Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число – Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число — это… Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число?

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°ΜΠ»ΡŒΠ½ΠΎΠ΅ число́ — это вСщСствСнноС число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа, . Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ бСсконСчной нСпСриодичСской дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ.

ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ обозначаСтся Π·Π°Π³Π»Π°Π²Π½ΠΎΠΉ латинской Π±ΡƒΠΊΠ²ΠΎΠΉ Π² ΠΏΠΎΠ»ΡƒΠΆΠΈΡ€Π½ΠΎΠΌ Π½Π°Ρ‡Π΅Ρ€Ρ‚Π°Π½ΠΈΠΈ Π±Π΅Π· Π·Π°Π»ΠΈΠ²ΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: , Ρ‚.Π΅. мноТСство ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ мноТСств вСщСствСнных ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.

О сущСствовании ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², нСсоизмСримых с ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, Π·Π½Π°Π»ΠΈ ΡƒΠΆΠ΅ Π΄Ρ€Π΅Π²Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ: ΠΈΠΌ Π±Ρ‹Π»Π° извСстна, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Ρ‡Ρ‚ΠΎ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ числа .

Бвойства

  • ВсякоС вСщСствСнноС число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ бСсконСчной дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ, ΠΏΡ€ΠΈ этом ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ½ΠΈ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ нСпСриодичСскими бСсконСчными дСсятичными дробями.
  • Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ сСчСния Π² мноТСствС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² Π½ΠΈΠΆΠ½Π΅ΠΌ классС Π½Π΅Ρ‚ наибольшСго, Π° Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΌ Π½Π΅Ρ‚ наимСньшСго числа.
  • КаТдоС вСщСствСнноС трансцСндСнтноС число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ.
  • КаТдоС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число являСтся Π»ΠΈΠ±ΠΎ алгСбраичСским, Π»ΠΈΠ±ΠΎ трансцСндСнтным.
  • ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π²ΡΡŽΠ΄Ρƒ ΠΏΠ»ΠΎΡ‚Π½ΠΎ Π½Π° числовой прямой: ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя числами имССтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.
  • ΠŸΠΎΡ€ΡΠ΄ΠΎΠΊ Π½Π° мноТСствС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„Π΅Π½ порядку Π½Π° мноТСствС вСщСствСнных трансцСндСнтных чисСл.
  • ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл нСсчётно, являСтся мноТСством Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ.[1]

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

ΠšΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 2

Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ нСсократимой Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ ΠΈ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа. Π’ΠΎΠ·Π²Π΅Π΄Ρ‘ΠΌ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ равСнство Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚:

.

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‘Ρ‚Π½ΠΎ ΠΈ . ΠŸΡƒΡΠΊΠ°ΠΉ , Π³Π΄Π΅ Ρ†Π΅Π»ΠΎΠ΅. Π’ΠΎΠ³Π΄Π°

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‘Ρ‚Π½ΠΎ ΠΈ . ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‡Ρ‘Ρ‚Π½Ρ‹, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡ‚ нСсократимости Π΄Ρ€ΠΎΠ±ΠΈ . Π—Π½Π°Ρ‡ΠΈΡ‚, исходноС ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΌ, ΠΈ Β β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.

Π”Π²ΠΎΠΈΡ‡Π½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ числа 3

Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ ΠΈ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ , ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Π’ΠΎΠ³Π΄Π°

Но Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π° Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎ. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

e

Π‘ΠΌ. Ρ€Π°Π·Π΄Π΅Π» Β«Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈΒ» Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Β«eΒ».

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ

ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π±Ρ‹Π»Π° нСявным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ воспринята индийскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ Π² VII Π²Π΅ΠΊΠ΅ Π΄ΠΎ нашСй эры, ΠΊΠΎΠ³Π΄Π° Манава (ΠΎΠΊ. 750 Π³. Π΄ΠΎ Π½. э. β€” ΠΎΠΊ. 690 Π³. Π΄ΠΎ Π½. э.) выяснил, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ 2 ΠΈ 61, Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ явно Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹.

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ сущСствования ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ приписываСтся Гиппасу ΠΈΠ· ΠœΠ΅Ρ‚Π°ΠΏΠΎΠ½Ρ‚Π° (ΠΎΠΊ. 500 Π³Π³. Π΄ΠΎ Π½. э.), ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°ΡˆΡ‘Π» это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, изучая Π΄Π»ΠΈΠ½Ρ‹ сторон ΠΏΠ΅Π½Ρ‚Π°Π³Ρ€Π°ΠΌΠΌΡ‹. Π’ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π΅Π² ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ сущСствуСт Сдиная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π΄Π»ΠΈΠ½Ρ‹, достаточно малая ΠΈ нСдСлимая, которая Ρ†Π΅Π»ΠΎΠ΅ число Ρ€Π°Π· Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² любой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ. Однако Гиппас обосновал, Ρ‡Ρ‚ΠΎ Π½Π΅ сущСствуСт Π΅Π΄ΠΈΠ½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Π΄Π»ΠΈΠ½Ρ‹, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Π΅Ρ‘ сущСствовании ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡŽ. Он ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ссли Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° содСрТит Ρ†Π΅Π»ΠΎΠ΅ число Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², Ρ‚ΠΎ это число Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΈ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ, ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ выглядСло ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

  • ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ ΠΊ Π΄Π»ΠΈΠ½Π΅ ΠΊΠ°Ρ‚Π΅Ρ‚Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ ΠΊΠ°ΠΊ a:b, Π³Π΄Π΅ a ΠΈ b Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ наимСньшими ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ….
  • По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°: aΒ² = 2bΒ².
  • Π’Π°ΠΊ ΠΊΠ°ΠΊ aΒ² Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, a Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ (Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ³ΠΎ числа Π±Ρ‹Π» Π±Ρ‹ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ).
  • ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ a:b нСсократима, b обязано Π±Ρ‹Ρ‚ΡŒ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ.
  • Π’Π°ΠΊ ΠΊΠ°ΠΊ
    a
    Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ a = 2y.
  • Π’ΠΎΠ³Π΄Π° aΒ² = 4yΒ² = 2bΒ².
  • bΒ² = 2yΒ², ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ bΒ² Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, Ρ‚ΠΎΠ³Π΄Π° ΠΈ b Ρ‡Π΅Ρ‚Π½ΠΎ.
  • Однако Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ b Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ΅. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

ГрСчСскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π½Π°Π·Π²Π°Π»ΠΈ это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ нСсоизмСримых Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ алогос (Π½Π΅Π²Ρ‹Ρ€Π°Π·ΠΈΠΌΡ‹ΠΌ), ΠΎΠ΄Π½Π°ΠΊΠΎ согласно Π»Π΅Π³Π΅Π½Π΄Π°ΠΌ Π½Π΅ Π²ΠΎΠ·Π΄Π°Π»ΠΈ Гиппасу Π΄ΠΎΠ»ΠΆΠ½ΠΎΠ³ΠΎ уваТСния. БущСствуСт Π»Π΅Π³Π΅Π½Π΄Π°, Ρ‡Ρ‚ΠΎ Гиппас ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΠ» ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅, Π½Π°Ρ…ΠΎΠ΄ΡΡΡŒ Π² морском ΠΏΠΎΡ…ΠΎΠ΄Π΅, ΠΈ Π±Ρ‹Π» Π²Ρ‹Π±Ρ€ΠΎΡˆΠ΅Π½ Π·Π° Π±ΠΎΡ€Ρ‚ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π°ΠΌΠΈ Β«Π·Π° созданиС элСмСнта всСлСнной, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π΅Ρ‚ Π΄ΠΎΠΊΡ‚Ρ€ΠΈΠ½Ρƒ, Ρ‡Ρ‚ΠΎ всС сущности Π²ΠΎ всСлСнной ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ свСдСны ΠΊ Ρ†Π΅Π»Ρ‹ΠΌ числам ΠΈ ΠΈΡ… ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΒ». ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Гиппаса поставило ΠΏΠ΅Ρ€Π΅Π΄ пифагорСйской ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ, Ρ€Π°Π·Ρ€ΡƒΡˆΠΈΠ² лСТавшСС Π² основС всСй Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ числа ΠΈ гСомСтричСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π΅Π΄ΠΈΠ½Ρ‹ ΠΈ Π½Π΅Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌΡ‹.

Π€Π΅ΠΎΠ΄ΠΎΡ€ ΠšΠΈΡ€Π΅Π½ΡΠΊΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΄ΠΎ 17 (ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ, СстСствСнно, Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ β€” 1, 4, 9 ΠΈ 16), Π½ΠΎ остановился Π½Π° этом, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ имСвшаяся Π² Π΅Π³ΠΎ инструмСнтарии Π°Π»Π³Π΅Π±Ρ€Π° Π½Π΅ позволяла Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· 17. По ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, историками ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π±Ρ‹Π»ΠΎ высказано нСсколько Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Богласно Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌΡƒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π–Π°Π½Π° Π˜Ρ‚Π°Ρ€Π° (1961), ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ основано Π½Π° пифагорСйской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… ΠΈ Π½Π΅Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… чисСл, Π² Ρ‚ΠΎΠΌ числС β€” Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число Π·Π° Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ дСлится Π½Π° восСмь Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… чисСл.

