МЕДИАНА (функция МЕДИАНА) — Служба поддержки Office
В этой статье описаны синтаксис формулы и использование функции МЕДИАНА в Microsoft Excel.
Описание
Возвращает медиану заданных чисел. Медиана — это число, которое является серединой множества чисел.
Синтаксис
МЕДИАНА(число1;[число2];…)
Аргументы функции МЕДИАНА описаны ниже.
-
Число1, число2,… Аргумент «число1» является обязательным, последующие числа необязательные. От 1 до 255 чисел, для которых требуется определить медиану.
Замечания
-
Если в множество содержит четное количество чисел, функция МЕДИАНА вычисляет среднее для двух чисел, находящихся в середине множества. См. вторую формулу в примере.
-
Аргументы должны быть либо числами, либо содержащими числа именами, массивами или ссылками.
-
Функция учитывает логические значения и текстовые представления чисел, которые указаны непосредственно в списке аргументов.
-
Если аргумент, который является массивом или ссылкой, содержит текст, логические значения или пустые ячейки, то такие значения пропускаются; однако ячейки, которые содержат нулевые значения, учитываются.
- Аргументы, которые являются значениями ошибки или текстами, не преобразуемыми в числа, приводят в возникновению ошибок.
Примечание: Функция МЕДИАНА измеряет центральную тенденцию, которая является центром множества чисел в статистическом распределении. Существует три наиболее распространенных способа определения центральной тенденции:
-
Среднее значение — это среднее арифметическое, которое вычисляется путем сложения набора чисел с последующим делением полученной суммы на их количество. Например, средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6.
-
Медиана — это число, которое является серединой множества чисел, то есть половина чисел имеют значения большие, чем медиана, а половина чисел имеют значения меньшие, чем медиана. Например, медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4.
-
Мода — это число, наиболее часто встречающееся в данном наборе чисел. Например, модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.
При симметричном распределении множества чисел все три значения центральной тенденции будут совпадать. При смещенном распределении множества чисел значения могут быть разными.
Пример
Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.
Данные | ||
---|---|---|
1 |
||
2 |
||
3 |
||
4 |
||
5 |
||
6 |
||
Формула |
Описание |
Результат |
=МЕДИАНА(A2:A6) |
Медиана пяти чисел в диапазоне A2:A6. Так как имеется пять значений, третье из них является медианой. |
3 |
=МЕДИАНА(A2:A7) |
Медиана шести чисел в диапазоне A2:A6. Так как имеется шесть чисел, медианой является средняя точка между третьим и четвертым числами. |
3,5 |
support.office.com
Мода и медиана в статистике
Мода и медиана в статистике
В статистике модой называется величина признака (варианта), которая чаще всего встречается в данной совокупности.
Медианой в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам. Обозначают медиану символом.
Распределительные средние – мода и медиана, их сущность и способы исчисления.
Данные показатели относятся к группе распределительных средних и используются для формирования обобщающей характеристики величины варьирующего признака.
Мода – это наиболее часто встречающееся значение варьирующего признака в вариационном ряду. Модой распределения называется такая величина изучаемого признака, которая в данной совокупности встречается наиболее часто, т.е. один из вариантов признака повторяется чаще, чем все другие.
где: — нижняя граница модального интервала;
— величина модального интервала;
— частота модального интервала;
— частота интервала, предшествующего модальному;
— частота интервала, следующего за модальным;
Медиана — это значение варьирующего признака, приходящееся на середину ряда, расположенного в порядке возрастания или убывания числовых значений признака, т.е. величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда. Главное свойство медианы в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины:
Для определения медианы в дискретном ряду при наличии частот, сначала исчисляется полусумма частот, а затем определяется какое значение варьирующего признака ей соответствует. При исчислении медианы интервального ряда сначала определяются медианы интервалов, а затем определяется какое значение варьирующего признака соответствует данной частоте. Для определения величины медианы используется формула:
где: — нижняя граница медианного интервала;
— величина медианного интервала;
— накопленная частота интервала, предшествующего медианному;
— частота медианного интервала;
Медианный интервал не обязательно совпадает с модальным.
Моду и медиану в интервальном ряду распределения можно определить графически. Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который в данном случае является модальным. Затем правую вершину модального прямоугольника соединяют с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс.
Примеры расчета моды и медианы мы уже рассматривали здесь.
www.goodstudents.ru
Что такое медиана?
Добрый вечер! Я поняла, что вы не понимаете,что такое медиана. Давайте разбираться вместе. Чаще всего, когда просят найти медиану, то добавляют: медиану треугольника.
Медиана треугольника — это отрезок, который соединяет вершину треугольника с серединой стороны, на которую она проведена. То есть, медиана всегда делит сторону на два равных отрезка.
В треугольнике могут быть проведены три разные медианы, которые будут обозначаться так: , в зависимости от того, на какую сторону будут проведены.
В геометрии существуют свойства медиан, среди которых различают такие:
- Медиана делит треугольник на два треугольника, чьи площади будут равны (равновеликие)
- Медианы треугольника точкой их пересечения делятся в отношении , считая от вершин треугольника.
- Три медианы треугольника делят треугольник на шесть равновеликих треугольников
Для нахождения медианы используется такая формула (она выражается через стороны треугольника):
Теперь высчитаем, чему же равна медиана нашего треугольника:
Ответ: см
ru.solverbook.com
Медиана (статистика) в математической статистике
Медиана (статистика), в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5. Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4).
Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности. Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.
Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.
Функция МЕДИАНА измеряет центральную тенденцию, которая является центром множества чисел в статистическом распределении. Существует три наиболее распространенных способа определения центральной тенденции:
- Среднее значение — среднее арифметическое, которое вычисляется сложением множества чисел с последующим делением полученной суммы на их количество.
Например, средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6. - Медиана — число, которое является серединой множества чисел: половина чисел имеют значения большие, чем медиана, а половина чисел — меньшие.
Например, медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4. - Мода — число, наиболее часто встречающееся в данном множестве чисел.
Например, модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.
www.persev.ru