах.
И интересно как при делении 0 на любое число вы это число сможете вычитать вообще (пусть даже и ноль раз)..
Не может так просто от умножения стать ноль! Значит математика это не точная наука? Кто то когда то придумал это «правило» не известно для чего . Ваша математика ошибается. На практике, вся эта математическая тема с умножением на 0, не может быть!!! Как 10 чего-нибудь желая приумножить, пусть даже на 0 — получится 0?? Если конечно 0 не является черная дыра, или 0 как проиграшь, в никуда, ноль — как пустота, ничто, но такого быть не может….
Если не можете что то разделить (те же 5 яблок на 0 воображаемых корзин) то записывается результат целого числа и остаток при таком делении… 0 можно умножать многократно (типа ходил в лес 15 раз и не нашел грибов…
Например, делим 5 яблок на ноль человек; вычисляем,во сколько раз 5 градусов Цельсия больше нуля градусов Цельсия. Из этого всего скорее нельзя умножать на 0 (так как по определению умножения это НЕЛЬЗЯ записать с помощью операции сложения) и делить сам 0 на что то… так как ответ не может быть определен…
Подмена понятий происходит при самом умножении на ноль… Запомните любое число или операция с числами умноженное на ноль АННИГИЛИРУЕТСЯ… Иными словами не происходит самой операции при умножении на ноль и ее можно просто «не учитывать»… Так, вы украли мою идею!))) Впервые встречаю более-менее четкое понимание умножения и деления на ноль. Будем мы это считать математическими операциями, или не будем — математике глубоко плевать.
Первый пример проблематичности нуля — это натуральные числа. В русских школах ноль не является натуральным числом, в других школах ноль является натуральным числом. Кому интересен вопрос возникновения нуля, предлагаю прочесть статью «История нуля» Дж. Дж. О’Коннора и Е. Ф. Робертсона в переводе И. Ю. Осмоловского.
При каких значениях икса верно равенство: ноль умноженное на икс равняется ноль? — данное равенство верно при любых значениях икс. Говорят, что это равенство имеет бесконечное множество решений. С математикой было несколько проще. Самым естественным образом на мою природную безграмотность накладываются банальные опечатки при наборе текста.
Я противник тех проповедей, которые читают нам математики и на которые мы все))) ссылаемся. С этим уравнением была совсем друга история. Может такое быть или не может? Немного подумав, я «провел мысленный эксперимент»))) и представил эту ситуацию. Где-то в черновиках валяются все выкладки по этому поводу. Вы лукавите То что не принято в широких кругах, не обязательно является не правдой.
Как правильно пишется — ноль или нуль? Слова ноль и нуль совпадают в значении, но различаются употреблением. Кто сказал, что ноль — это число? Математики? 0 + 5/0… ноль и пять ( нулевых ) в остатке … и тогда все сходится и все довольны… Да на самом деле сложностей не так много. Проблема в том как воспринимать Ноль (как число или как нечто пустое) и что подразумевать под умножением…
Предлагаю также ознакомиться:
kakbypridaser.ru
Объясните почему умножать на ноль можно, а делить на ноль нельзя? почему?
потому что нет такого числа при умнажении которого на ноль получится делимое. 5/0= ты просто не сможешь подобрать частное чтобы 5 получить
Потому что возникает противоречие.
Потому что в 5-ом классе надо было учителя слушать, а не спать на уроке!
потому что при делении появляется неопределённость на множестве чисел, котором производится операция, для детей это не несёт никакой информации. есть такой раздел математики, в котором это всё-таки можно <a href=»/» rel=»nofollow» title=»2434739:##:PUBLICATION/DISSHARYPOV/03_3.HTM»>[ссылка заблокирована по решению администрации проекта]</a>
почему нельзя? если очень хочется, то дели и не важно сколько получится. Удачи! приятного времяпровождения!
Потому что математика вообще и арифметика в частности строятся не просто так, как взбредёт в воспалённую голову. Она (арифметика) базируется на системе утверждений, принимаемых без доказательства, так называемых аксиомах. Главное требование, которое предъявляется к этой системе аксиом — чтобы она была непротиворечива. Примерно так: чтобы нельзя было ЛОГИЧЕСКИ вывести, что 2 Х 2 = 4 и одновременно, чтобы 2 Х 2 = 5. Так вот, система аксиом арифметики непротиворечива только, если на ноль делить нельзя.
потому что ноль не должен быть в знаменателе
можно, только получается бесконечность. детям в третьем классе проще сказать, что делить на ноль нельзя, чем объяснить, что такое бесконечность. а вообще, например вот уравнение: 1/0=х. х*0. какое число при умножении ноль получаеться больше ноля? а никакое..
Проверка обратным действием не пройдет. Пусть 5/0=x, тогда должно быть x*0=5, а такого числа нет. Это свойство системы действительных чисел. Тебя же не удивляет, например, что в системе целых чисел два разделить на три нельзя? Вообще существует много систем чисел, системы целых и действительных чисел, изучаемые в школе — только небольшая часть их. Часть из них, например, комплексные числа или кватернионы, очень важна в технических и научных расчетах, часть — например, гипердействительные числа, октавы, дуалные числа и так далее, — не имеет практического значения.
на ноль делить можно равно бесконечность например сколько раз ты возьмешь 0 чтобы получилось 2 . ты будешь брать ноль бесконечность раз .
Потому что любое число, умноженное на ноль, будет ноль. В проверке нам придётся делить на ноль. Вот и причина!
touch.otvet.mail.ru