ПозТС Евдокс Книдский (410 ΠΈΠ»ΠΈ 408 Π³. Π΄ΠΎ Π½. э. β€” 355 ΠΈΠ»ΠΈ 347 Π³. Π΄ΠΎ Π½. э.) Ρ€Π°Π·Π²ΠΈΠ» Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΉ, которая ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»Π° Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ. Π­Ρ‚ΠΎ послуТило основаниСм для понимания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ сути ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° стала ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π½Π΅ числом, Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ сущностСй, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, ΡƒΠ³Π»Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ±ΡŠΡ‘ΠΌΡ‹, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ β€” сущностСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ (Π² соврСмСнном ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ этого слова). Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π±Ρ‹Π»ΠΈ противопоставлСны числам, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ лишь Β«ΠΏΡ€Ρ‹ΠΆΠΊΠ°ΠΌΠΈΒ» ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ числа ΠΊ сосСднСму, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, с 4 Π½Π° 5. Числа ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· наимСньшСй Π½Π΅Π΄Π΅Π»ΠΈΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ бСсконСчно.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½ΠΈΠΊΠ°ΠΊΠΎΠ΅ количСствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΠ»ΠΎΡΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Евдокс смог ΠΎΡ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ ΠΈ соизмСримыС, ΠΈ нСсоизмСримыС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΄Ρ€ΠΎΠ±ΠΈ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π΄Π²ΡƒΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΈ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ ΠΊΠ°ΠΊ равСнства Π΄Π²ΡƒΡ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π£Π±Ρ€Π°Π² ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ количСствСнныС значСния (числа), ΠΎΠ½ ΠΈΠ·Π±Π΅ΠΆΠ°Π» Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, состоящСй Π² нСобходимости Π½Π°Π·Π²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ числом. ВСория Евдокса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° грСчСским ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌ ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΡ‚ΡŒ нСвСроятный прогрСсс Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, прСдоставив ΠΈΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ логичСскоС обоснованиС для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с нСсоизмСримыми Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ. «Книга 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ²Β» Π•Π²ΠΊΠ»ΠΈΠ΄Π° посвящСна классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ°

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° ознамСновались принятиСм Ρ‚Π°ΠΊΠΈΡ… понятий ΠΊΠ°ΠΊ ноль, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа, Ρ†Π΅Π»Ρ‹Π΅ ΠΈ Π΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ числа, спСрва индийскими, Π·Π°Ρ‚Π΅ΠΌ китайскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ. ПозТС ΠΏΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ»ΠΈΡΡŒ арабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌΠΈ стали ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа алгСбраичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ (наряду ΠΈ Π½Π° Ρ€Π°Π²Π½Ρ‹Ρ… ΠΏΡ€Π°Π²Π°Ρ… с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами), Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΡŒ дисциплину, Π½Ρ‹Π½Π΅ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π°Π»Π³Π΅Π±Ρ€ΠΎΠΉ.

АрабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ соСдинили дрСвнСгрСчСскиС понятия «числа» ΠΈ Β«Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹Β» Π² Π΅Π΄ΠΈΠ½ΡƒΡŽ, Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΡƒΡŽ идСю вСщСствСнных чисСл. Они критичСски ΠΎΡ‚Π½ΠΎΡΠΈΠ»ΠΈΡΡŒ ΠΊ прСдставлСниям Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΎΠ± ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΡ…, Π² противовСс Π΅ΠΉ ΠΎΠ½ΠΈ Ρ€Π°Π·Π²ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΠ»ΠΈ понятиС числа Π΄ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π’ своих коммСнтариях Π½Π° ΠšΠ½ΠΈΠ³Ρƒ 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π•Π²ΠΊΠ»ΠΈΠ΄Π°, пСрсидский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль ΠœΠ°Ρ…Π°Π½ΠΈ (ΠΎΠΊ 800 Π³Π³. Π½. э.) исслСдовал ΠΈ классифицировал ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа (числа Π²ΠΈΠ΄Π°) ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΠΈΠ΅ кубичСскиС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа. Он Π΄Π°Π» ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Он Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π» этими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, Π½ΠΎ рассуТдал ΠΊΠ°ΠΊ ΠΎΠ± обособлСнных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ [Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ] являСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 10, 12, 3%, 6% ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ произнСсСны ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ количСствСнно. Π§Ρ‚ΠΎ Π½Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ произнСсти ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ количСствСнно. НапримСр, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ чисСл Ρ‚Π°ΠΊΠΈΡ… Ρ‚Π°ΠΊ 10, 15, 20 β€” Π½Π΅ ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°ΠΌΠΈ.

Π’ противовСс ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Π•Π²ΠΊΠ»ΠΈΠ΄Π°, Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡΡƒΡ‚ΡŒ Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, Аль ΠœΠ°Ρ…Π°Π½ΠΈ считал Ρ†Π΅Π»Ρ‹Π΅ числа ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΈ кубичСскиС ΠΊΠΎΡ€Π½ΠΈ β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Он Ρ‚Π°ΠΊΠΆΠ΅ Π²Π²Π΅Π» арифмСтичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ мноТСству ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½:

Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ слоТСния ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ.

ЕгипСтский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Абу Камил (ΠΎΠΊ. 850 Π³. Π½. э. β€” ΠΎΠΊ. 930 Π³. Π½. э.) Π±Ρ‹Π» ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ, ΠΊΡ‚ΠΎ счСл ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ коэффициСнтами Π² уравнСниях β€” Π² основном, Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΈΠ»ΠΈ кубичСских ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠΉ стСпСни. Π’ X Π²Π΅ΠΊΠ΅ иракский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль Π₯ашими Π²Ρ‹Π²Π΅Π» ΠΎΠ±Ρ‰ΠΈΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° (Π° Π½Π΅ наглядныС гСомСтричСскиС дСмонстрации) ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ произвСдСния, частного ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ½Ρ‹Ρ… матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π°Π΄ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Ал Π₯Π°Π·ΠΈΠ½ (900 Π³. Π½. э. β€” 971 Π³. Π½. э.) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹:

ΠŸΡƒΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° содСрТится Π² Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ нСсколько Ρ€Π°Π·, Ρ‚ΠΎΠ³Π΄Π° эта [данная] Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° соотвСтствуСт Ρ†Π΅Π»ΠΎΠΌΡƒ числу… КаТдая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая составляСт ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ, ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒ, ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΈΠ»ΠΈ, сравнСнная с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ составляСт Ρ‚Ρ€ΠΈ пятых ΠΎΡ‚ Π½Π΅Π΅, это Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°. И Π² Ρ†Π΅Π»ΠΎΠΌ, всякая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая относится ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎ число ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ. Если ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСна ΠΊΠ°ΠΊ нСсколько ΠΈΠ»ΠΈ Ρ‡Π°ΡΡ‚ΡŒ (l/n), ΠΈΠ»ΠΈ нСсколько частСй (m/n) Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΎΠ½Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ нСвыразимая ΠΈΠ½Π°Ρ‡Π΅ ΠΊΠ°ΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ€Π½Π΅ΠΉ.

МногиС ΠΈΠ· этих ΠΈΠ΄Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ·ΠΆΠ΅ пСрСняты СвропСйскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ послС ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° Π½Π° Π»Π°Ρ‚Ρ‹Π½ΡŒ арабских тСкстов Π² XII Π²Π΅ΠΊΠ΅. Аль Π₯ассар, арабский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ ΠΈΠ· ΠœΠ°Π³Ρ€ΠΈΠ±Π°, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΠΉΡΡ Π½Π° исламских Π·Π°ΠΊΠΎΠ½Π°Ρ… ΠΎ наслСдствС, Π² XII Π²Π΅ΠΊΠ΅ Π²Π²Π΅Π» ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΡΠΈΠΌΠ²ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½ΠΎΡ‚Π°Ρ†ΠΈΡŽ для Π΄Ρ€ΠΎΠ±Π΅ΠΉ, Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ² Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ. Π’Π° ΠΆΠ΅ нотация появилась Π·Π°Ρ‚Π΅ΠΌ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π€ΠΈΠ±ΠΎΠ½Π°Ρ‡Ρ‡ΠΈ Π² XIII Π²Π΅ΠΊΠ΅. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ XIVβ€”XVI Π²Π². ΠœΠ°Π΄Ρ…Π°Π²Π° ΠΈΠ· Π‘Π°Π½Π³Π°ΠΌΠ°Π³Ρ€Π°ΠΌΡ‹ ΠΈ прСдставитСли ΠšΠ΅Ρ€Π°Π»ΡŒΡΠΊΠΎΠΉ ΡˆΠΊΠΎΠ»Ρ‹ астрономии ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ исслСдовали бСсконСчныС ряды, сходящиСся ΠΊ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числам, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊ Ο€, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ДТСстадСва ΠΏΡ€ΠΈΠ²Π΅Π» эти Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² ΠΊΠ½ΠΈΠ³Π΅ Π™ΡƒΠΊΡ‚ΠΈΠ±Ρ…Π°Π·Π°.

НашС врСмя

Π’ XVII Π²Π΅ΠΊΠ΅ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΡ‡Π½ΠΎ ΡƒΠΊΡ€Π΅ΠΏΠΈΠ»ΠΈΡΡŒ комплСксныС числа, Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… внСсли Абрахам Π΄Π΅ ΠœΡƒΠ°Π²Ρ€ (1667β€”1754) ΠΈ Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ (1707β€”1783). Когда тСория комплСксных чисСл Π² XIX Π²Π΅ΠΊΠ΅ стала Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ ΠΈ Ρ‡Ρ‘Ρ‚ΠΊΠΎΠΉ, стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° алгСбраичСскиС ΠΈ трансцСндСнтныС (Π΄ΠΎΠΊΠ°Π·Π°Π² ΠΏΡ€ΠΈ этом сущСствованиС трансцСндСнтных чисСл), Ρ‚Π΅ΠΌ самым пСрСосмыслив Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΏΠΎ классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. По этой Ρ‚Π΅ΠΌΠ΅ Π² 1872 Π±Ρ‹Π»ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°, Π“Π΅ΠΉΠ½Π΅, ΠšΠ°Π½Ρ‚ΠΎΡ€Π° ΠΈ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄Π°. Π₯отя Π΅Ρ‰Ρ‘ Π² 1869 Π³ΠΎΠ΄Ρƒ ΠœΠ΅Ρ€Ρ Π½Π°Ρ‡Π°Π» рассмотрСния, схоТиС с Π“Π΅ΠΉΠ½Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ 1872 Π³ΠΎΠ΄ принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π³ΠΎΠ΄ΠΎΠΌ роТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ. Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡ, ΠšΠ°Π½Ρ‚ΠΎΡ€ ΠΈ Π“Π΅ΠΉΠ½Π΅ обосновывали свои Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ бСсконСчных рядов, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ Ρ€Π°Π±ΠΎΡ‚Π°Π» с (Π½Ρ‹Π½Π΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌ) Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ΠΌ сСчСниСм мноТСства вСщСствСнных чисСл, раздСляя всС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° Π΄Π²Π° мноТСства с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹ΠΌΠΈ характСристичСскими свойствами.

Π¦Π΅ΠΏΠ½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, тСсно связанныС с ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами (цСпная Π΄Ρ€ΠΎΠ±ΡŒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Π΄Π°Π½Π½ΠΎΠ΅ число, бСсконСчна Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ), Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ исслСдованы ΠšΠ°Ρ‚Π°Π»ΡŒΠ΄ΠΈ Π² 1613 Π³ΠΎΠ΄Ρƒ, Π·Π°Ρ‚Π΅ΠΌ снова ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ»ΠΈ ΠΊ сСбС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π­ΠΉΠ»Π΅Ρ€Π°, Π° Π² Π½Π°Ρ‡Π°Π»Π΅ XIX Π²Π΅ΠΊΠ° β€” Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π›Π°Π³Ρ€Π°Π½ΠΆΠ°. Π”ΠΈΡ€ΠΈΡ…Π»Π΅ Ρ‚Π°ΠΊΠΆΠ΅ внёс Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ.

Π’ 1761 Π³ΠΎΠ΄Ρƒ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ο€ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‡Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈ любом Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΌ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ n. Π₯отя Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π½Π΅Π·Π°Π²Π΅Ρ€ΡˆΡ‘Π½Π½Ρ‹ΠΌ, принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Π³ΠΎ достаточно строгим, особСнно учитывая врСмя Π΅Π³ΠΎ написания. Π›Π΅ΠΆΠ°Π½Π΄Ρ€ Π² 1794 Π³ΠΎΠ΄Ρƒ, послС ввСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ БСссСля-ΠšΠ»ΠΈΡ„Ρ„ΠΎΡ€Π΄Π°, ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ π² ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ο€ слСдуСт Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΠΎ (Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ Π΄Π°Π»ΠΎ Π±Ρ‹ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅). БущСствованиС трансцСндСнтных чисСл Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π›ΠΈΡƒΠ²ΠΈΠ»Π»Π΅ΠΌ Π² 1844β€”1851 Π³ΠΎΠ΄Π°Ρ…. ПозТС Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€ (1873) ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ… сущСствованиС, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΈ обосновал, Ρ‡Ρ‚ΠΎ любой ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» вСщСствСнного ряда содСрТит бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ трансцСндСнтных чисСл. Π¨Π°Ρ€Π»ΡŒ Π­Ρ€ΠΌΠΈΡ‚ Π΄ΠΎΠΊΠ°Π·Π°Π» Π² 1873 Π³ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ e трансцСндСнтно, Π° Π€Π΅Ρ€Π΄ΠΈΠ½Π°Π½Π΄ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½ Π² 1882 Π³ΠΎΠ΄Ρƒ, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° этом Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅, ΠΏΠΎΠΊΠ°Π·Π°Π» Ρ‚Ρ€Π°Π½ΡΡ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ο€. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½Π½Π° Π±Ρ‹Π»ΠΎ Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠΎΠΌ Π² 1885 Π³ΠΎΠ΄Ρƒ, Π΅Ρ‰Ρ‘ Π±ΠΎΠ»Π΅Π΅ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π”Π°Π²ΠΈΠ΄ΠΎΠΌ Π“ΠΈΠ»ΡŒΠ±Π΅Ρ€Ρ‚ΠΎΠΌ Π² 1893 Π³ΠΎΠ΄Ρƒ ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΄ΠΎ ΠΏΠΎΡ‡Ρ‚ΠΈ элСмСнтарного ΠΠ΄ΠΎΠ»ΡŒΡ„ΠΎΠΌ Π“ΡƒΡ€Π²ΠΈΡ†Π΅ΠΌ ΠΈ ΠŸΠ°ΡƒΠ»Π΅ΠΌ Π“ΠΎΡ€Π΄Π°Π½ΠΎΠΌ.

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ

Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π½Π΅ Ρ…Π²Π°Ρ‚Π°Π΅Ρ‚ ссылок Π½Π° источники ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ провСряСма, ΠΈΠ½Π°Ρ‡Π΅ ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ поставлСна ΠΏΠΎΠ΄ сомнСниС ΠΈ ΡƒΠ΄Π°Π»Π΅Π½Π°.
Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΡ‚Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ эту ΡΡ‚Π°Ρ‚ΡŒΡŽ, Π΄ΠΎΠ±Π°Π²ΠΈΠ² ссылки Π½Π° Π°Π²Ρ‚ΠΎΡ€ΠΈΡ‚Π΅Ρ‚Π½Ρ‹Π΅ источники.
Π­Ρ‚Π° ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΊΠ° установлСна 13 мая 2011.

xzsad.academic.ru

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число β€” ВикипСдия

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°ΜΠ»ΡŒΠ½ΠΎΠ΅ число́ — это вСщСствСнноС число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ mn{\displaystyle {\frac {m}{n}}}, Π³Π΄Π΅ m{\displaystyle m}Β β€” Ρ†Π΅Π»ΠΎΠ΅ число, n{\displaystyle n}Β β€” Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ число. Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ бСсконСчной нСпСриодичСской дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ мноТСство ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Rβˆ–Q{\displaystyle \mathbb {R} \backslash \mathbb {Q} } мноТСств вСщСствСнных ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.

О сущСствовании ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², нСсоизмСримых с ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, Π·Π½Π°Π»ΠΈ ΡƒΠΆΠ΅ Π΄Ρ€Π΅Π²Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ: ΠΈΠΌ Π±Ρ‹Π»Π° извСстна, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Ρ‡Ρ‚ΠΎ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ числа 2{\displaystyle {\sqrt {2}}}.[1]

Бвойства

  • Π‘ΡƒΠΌΠΌΠ° Π΄Π²ΡƒΡ… ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числом.
  • Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π΄Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ сСчСния Π²ΠΎ мноТСствС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² Π½ΠΈΠΆΠ½Π΅ΠΌ классС Π½Π΅Ρ‚ наибольшСго, Π° Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΌ Π½Π΅Ρ‚ наимСньшСго числа.
  • ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π²ΡΡŽΠ΄Ρƒ ΠΏΠ»ΠΎΡ‚Π½ΠΎ Π½Π° числовой прямой: ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ числами имССтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.
  • ΠŸΠΎΡ€ΡΠ΄ΠΎΠΊ Π½Π° мноТСствС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„Π΅Π½ порядку Π½Π° мноТСствС вСщСствСнных трансцСндСнтных чисСл.[источник Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½ 163 дня]

АлгСбраичСскиС ΠΈ трансцСндСнтныС числа

КаТдоС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число являСтся Π»ΠΈΠ±ΠΎ алгСбраичСским, Π»ΠΈΠ±ΠΎ трансцСндСнтным. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ алгСбраичСских чисСл являСтся счётным мноТСством. Π’Π°ΠΊ ΠΊΠ°ΠΊ мноТСство вСщСствСнных чисСл нСсчётно, Ρ‚ΠΎ мноТСство ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл нСсчётно.

ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл являСтся мноТСством Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ.[2]

КаТдоС вСщСствСнноС трансцСндСнтноС число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ.

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ бСсконСчной Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Π΄Ρ€ΠΎΠ±ΡŒΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€, число e:

e=[2;1,2,1,1,4,1,1,6,1,…,1,2n,1,…].{\displaystyle e=[2;1,2,1,1,4,1,1,6,1,\ldots ,1,2n,1,\ldots ].}

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹ΠΌ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ пСриодичСскиС Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ.

Ο•=1+52=[1;1,1,1,1,…].{\displaystyle \phi ={\frac {1+{\sqrt {5}}}{2}}=[1;1,1,1,1,\dots ].}

Π’ΠΈΠ΄Π΅ΠΎ ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

ΠšΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 2

Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: 2{\displaystyle {\sqrt {2}}} Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ mn{\displaystyle {\frac {m}{n}}}, Π³Π΄Π΅ m{\displaystyle m}Β β€” Ρ†Π΅Π»ΠΎΠ΅ число, Π° n{\displaystyle n}Β β€” Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ число.

Π’ΠΎΠ·Π²Π΅Π΄Ρ‘ΠΌ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ равСнство Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚:

2=mn⇒2=m2n2⇒m2=2n2{\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}}.

Π’ каноничСскоС Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π»Π΅Π²ΠΎΠΉ части равСнства число 2{\displaystyle 2} Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² Ρ‡Ρ‘Ρ‚Π½ΠΎΠΉ стСпСни, Π° Π² Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ 2n2{\displaystyle 2n^{2}}Β β€” Π² Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎΠΉ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ равСнство m2=2n2{\displaystyle m^{2}=2n^{2}} Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. Π—Π½Π°Ρ‡ΠΈΡ‚, исходноС ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΌ, ΠΈ 2{\displaystyle {\sqrt {2}}}Β β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.

Π”Π²ΠΎΠΈΡ‡Π½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ числа 3

Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: log2⁑3{\displaystyle \log _{2}3} Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ mn{\displaystyle {\frac {m}{n}}}, Π³Π΄Π΅ m{\displaystyle m} ΠΈ n{\displaystyle n}Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ log2⁑3>0{\displaystyle \log _{2}3>0}, m{\displaystyle m} ΠΈ n{\displaystyle n} ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Π’ΠΎΠ³Π΄Π°

log2⁑3=mnβ‡’m=nlog2⁑3β‡’2m=2nlog2⁑3β‡’2m=3n{\displaystyle \log _{2}3={\frac {m}{n}}\Rightarrow m=n\log _{2}3\Rightarrow 2^{m}=2^{n\log _{2}3}\Rightarrow 2^{m}=3^{n}}

Но 2m{\displaystyle 2^{m}} Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π° правая Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ равСнства Π½Π΅Ρ‡Ρ‘Ρ‚Π½Π°. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

e

Π‘ΠΌ. Ρ€Π°Π·Π΄Π΅Π» Β«Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈΒ» Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Β«eΒ».

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ

ΠΠ½Ρ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ

ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π±Ρ‹Π»Π° нСявным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ воспринята индийскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ Π² VII Π²Π΅ΠΊΠ΅ Π΄ΠΎ нашСй эры, ΠΊΠΎΠ³Π΄Π° Манава (ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 750β€”690 Π³ΠΎΠ΄Π° Π΄ΠΎ нашСй эры) выяснил, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ 2 ΠΈ 61, Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ явно Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹[источник Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½ 1091 дСнь].

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ сущСствования ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Π° Ρ‚ΠΎΡ‡Π½Π΅Π΅ сущСствованиС нСсоизмСримых ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ приписываСтся ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Ρƒ Гиппасу ΠΈΠ· ΠœΠ΅Ρ‚Π°ΠΏΠΎΠ½Ρ‚Π° (ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 470 Π³ΠΎΠ΄ до нашСй эры). Π’ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π΅Π² ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ сущСствуСт Сдиная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π΄Π»ΠΈΠ½Ρ‹, достаточно малая ΠΈ нСдСлимая, которая Ρ†Π΅Π»ΠΎΠ΅ число Ρ€Π°Π· Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² любой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ[источник Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½ 1091 дСнь].

НСт Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Ρ‚ΠΎΠΌ, ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΊΠΎΠ³ΠΎ числа Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Гиппасом. Богласно Π»Π΅Π³Π΅Π½Π΄Π΅ ΠΎΠ½ Π½Π°ΡˆΡ‘Π» Π΅Π³ΠΎ, изучая Π΄Π»ΠΈΠ½Ρ‹ сторон ΠΏΠ΅Π½Ρ‚Π°Π³Ρ€Π°ΠΌΠΌΡ‹.[3] ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ€Π°Π·ΡƒΠΌΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ это Π±Ρ‹Π»ΠΎ Π·ΠΎΠ»ΠΎΡ‚ΠΎΠ΅ сСчСниС Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ это ΠΈ Π΅ΡΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΊ сторонС Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΌ ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅.

ГрСчСскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π½Π°Π·Π²Π°Π»ΠΈ это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ нСсоизмСримых Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ алогос (Π½Π΅Π²Ρ‹Ρ€Π°Π·ΠΈΠΌΡ‹ΠΌ), ΠΎΠ΄Π½Π°ΠΊΠΎ согласно Π»Π΅Π³Π΅Π½Π΄Π°ΠΌ Π½Π΅ Π²ΠΎΠ·Π΄Π°Π»ΠΈ Гиппасу Π΄ΠΎΠ»ΠΆΠ½ΠΎΠ³ΠΎ уваТСния. БущСствуСт Π»Π΅Π³Π΅Π½Π΄Π°, Ρ‡Ρ‚ΠΎ Гиппас ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΠ» ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅, Π½Π°Ρ…ΠΎΠ΄ΡΡΡŒ Π² морском ΠΏΠΎΡ…ΠΎΠ΄Π΅, ΠΈ Π±Ρ‹Π» Π²Ρ‹Π±Ρ€ΠΎΡˆΠ΅Π½ Π·Π° Π±ΠΎΡ€Ρ‚ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π°ΠΌΠΈ Β«Π·Π° созданиС элСмСнта всСлСнной, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π΅Ρ‚ Π΄ΠΎΠΊΡ‚Ρ€ΠΈΠ½Ρƒ, Ρ‡Ρ‚ΠΎ всС сущности Π²ΠΎ всСлСнной ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ свСдСны ΠΊ Ρ†Π΅Π»Ρ‹ΠΌ числам ΠΈ ΠΈΡ… ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΒ». ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Гиппаса поставило ΠΏΠ΅Ρ€Π΅Π΄ пифагорСйской ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ, Ρ€Π°Π·Ρ€ΡƒΡˆΠΈΠ² лСТавшСС Π² основС всСй Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ числа ΠΈ гСомСтричСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π΅Π΄ΠΈΠ½Ρ‹ ΠΈ Π½Π΅Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌΡ‹.

Π€Π΅ΠΎΠ΄ΠΎΡ€ ΠšΠΈΡ€Π΅Π½ΡΠΊΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π»[4] ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΄ΠΎ 17 (ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ, СстСствСнно, Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹Β β€” 1, 4, 9 ΠΈ 16), Π½ΠΎ остановился Π½Π° этом, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ имСвшаяся Π² Π΅Π³ΠΎ инструмСнтарии Π°Π»Π³Π΅Π±Ρ€Π° Π½Π΅ позволяла Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· 17. По ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, историками ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π±Ρ‹Π»ΠΎ высказано нСсколько Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Богласно Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌΡƒ[5] ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π–Π°Π½Π° Π˜Ρ‚Π°Ρ€Π°[fr], ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ основано Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число дСлится Π½Π° восСмь с остатком ΠΎΠ΄ΠΈΠ½[6].

ПозТС Евдокс Книдский (410 ΠΈΠ»ΠΈ 408Β Π³. Π΄ΠΎΒ Π½. э.Β β€” 355 ΠΈΠ»ΠΈ 347Β Π³. Π΄ΠΎΒ Π½. э.) Ρ€Π°Π·Π²ΠΈΠ» Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΉ, которая ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»Π° Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ. Π­Ρ‚ΠΎ послуТило основаниСм для понимания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ сути ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° стала ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π½Π΅ числом, Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ сущностСй, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, ΡƒΠ³Π»Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ±ΡŠΡ‘ΠΌΡ‹, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈΒ β€” сущностСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ (Π² соврСмСнном ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ этого слова). Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π±Ρ‹Π»ΠΈ противопоставлСны числам, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ лишь Β«ΠΏΡ€Ρ‹ΠΆΠΊΠ°ΠΌΠΈΒ» ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ числа ΠΊ сосСднСму, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, с 4 Π½Π° 5. Числа ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· наимСньшСй Π½Π΅Π΄Π΅Π»ΠΈΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ бСсконСчно.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½ΠΈΠΊΠ°ΠΊΠΎΠ΅ количСствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΠ»ΠΎΡΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Евдокс смог ΠΎΡ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ ΠΈ соизмСримыС, ΠΈ нСсоизмСримыС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΄Ρ€ΠΎΠ±ΠΈ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π΄Π²ΡƒΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΈ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ ΠΊΠ°ΠΊ равСнства Π΄Π²ΡƒΡ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π£Π±Ρ€Π°Π² ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ количСствСнныС значСния (числа), ΠΎΠ½ ΠΈΠ·Π±Π΅ΠΆΠ°Π» Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, состоящСй Π² нСобходимости Π½Π°Π·Π²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ числом. ВСория Евдокса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° грСчСским ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌ ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΡ‚ΡŒ нСвСроятный прогрСсс Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, прСдоставив ΠΈΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ логичСскоС обоснованиС для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с нСсоизмСримыми Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ. ДСсятая ΠΊΠ½ΠΈΠ³Π° «Начал» Π•Π²ΠΊΠ»ΠΈΠ΄Π° посвящСна классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ°

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° ознамСновались принятиСм Ρ‚Π°ΠΊΠΈΡ… понятий ΠΊΠ°ΠΊ ноль, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа, Ρ†Π΅Π»Ρ‹Π΅ ΠΈ Π΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ числа, спСрва индийскими, Π·Π°Ρ‚Π΅ΠΌ китайскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ. ПозТС ΠΏΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ»ΠΈΡΡŒ арабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌΠΈ стали ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа алгСбраичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ (наряду ΠΈ Π½Π° Ρ€Π°Π²Π½Ρ‹Ρ… ΠΏΡ€Π°Π²Π°Ρ… с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами), Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΡŒ дисциплину, Π½Ρ‹Π½Π΅ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π°Π»Π³Π΅Π±Ρ€ΠΎΠΉ.

АрабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ соСдинили дрСвнСгрСчСскиС понятия «числа» ΠΈ Β«Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹Β» Π² Π΅Π΄ΠΈΠ½ΡƒΡŽ, Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΡƒΡŽ идСю вСщСствСнных чисСл. Они критичСски ΠΎΡ‚Π½ΠΎΡΠΈΠ»ΠΈΡΡŒ ΠΊ прСдставлСниям Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΎΠ± ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΡ…, Π² противовСс Π΅ΠΉ ΠΎΠ½ΠΈ Ρ€Π°Π·Π²ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΠ»ΠΈ понятиС числа Π΄ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π’ своих коммСнтариях Π½Π° ΠšΠ½ΠΈΠ³Ρƒ 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π•Π²ΠΊΠ»ΠΈΠ΄Π°, пСрсидский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль ΠœΠ°Ρ…Π°Π½ΠΈ (ΠΎΠΊ 800Β Π³Π³. Π½. э.) исслСдовал ΠΈ классифицировал ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа (числа Π²ΠΈΠ΄Π°) ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΠΈΠ΅ кубичСскиС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа. Он Π΄Π°Π» ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Он Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π» этими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, Π½ΠΎ рассуТдал ΠΊΠ°ΠΊ ΠΎΠ± обособлСнных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ [Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ] являСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 10, 12, 3%, 6% ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ произнСсСны ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ количСствСнно. Π§Ρ‚ΠΎ Π½Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ произнСсти ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ количСствСнно. НапримСр, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ чисСл Ρ‚Π°ΠΊΠΈΡ… Ρ‚Π°ΠΊ 10, 15, 20 β€” Π½Π΅ ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°ΠΌΠΈ.

Π’ противовСс ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Π•Π²ΠΊΠ»ΠΈΠ΄Π°, Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡΡƒΡ‚ΡŒ Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, Аль ΠœΠ°Ρ…Π°Π½ΠΈ считал Ρ†Π΅Π»Ρ‹Π΅ числа ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΈ кубичСскиС ΠΊΠΎΡ€Π½ΠΈΒ β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Он Ρ‚Π°ΠΊΠΆΠ΅ Π²Π²Π΅Π» арифмСтичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ мноТСству ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½:

Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ слоТСния ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ.

ЕгипСтский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Абу Камил (ΠΎΠΊ. 850Β Π³. Π½. э.Β β€” ΠΎΠΊ. 930Β Π³. Π½. э.) Π±Ρ‹Π» ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ, ΠΊΡ‚ΠΎ счСл ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ коэффициСнтами Π² уравнСниях — Π² основном, Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΈΠ»ΠΈ кубичСских ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠΉ стСпСни. Π’ X Π²Π΅ΠΊΠ΅ иракский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль Π₯ашими Π²Ρ‹Π²Π΅Π» ΠΎΠ±Ρ‰ΠΈΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° (Π° Π½Π΅ наглядныС гСомСтричСскиС дСмонстрации) ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ произвСдСния, частного ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ½Ρ‹Ρ… матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π°Π΄ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Ал Π₯Π°Π·ΠΈΠ½ (900Β Π³. Π½. э.Β β€” 971Β Π³. Π½. э.) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹:

ΠŸΡƒΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° содСрТится Π² Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ нСсколько Ρ€Π°Π·, Ρ‚ΠΎΠ³Π΄Π° эта [данная] Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° соотвСтствуСт Ρ†Π΅Π»ΠΎΠΌΡƒ числу… КаТдая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая составляСт ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ, ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒ, ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΈΠ»ΠΈ, сравнСнная с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ составляСт Ρ‚Ρ€ΠΈ пятых ΠΎΡ‚ Π½Π΅Ρ‘, это Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°. И Π² Ρ†Π΅Π»ΠΎΠΌ, всякая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая относится ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎ число ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ. Если ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСна ΠΊΠ°ΠΊ нСсколько ΠΈΠ»ΠΈ Ρ‡Π°ΡΡ‚ΡŒ (l/n), ΠΈΠ»ΠΈ нСсколько частСй (m/n) Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΎΠ½Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ нСвыразимая ΠΈΠ½Π°Ρ‡Π΅ ΠΊΠ°ΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ€Π½Π΅ΠΉ.

МногиС ΠΈΠ· этих ΠΈΠ΄Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ·ΠΆΠ΅ пСрСняты СвропСйскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ послС ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° Π½Π° Π»Π°Ρ‚Ρ‹Π½ΡŒ арабских тСкстов Π² XII Π²Π΅ΠΊΠ΅. Аль Π₯ассар, арабский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ ΠΈΠ· ΠœΠ°Π³Ρ€ΠΈΠ±Π°, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΠΉΡΡ Π½Π° исламских Π·Π°ΠΊΠΎΠ½Π°Ρ… ΠΎ наслСдствС, Π² XII Π²Π΅ΠΊΠ΅ Π²Π²Π΅Π» ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΡΠΈΠΌΠ²ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½ΠΎΡ‚Π°Ρ†ΠΈΡŽ для Π΄Ρ€ΠΎΠ±Π΅ΠΉ, Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ² Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ. Π’Π° ΠΆΠ΅ нотация появилась Π·Π°Ρ‚Π΅ΠΌ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π€ΠΈΠ±ΠΎΠ½Π°Ρ‡Ρ‡ΠΈ Π² XIII Π²Π΅ΠΊΠ΅. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ XIVβ€”XVIΒ Π²Π². ΠœΠ°Π΄Ρ…Π°Π²Π° ΠΈΠ· Π‘Π°Π½Π³Π°ΠΌΠ°Π³Ρ€Π°ΠΌΡ‹ ΠΈ прСдставитСли ΠšΠ΅Ρ€Π°Π»ΡŒΡΠΊΠΎΠΉ ΡˆΠΊΠΎΠ»Ρ‹ астрономии ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ исслСдовали бСсконСчныС ряды, сходящиСся ΠΊ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числам, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊ Ο€, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ДТСстадСва ΠΏΡ€ΠΈΠ²Π΅Π» эти Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² ΠΊΠ½ΠΈΠ³Π΅ Β«Π™ΡƒΠΊΡ‚ΠΈΠ±Ρ…Π°Π·Π°Β».

НовоС врСмя

Π’ XVII Π²Π΅ΠΊΠ΅ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΡ‡Π½ΠΎ ΡƒΠΊΡ€Π΅ΠΏΠΈΠ»ΠΈΡΡŒ комплСксныС числа, Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… внСсли Абрахам Π΄Π΅ ΠœΡƒΠ°Π²Ρ€ (1667β€”1754) ΠΈ Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ (1707β€”1783). Когда тСория комплСксных чисСл Π² XIX Π²Π΅ΠΊΠ΅ стала Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ ΠΈ Ρ‡Ρ‘Ρ‚ΠΊΠΎΠΉ, стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° алгСбраичСскиС ΠΈ трансцСндСнтныС (Π΄ΠΎΠΊΠ°Π·Π°Π² ΠΏΡ€ΠΈ этом сущСствованиС трансцСндСнтных чисСл), Ρ‚Π΅ΠΌ самым пСрСосмыслив Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΏΠΎ классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. По этой Ρ‚Π΅ΠΌΠ΅ Π² 1872 Π±Ρ‹Π»ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°, Π“Π΅ΠΉΠ½Π΅, ΠšΠ°Π½Ρ‚ΠΎΡ€Π° ΠΈ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄Π°. Π₯отя Π΅Ρ‰Ρ‘ Π² 1869 Π³ΠΎΠ΄Ρƒ ΠœΠ΅Ρ€Ρ Π½Π°Ρ‡Π°Π» рассмотрСния, схоТиС с Ρ€Π°Π±ΠΎΡ‚Π°ΠΌΠΈ Π“Π΅ΠΉΠ½Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ 1872 Π³ΠΎΠ΄ принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π³ΠΎΠ΄ΠΎΠΌ роТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ. Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡ, ΠšΠ°Π½Ρ‚ΠΎΡ€ ΠΈ Π“Π΅ΠΉΠ½Π΅ обосновывали свои Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ бСсконСчных рядов, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ Ρ€Π°Π±ΠΎΡ‚Π°Π» с (Π½Ρ‹Π½Π΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌΠΈ) Π΄Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ΠΌΠΈ сСчСниями мноТСства вСщСствСнных чисСл, раздСляя всС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° Π΄Π²Π° мноТСства с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹ΠΌΠΈ характСристичСскими свойствами.

Π¦Π΅ΠΏΠ½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, тСсно связанныС с ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами (цСпная Π΄Ρ€ΠΎΠ±ΡŒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Π΄Π°Π½Π½ΠΎΠ΅ число, бСсконСчна Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ), Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ исслСдованы ΠšΠ°Ρ‚Π°Π»ΡŒΠ΄ΠΈ Π² 1613 Π³ΠΎΠ΄Ρƒ, Π·Π°Ρ‚Π΅ΠΌ снова ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ»ΠΈ ΠΊ сСбС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π­ΠΉΠ»Π΅Ρ€Π°, Π° Π² Π½Π°Ρ‡Π°Π»Π΅ XIX Π²Π΅ΠΊΠ°Β β€” Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π›Π°Π³Ρ€Π°Π½ΠΆΠ°. Π”ΠΈΡ€ΠΈΡ…Π»Π΅ Ρ‚Π°ΠΊΠΆΠ΅ внёс Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π’ 1761 Π³ΠΎΠ΄Ρƒ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚ с ΠΏΠΎΠΌΠΎΡ‰ΡŽ Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ο€{\displaystyle \pi } Π½Π΅ являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числом, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‡Ρ‚ΠΎ ex{\displaystyle e^{x}} ΠΈ tg⁑x{\displaystyle \operatorname {tg} x} ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ любом Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΌ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ x{\displaystyle x}. Π₯отя Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π½Π΅Π·Π°Π²Π΅Ρ€ΡˆΡ‘Π½Π½Ρ‹ΠΌ, принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Π³ΠΎ достаточно строгим, особСнно учитывая врСмя Π΅Π³ΠΎ написания. Π›Π΅ΠΆΠ°Π½Π΄Ρ€ Π² 1794 Π³ΠΎΠ΄Ρƒ, послС ввСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ БСссСля β€” ΠšΠ»ΠΈΡ„Ρ„ΠΎΡ€Π΄Π°, ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ο€2{\displaystyle \pi ^{2}} ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ο€{\displaystyle \pi } слСдуСт Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΠΎ (Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ Π΄Π°Π»ΠΎ Π±Ρ‹ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅).

БущСствованиС трансцСндСнтных чисСл Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π›ΠΈΡƒΠ²ΠΈΠ»Π»Π΅ΠΌ Π² 1844β€”1851 Π³ΠΎΠ΄Π°Ρ…. ПозТС Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€ (1873) ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ… сущСствованиС, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΈ обосновал, Ρ‡Ρ‚ΠΎ любой ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» вСщСствСнного ряда содСрТит бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ трансцСндСнтных чисСл. Π¨Π°Ρ€Π»ΡŒ Π­Ρ€ΠΌΠΈΡ‚ Π΄ΠΎΠΊΠ°Π·Π°Π» Π² 1873 Π³ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ e трансцСндСнтно, Π° Π€Π΅Ρ€Π΄ΠΈΠ½Π°Π½Π΄ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½ Π² 1882 Π³ΠΎΠ΄Ρƒ, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° этом Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅, ΠΏΠΎΠΊΠ°Π·Π°Π» Ρ‚Ρ€Π°Π½ΡΡ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ο€{\displaystyle \pi }. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½Π½Π° Π±Ρ‹Π»ΠΎ Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠΎΠΌ Π² 1885 Π³ΠΎΠ΄Ρƒ, Π΅Ρ‰Ρ‘ Π±ΠΎΠ»Π΅Π΅ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π”Π°Π²ΠΈΠ΄ΠΎΠΌ Π“ΠΈΠ»ΡŒΠ±Π΅Ρ€Ρ‚ΠΎΠΌ Π² 1893 Π³ΠΎΠ΄Ρƒ ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΄ΠΎ ΠΏΠΎΡ‡Ρ‚ΠΈ элСмСнтарного ΠΠ΄ΠΎΠ»ΡŒΡ„ΠΎΠΌ Π“ΡƒΡ€Π²ΠΈΡ†Π΅ΠΌ ΠΈ ΠŸΠ°ΡƒΠ»Π΅ΠΌ Π“ΠΎΡ€Π΄Π°Π½ΠΎΠΌ.

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ

Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π°

Π‘Ρ‡Ρ‘Ρ‚Π½Ρ‹Π΅
мноТСства
ВСщСствСнныС числа
ΠΈ ΠΈΡ… Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ
Π˜Π½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ
числовых систСм
Π˜Π΅Ρ€Π°Ρ€Ρ…ΠΈΡ чисСл
βˆ’1,1,12,0,12,23,…{\displaystyle -1,\;1,\;{\frac {1}{2}},\;\;0{,}12,{\frac {2}{3}},\;\ldots }Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа
βˆ’1,1,0,12,12,Ο€,2,…{\displaystyle -1,\;1,\;\;0{,}12,{\frac {1}{2}},\;\pi ,\;{\sqrt {2}},\;\ldots }ВСщСствСнныС числа
βˆ’1,12,0,12,Ο€,3i+2,eiΟ€/3,…{\displaystyle -1,\;{\frac {1}{2}},\;0{,}12,\;\pi ,\;3i+2,\;e^{i\pi /3},\;\ldots }ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹Π΅ числа
1,i,j,k,2i+Ο€jβˆ’12k,…{\displaystyle 1,\;i,\;j,\;k,\;2i+\pi j-{\frac {1}{2}}k,\;\dots }ΠšΠ²Π°Ρ‚Π΅Ρ€Π½ΠΈΠΎΠ½Ρ‹
1,i,j,k,l,m,n,o,2βˆ’5l+Ο€3m,…{\displaystyle 1,\;i,\;j,\;k,\;l,\;m,\;n,\;o,\;2-5l+{\frac {\pi }{3}}m,\;\dots }ΠžΠΊΡ‚ΠΎΠ½ΠΈΠΎΠ½Ρ‹
1,e1,e2,…,e15,7e2+25e7βˆ’13e15,…{\displaystyle 1,\;e_{1},\;e_{2},\;\dots ,\;e_{15},\;7e_{2}+{\frac {2}{5}}e_{7}-{\frac {1}{3}}e_{15},\;\dots }Π‘Π΅Π΄Π΅Π½ΠΈΠΎΠ½Ρ‹
Π”Ρ€ΡƒΠ³ΠΈΠ΅
числовыС систСмы
Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

wiki2.red

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число — это… Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число?

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°ΜΠ»ΡŒΠ½ΠΎΠ΅ число́ — это вСщСствСнноС число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа, . Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ бСсконСчной нСпСриодичСской дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ.

ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ обозначаСтся Π·Π°Π³Π»Π°Π²Π½ΠΎΠΉ латинской Π±ΡƒΠΊΠ²ΠΎΠΉ Π² ΠΏΠΎΠ»ΡƒΠΆΠΈΡ€Π½ΠΎΠΌ Π½Π°Ρ‡Π΅Ρ€Ρ‚Π°Π½ΠΈΠΈ Π±Π΅Π· Π·Π°Π»ΠΈΠ²ΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: , Ρ‚.Π΅. мноТСство ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ мноТСств вСщСствСнных ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.

О сущСствовании ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², нСсоизмСримых с ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, Π·Π½Π°Π»ΠΈ ΡƒΠΆΠ΅ Π΄Ρ€Π΅Π²Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ: ΠΈΠΌ Π±Ρ‹Π»Π° извСстна, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Ρ‡Ρ‚ΠΎ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ числа .

Бвойства

  • ВсякоС вСщСствСнноС число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ бСсконСчной дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ, ΠΏΡ€ΠΈ этом ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ½ΠΈ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ нСпСриодичСскими бСсконСчными дСсятичными дробями.
  • Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ сСчСния Π² мноТСствС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² Π½ΠΈΠΆΠ½Π΅ΠΌ классС Π½Π΅Ρ‚ наибольшСго, Π° Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΌ Π½Π΅Ρ‚ наимСньшСго числа.
  • КаТдоС вСщСствСнноС трансцСндСнтноС число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ.
  • КаТдоС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число являСтся Π»ΠΈΠ±ΠΎ алгСбраичСским, Π»ΠΈΠ±ΠΎ трансцСндСнтным.
  • ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π²ΡΡŽΠ΄Ρƒ ΠΏΠ»ΠΎΡ‚Π½ΠΎ Π½Π° числовой прямой: ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя числами имССтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.
  • ΠŸΠΎΡ€ΡΠ΄ΠΎΠΊ Π½Π° мноТСствС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„Π΅Π½ порядку Π½Π° мноТСствС вСщСствСнных трансцСндСнтных чисСл.
  • ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл нСсчётно, являСтся мноТСством Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ.[1]

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

ΠšΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 2

Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ нСсократимой Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ ΠΈ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа. Π’ΠΎΠ·Π²Π΅Π΄Ρ‘ΠΌ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ равСнство Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚:

.

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‘Ρ‚Π½ΠΎ ΠΈ . ΠŸΡƒΡΠΊΠ°ΠΉ , Π³Π΄Π΅ Ρ†Π΅Π»ΠΎΠ΅. Π’ΠΎΠ³Π΄Π°

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‘Ρ‚Π½ΠΎ ΠΈ . ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‡Ρ‘Ρ‚Π½Ρ‹, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡ‚ нСсократимости Π΄Ρ€ΠΎΠ±ΠΈ . Π—Π½Π°Ρ‡ΠΈΡ‚, исходноС ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΌ, ΠΈ Β β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.

Π”Π²ΠΎΠΈΡ‡Π½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ числа 3

Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ ΠΈ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ , ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Π’ΠΎΠ³Π΄Π°

Но Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π° Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎ. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

e

Π‘ΠΌ. Ρ€Π°Π·Π΄Π΅Π» Β«Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈΒ» Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Β«eΒ».

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ

ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π±Ρ‹Π»Π° нСявным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ воспринята индийскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ Π² VII Π²Π΅ΠΊΠ΅ Π΄ΠΎ нашСй эры, ΠΊΠΎΠ³Π΄Π° Манава (ΠΎΠΊ. 750 Π³. Π΄ΠΎ Π½. э. β€” ΠΎΠΊ. 690 Π³. Π΄ΠΎ Π½. э.) выяснил, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ 2 ΠΈ 61, Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ явно Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹.

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ сущСствования ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ приписываСтся Гиппасу ΠΈΠ· ΠœΠ΅Ρ‚Π°ΠΏΠΎΠ½Ρ‚Π° (ΠΎΠΊ. 500 Π³Π³. Π΄ΠΎ Π½. э.), ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°ΡˆΡ‘Π» это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, изучая Π΄Π»ΠΈΠ½Ρ‹ сторон ΠΏΠ΅Π½Ρ‚Π°Π³Ρ€Π°ΠΌΠΌΡ‹. Π’ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π΅Π² ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ сущСствуСт Сдиная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π΄Π»ΠΈΠ½Ρ‹, достаточно малая ΠΈ нСдСлимая, которая Ρ†Π΅Π»ΠΎΠ΅ число Ρ€Π°Π· Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² любой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ. Однако Гиппас обосновал, Ρ‡Ρ‚ΠΎ Π½Π΅ сущСствуСт Π΅Π΄ΠΈΠ½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Π΄Π»ΠΈΠ½Ρ‹, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Π΅Ρ‘ сущСствовании ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡŽ. Он ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ссли Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° содСрТит Ρ†Π΅Π»ΠΎΠ΅ число Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², Ρ‚ΠΎ это число Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΈ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ, ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ выглядСло ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

  • ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ ΠΊ Π΄Π»ΠΈΠ½Π΅ ΠΊΠ°Ρ‚Π΅Ρ‚Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ ΠΊΠ°ΠΊ a:b, Π³Π΄Π΅ a ΠΈ b Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ наимСньшими ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ….
  • По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°: aΒ² = 2bΒ².
  • Π’Π°ΠΊ ΠΊΠ°ΠΊ aΒ² Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, a Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ (Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ³ΠΎ числа Π±Ρ‹Π» Π±Ρ‹ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ).
  • ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ a:b нСсократима, b обязано Π±Ρ‹Ρ‚ΡŒ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ.
  • Π’Π°ΠΊ ΠΊΠ°ΠΊ a Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ a = 2y.
  • Π’ΠΎΠ³Π΄Π° aΒ² = 4yΒ² = 2bΒ².
  • bΒ² = 2yΒ², ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ bΒ² Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, Ρ‚ΠΎΠ³Π΄Π° ΠΈ b Ρ‡Π΅Ρ‚Π½ΠΎ.
  • Однако Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ b Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ΅. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

ГрСчСскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π½Π°Π·Π²Π°Π»ΠΈ это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ нСсоизмСримых Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ алогос (Π½Π΅Π²Ρ‹Ρ€Π°Π·ΠΈΠΌΡ‹ΠΌ), ΠΎΠ΄Π½Π°ΠΊΠΎ согласно Π»Π΅Π³Π΅Π½Π΄Π°ΠΌ Π½Π΅ Π²ΠΎΠ·Π΄Π°Π»ΠΈ Гиппасу Π΄ΠΎΠ»ΠΆΠ½ΠΎΠ³ΠΎ уваТСния. БущСствуСт Π»Π΅Π³Π΅Π½Π΄Π°, Ρ‡Ρ‚ΠΎ Гиппас ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΠ» ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅, Π½Π°Ρ…ΠΎΠ΄ΡΡΡŒ Π² морском ΠΏΠΎΡ…ΠΎΠ΄Π΅, ΠΈ Π±Ρ‹Π» Π²Ρ‹Π±Ρ€ΠΎΡˆΠ΅Π½ Π·Π° Π±ΠΎΡ€Ρ‚ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π°ΠΌΠΈ Β«Π·Π° созданиС элСмСнта всСлСнной, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π΅Ρ‚ Π΄ΠΎΠΊΡ‚Ρ€ΠΈΠ½Ρƒ, Ρ‡Ρ‚ΠΎ всС сущности Π²ΠΎ всСлСнной ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ свСдСны ΠΊ Ρ†Π΅Π»Ρ‹ΠΌ числам ΠΈ ΠΈΡ… ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΒ». ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Гиппаса поставило ΠΏΠ΅Ρ€Π΅Π΄ пифагорСйской ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ, Ρ€Π°Π·Ρ€ΡƒΡˆΠΈΠ² лСТавшСС Π² основС всСй Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ числа ΠΈ гСомСтричСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π΅Π΄ΠΈΠ½Ρ‹ ΠΈ Π½Π΅Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌΡ‹.

Π€Π΅ΠΎΠ΄ΠΎΡ€ ΠšΠΈΡ€Π΅Π½ΡΠΊΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΄ΠΎ 17 (ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ, СстСствСнно, Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ β€” 1, 4, 9 ΠΈ 16), Π½ΠΎ остановился Π½Π° этом, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ имСвшаяся Π² Π΅Π³ΠΎ инструмСнтарии Π°Π»Π³Π΅Π±Ρ€Π° Π½Π΅ позволяла Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· 17. По ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, историками ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π±Ρ‹Π»ΠΎ высказано нСсколько Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Богласно Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌΡƒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π–Π°Π½Π° Π˜Ρ‚Π°Ρ€Π° (1961), ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ основано Π½Π° пифагорСйской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… ΠΈ Π½Π΅Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… чисСл, Π² Ρ‚ΠΎΠΌ числС β€” Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число Π·Π° Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ дСлится Π½Π° восСмь Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… чисСл.

ПозТС Евдокс Книдский (410 ΠΈΠ»ΠΈ 408 Π³. Π΄ΠΎ Π½. э. β€” 355 ΠΈΠ»ΠΈ 347 Π³. Π΄ΠΎ Π½. э.) Ρ€Π°Π·Π²ΠΈΠ» Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΉ, которая ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»Π° Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ. Π­Ρ‚ΠΎ послуТило основаниСм для понимания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ сути ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° стала ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π½Π΅ числом, Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ сущностСй, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, ΡƒΠ³Π»Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ±ΡŠΡ‘ΠΌΡ‹, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ β€” сущностСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ (Π² соврСмСнном ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ этого слова). Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π±Ρ‹Π»ΠΈ противопоставлСны числам, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ лишь Β«ΠΏΡ€Ρ‹ΠΆΠΊΠ°ΠΌΠΈΒ» ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ числа ΠΊ сосСднСму, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, с 4 Π½Π° 5. Числа ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· наимСньшСй Π½Π΅Π΄Π΅Π»ΠΈΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ бСсконСчно.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½ΠΈΠΊΠ°ΠΊΠΎΠ΅ количСствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΠ»ΠΎΡΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Евдокс смог ΠΎΡ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ ΠΈ соизмСримыС, ΠΈ нСсоизмСримыС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΄Ρ€ΠΎΠ±ΠΈ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π΄Π²ΡƒΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΈ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ ΠΊΠ°ΠΊ равСнства Π΄Π²ΡƒΡ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π£Π±Ρ€Π°Π² ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ количСствСнныС значСния (числа), ΠΎΠ½ ΠΈΠ·Π±Π΅ΠΆΠ°Π» Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, состоящСй Π² нСобходимости Π½Π°Π·Π²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ числом. ВСория Евдокса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° грСчСским ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌ ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΡ‚ΡŒ нСвСроятный прогрСсс Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, прСдоставив ΠΈΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ логичСскоС обоснованиС для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с нСсоизмСримыми Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ. «Книга 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ²Β» Π•Π²ΠΊΠ»ΠΈΠ΄Π° посвящСна классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ°

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° ознамСновались принятиСм Ρ‚Π°ΠΊΠΈΡ… понятий ΠΊΠ°ΠΊ ноль, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа, Ρ†Π΅Π»Ρ‹Π΅ ΠΈ Π΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ числа, спСрва индийскими, Π·Π°Ρ‚Π΅ΠΌ китайскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ. ПозТС ΠΏΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ»ΠΈΡΡŒ арабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌΠΈ стали ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа алгСбраичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ (наряду ΠΈ Π½Π° Ρ€Π°Π²Π½Ρ‹Ρ… ΠΏΡ€Π°Π²Π°Ρ… с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами), Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΡŒ дисциплину, Π½Ρ‹Π½Π΅ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π°Π»Π³Π΅Π±Ρ€ΠΎΠΉ.

АрабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ соСдинили дрСвнСгрСчСскиС понятия «числа» ΠΈ Β«Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹Β» Π² Π΅Π΄ΠΈΠ½ΡƒΡŽ, Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΡƒΡŽ идСю вСщСствСнных чисСл. Они критичСски ΠΎΡ‚Π½ΠΎΡΠΈΠ»ΠΈΡΡŒ ΠΊ прСдставлСниям Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΎΠ± ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΡ…, Π² противовСс Π΅ΠΉ ΠΎΠ½ΠΈ Ρ€Π°Π·Π²ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΠ»ΠΈ понятиС числа Π΄ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π’ своих коммСнтариях Π½Π° ΠšΠ½ΠΈΠ³Ρƒ 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π•Π²ΠΊΠ»ΠΈΠ΄Π°, пСрсидский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль ΠœΠ°Ρ…Π°Π½ΠΈ (ΠΎΠΊ 800 Π³Π³. Π½. э.) исслСдовал ΠΈ классифицировал ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа (числа Π²ΠΈΠ΄Π°) ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΠΈΠ΅ кубичСскиС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа. Он Π΄Π°Π» ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Он Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π» этими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, Π½ΠΎ рассуТдал ΠΊΠ°ΠΊ ΠΎΠ± обособлСнных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ [Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ] являСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 10, 12, 3%, 6% ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ произнСсСны ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ количСствСнно. Π§Ρ‚ΠΎ Π½Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ произнСсти ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ количСствСнно. НапримСр, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ чисСл Ρ‚Π°ΠΊΠΈΡ… Ρ‚Π°ΠΊ 10, 15, 20 β€” Π½Π΅ ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°ΠΌΠΈ.

Π’ противовСс ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Π•Π²ΠΊΠ»ΠΈΠ΄Π°, Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡΡƒΡ‚ΡŒ Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, Аль ΠœΠ°Ρ…Π°Π½ΠΈ считал Ρ†Π΅Π»Ρ‹Π΅ числа ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΈ кубичСскиС ΠΊΠΎΡ€Π½ΠΈ β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Он Ρ‚Π°ΠΊΠΆΠ΅ Π²Π²Π΅Π» арифмСтичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ мноТСству ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½:

Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ слоТСния ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ.

ЕгипСтский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Абу Камил (ΠΎΠΊ. 850 Π³. Π½. э. β€” ΠΎΠΊ. 930 Π³. Π½. э.) Π±Ρ‹Π» ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ, ΠΊΡ‚ΠΎ счСл ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ коэффициСнтами Π² уравнСниях β€” Π² основном, Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΈΠ»ΠΈ кубичСских ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠΉ стСпСни. Π’ X Π²Π΅ΠΊΠ΅ иракский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль Π₯ашими Π²Ρ‹Π²Π΅Π» ΠΎΠ±Ρ‰ΠΈΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° (Π° Π½Π΅ наглядныС гСомСтричСскиС дСмонстрации) ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ произвСдСния, частного ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ½Ρ‹Ρ… матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π°Π΄ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Ал Π₯Π°Π·ΠΈΠ½ (900 Π³. Π½. э. β€” 971 Π³. Π½. э.) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹:

ΠŸΡƒΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° содСрТится Π² Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ нСсколько Ρ€Π°Π·, Ρ‚ΠΎΠ³Π΄Π° эта [данная] Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° соотвСтствуСт Ρ†Π΅Π»ΠΎΠΌΡƒ числу… КаТдая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая составляСт ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ, ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒ, ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΈΠ»ΠΈ, сравнСнная с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ составляСт Ρ‚Ρ€ΠΈ пятых ΠΎΡ‚ Π½Π΅Π΅, это Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°. И Π² Ρ†Π΅Π»ΠΎΠΌ, всякая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая относится ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎ число ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ. Если ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСна ΠΊΠ°ΠΊ нСсколько ΠΈΠ»ΠΈ Ρ‡Π°ΡΡ‚ΡŒ (l/n), ΠΈΠ»ΠΈ нСсколько частСй (m/n) Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΎΠ½Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ нСвыразимая ΠΈΠ½Π°Ρ‡Π΅ ΠΊΠ°ΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ€Π½Π΅ΠΉ.

МногиС ΠΈΠ· этих ΠΈΠ΄Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ·ΠΆΠ΅ пСрСняты СвропСйскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ послС ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° Π½Π° Π»Π°Ρ‚Ρ‹Π½ΡŒ арабских тСкстов Π² XII Π²Π΅ΠΊΠ΅. Аль Π₯ассар, арабский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ ΠΈΠ· ΠœΠ°Π³Ρ€ΠΈΠ±Π°, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΠΉΡΡ Π½Π° исламских Π·Π°ΠΊΠΎΠ½Π°Ρ… ΠΎ наслСдствС, Π² XII Π²Π΅ΠΊΠ΅ Π²Π²Π΅Π» ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΡΠΈΠΌΠ²ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½ΠΎΡ‚Π°Ρ†ΠΈΡŽ для Π΄Ρ€ΠΎΠ±Π΅ΠΉ, Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ² Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ. Π’Π° ΠΆΠ΅ нотация появилась Π·Π°Ρ‚Π΅ΠΌ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π€ΠΈΠ±ΠΎΠ½Π°Ρ‡Ρ‡ΠΈ Π² XIII Π²Π΅ΠΊΠ΅. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ XIVβ€”XVI Π²Π². ΠœΠ°Π΄Ρ…Π°Π²Π° ΠΈΠ· Π‘Π°Π½Π³Π°ΠΌΠ°Π³Ρ€Π°ΠΌΡ‹ ΠΈ прСдставитСли ΠšΠ΅Ρ€Π°Π»ΡŒΡΠΊΠΎΠΉ ΡˆΠΊΠΎΠ»Ρ‹ астрономии ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ исслСдовали бСсконСчныС ряды, сходящиСся ΠΊ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числам, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊ Ο€, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ДТСстадСва ΠΏΡ€ΠΈΠ²Π΅Π» эти Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² ΠΊΠ½ΠΈΠ³Π΅ Π™ΡƒΠΊΡ‚ΠΈΠ±Ρ…Π°Π·Π°.

НашС врСмя

Π’ XVII Π²Π΅ΠΊΠ΅ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΡ‡Π½ΠΎ ΡƒΠΊΡ€Π΅ΠΏΠΈΠ»ΠΈΡΡŒ комплСксныС числа, Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… внСсли Абрахам Π΄Π΅ ΠœΡƒΠ°Π²Ρ€ (1667β€”1754) ΠΈ Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ (1707β€”1783). Когда тСория комплСксных чисСл Π² XIX Π²Π΅ΠΊΠ΅ стала Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ ΠΈ Ρ‡Ρ‘Ρ‚ΠΊΠΎΠΉ, стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° алгСбраичСскиС ΠΈ трансцСндСнтныС (Π΄ΠΎΠΊΠ°Π·Π°Π² ΠΏΡ€ΠΈ этом сущСствованиС трансцСндСнтных чисСл), Ρ‚Π΅ΠΌ самым пСрСосмыслив Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΏΠΎ классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. По этой Ρ‚Π΅ΠΌΠ΅ Π² 1872 Π±Ρ‹Π»ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°, Π“Π΅ΠΉΠ½Π΅, ΠšΠ°Π½Ρ‚ΠΎΡ€Π° ΠΈ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄Π°. Π₯отя Π΅Ρ‰Ρ‘ Π² 1869 Π³ΠΎΠ΄Ρƒ ΠœΠ΅Ρ€Ρ Π½Π°Ρ‡Π°Π» рассмотрСния, схоТиС с Π“Π΅ΠΉΠ½Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ 1872 Π³ΠΎΠ΄ принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π³ΠΎΠ΄ΠΎΠΌ роТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ. Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡ, ΠšΠ°Π½Ρ‚ΠΎΡ€ ΠΈ Π“Π΅ΠΉΠ½Π΅ обосновывали свои Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ бСсконСчных рядов, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ Ρ€Π°Π±ΠΎΡ‚Π°Π» с (Π½Ρ‹Π½Π΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌ) Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ΠΌ сСчСниСм мноТСства вСщСствСнных чисСл, раздСляя всС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° Π΄Π²Π° мноТСства с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹ΠΌΠΈ характСристичСскими свойствами.

Π¦Π΅ΠΏΠ½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, тСсно связанныС с ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами (цСпная Π΄Ρ€ΠΎΠ±ΡŒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Π΄Π°Π½Π½ΠΎΠ΅ число, бСсконСчна Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ), Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ исслСдованы ΠšΠ°Ρ‚Π°Π»ΡŒΠ΄ΠΈ Π² 1613 Π³ΠΎΠ΄Ρƒ, Π·Π°Ρ‚Π΅ΠΌ снова ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ»ΠΈ ΠΊ сСбС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π­ΠΉΠ»Π΅Ρ€Π°, Π° Π² Π½Π°Ρ‡Π°Π»Π΅ XIX Π²Π΅ΠΊΠ° β€” Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π›Π°Π³Ρ€Π°Π½ΠΆΠ°. Π”ΠΈΡ€ΠΈΡ…Π»Π΅ Ρ‚Π°ΠΊΠΆΠ΅ внёс Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ.

Π’ 1761 Π³ΠΎΠ΄Ρƒ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ο€ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‡Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈ любом Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΌ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ n. Π₯отя Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π½Π΅Π·Π°Π²Π΅Ρ€ΡˆΡ‘Π½Π½Ρ‹ΠΌ, принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Π³ΠΎ достаточно строгим, особСнно учитывая врСмя Π΅Π³ΠΎ написания. Π›Π΅ΠΆΠ°Π½Π΄Ρ€ Π² 1794 Π³ΠΎΠ΄Ρƒ, послС ввСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ БСссСля-ΠšΠ»ΠΈΡ„Ρ„ΠΎΡ€Π΄Π°, ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ π² ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ο€ слСдуСт Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΠΎ (Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ Π΄Π°Π»ΠΎ Π±Ρ‹ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅). БущСствованиС трансцСндСнтных чисСл Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π›ΠΈΡƒΠ²ΠΈΠ»Π»Π΅ΠΌ Π² 1844β€”1851 Π³ΠΎΠ΄Π°Ρ…. ПозТС Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€ (1873) ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ… сущСствованиС, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΈ обосновал, Ρ‡Ρ‚ΠΎ любой ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» вСщСствСнного ряда содСрТит бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ трансцСндСнтных чисСл. Π¨Π°Ρ€Π»ΡŒ Π­Ρ€ΠΌΠΈΡ‚ Π΄ΠΎΠΊΠ°Π·Π°Π» Π² 1873 Π³ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ e трансцСндСнтно, Π° Π€Π΅Ρ€Π΄ΠΈΠ½Π°Π½Π΄ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½ Π² 1882 Π³ΠΎΠ΄Ρƒ, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° этом Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅, ΠΏΠΎΠΊΠ°Π·Π°Π» Ρ‚Ρ€Π°Π½ΡΡ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ο€. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½Π½Π° Π±Ρ‹Π»ΠΎ Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠΎΠΌ Π² 1885 Π³ΠΎΠ΄Ρƒ, Π΅Ρ‰Ρ‘ Π±ΠΎΠ»Π΅Π΅ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π”Π°Π²ΠΈΠ΄ΠΎΠΌ Π“ΠΈΠ»ΡŒΠ±Π΅Ρ€Ρ‚ΠΎΠΌ Π² 1893 Π³ΠΎΠ΄Ρƒ ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΄ΠΎ ΠΏΠΎΡ‡Ρ‚ΠΈ элСмСнтарного ΠΠ΄ΠΎΠ»ΡŒΡ„ΠΎΠΌ Π“ΡƒΡ€Π²ΠΈΡ†Π΅ΠΌ ΠΈ ΠŸΠ°ΡƒΠ»Π΅ΠΌ Π“ΠΎΡ€Π΄Π°Π½ΠΎΠΌ.

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ

Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π½Π΅ Ρ…Π²Π°Ρ‚Π°Π΅Ρ‚ ссылок Π½Π° источники ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ провСряСма, ΠΈΠ½Π°Ρ‡Π΅ ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ поставлСна ΠΏΠΎΠ΄ сомнСниС ΠΈ ΡƒΠ΄Π°Π»Π΅Π½Π°.
Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΡ‚Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ эту ΡΡ‚Π°Ρ‚ΡŒΡŽ, Π΄ΠΎΠ±Π°Π²ΠΈΠ² ссылки Π½Π° Π°Π²Ρ‚ΠΎΡ€ΠΈΡ‚Π΅Ρ‚Π½Ρ‹Π΅ источники.
Π­Ρ‚Π° ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΊΠ° установлСна 13 мая 2011.

dis.academic.ru

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число — ВикипСдия

ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈΠ· Π’ΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΠΈ β€” свободной энциклопСдии

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°ΜΠ»ΡŒΠ½ΠΎΠ΅ число́ — это вСщСствСнноС число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ mn{\displaystyle {\frac {m}{n}}}, Π³Π΄Π΅ m{\displaystyle m}Β β€” Ρ†Π΅Π»ΠΎΠ΅ число, n{\displaystyle n}Β β€” Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ число. Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ бСсконСчной нСпСриодичСской дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, мноТСство ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ I=Rβˆ–Q{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } мноТСств вСщСствСнных ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.

О сущСствовании ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², нСсоизмСримых с ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, Π·Π½Π°Π»ΠΈ ΡƒΠΆΠ΅ Π΄Ρ€Π΅Π²Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ: ΠΈΠΌ Π±Ρ‹Π»Π° извСстна, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Ρ‡Ρ‚ΠΎ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ числа 2{\displaystyle {\sqrt {2}}}.[1]

Бвойства[ | ]

  • Π‘ΡƒΠΌΠΌΠ° Π΄Π²ΡƒΡ… ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числом.
  • Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π΄Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ сСчСния Π²ΠΎ мноТСствС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² Π½ΠΈΠΆΠ½Π΅ΠΌ классС Π½Π΅Ρ‚ наибольшСго, Π° Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΌ Π½Π΅Ρ‚ наимСньшСго числа.
  • ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π²ΡΡŽΠ΄Ρƒ ΠΏΠ»ΠΎΡ‚Π½ΠΎ Π½Π° числовой прямой: ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ числами имССтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.
  • ΠŸΠΎΡ€ΡΠ΄ΠΎΠΊ Π½Π° мноТСствС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„Π΅Π½ порядку Π½Π° мноТСствС вСщСствСнных трансцСндСнтных чисСл.[источник Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½ 258 Π΄Π½Π΅ΠΉ]

АлгСбраичСскиС ΠΈ трансцСндСнтныС числа[ | ]

КаТдоС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число являСтся Π»ΠΈΠ±ΠΎ алгСбраичСским, Π»ΠΈΠ±ΠΎ трансцСндСнтным. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ алгСбраичСских чисСл являСтся

encyclopaedia.bid

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число — это… Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число?

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°ΜΠ»ΡŒΠ½ΠΎΠ΅ число́ — это вСщСствСнноС число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа, . Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ бСсконСчной нСпСриодичСской дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ.

ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ обозначаСтся Π·Π°Π³Π»Π°Π²Π½ΠΎΠΉ латинской Π±ΡƒΠΊΠ²ΠΎΠΉ Π² ΠΏΠΎΠ»ΡƒΠΆΠΈΡ€Π½ΠΎΠΌ Π½Π°Ρ‡Π΅Ρ€Ρ‚Π°Π½ΠΈΠΈ Π±Π΅Π· Π·Π°Π»ΠΈΠ²ΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: , Ρ‚.Π΅. мноТСство ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ мноТСств вСщСствСнных ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.

О сущСствовании ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², нСсоизмСримых с ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, Π·Π½Π°Π»ΠΈ ΡƒΠΆΠ΅ Π΄Ρ€Π΅Π²Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ: ΠΈΠΌ Π±Ρ‹Π»Π° извСстна, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅Ρ€ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Ρ‡Ρ‚ΠΎ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ числа .

Бвойства

  • ВсякоС вСщСствСнноС число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ бСсконСчной дСсятичной Π΄Ρ€ΠΎΠ±ΠΈ, ΠΏΡ€ΠΈ этом ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ½ΠΈ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ нСпСриодичСскими бСсконСчными дСсятичными дробями.
  • Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ сСчСния Π² мноТСствС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² Π½ΠΈΠΆΠ½Π΅ΠΌ классС Π½Π΅Ρ‚ наибольшСго, Π° Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΌ Π½Π΅Ρ‚ наимСньшСго числа.
  • КаТдоС вСщСствСнноС трансцСндСнтноС число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ.
  • КаТдоС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число являСтся Π»ΠΈΠ±ΠΎ алгСбраичСским, Π»ΠΈΠ±ΠΎ трансцСндСнтным.
  • ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π²ΡΡŽΠ΄Ρƒ ΠΏΠ»ΠΎΡ‚Π½ΠΎ Π½Π° числовой прямой: ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя числами имССтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.
  • ΠŸΠΎΡ€ΡΠ΄ΠΎΠΊ Π½Π° мноТСствС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„Π΅Π½ порядку Π½Π° мноТСствС вСщСствСнных трансцСндСнтных чисСл.
  • ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл нСсчётно, являСтся мноТСством Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ.[1]

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

ΠšΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 2

Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ нСсократимой Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ ΠΈ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа. Π’ΠΎΠ·Π²Π΅Π΄Ρ‘ΠΌ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ равСнство Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚:

.

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‘Ρ‚Π½ΠΎ ΠΈ . ΠŸΡƒΡΠΊΠ°ΠΉ , Π³Π΄Π΅ Ρ†Π΅Π»ΠΎΠ΅. Π’ΠΎΠ³Π΄Π°

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‘Ρ‚Π½ΠΎ ΠΈ . ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‡Ρ‘Ρ‚Π½Ρ‹, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡ‚ нСсократимости Π΄Ρ€ΠΎΠ±ΠΈ . Π—Π½Π°Ρ‡ΠΈΡ‚, исходноС ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΌ, ΠΈ Β β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число.

Π”Π²ΠΎΠΈΡ‡Π½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ числа 3

Допустим ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ΅: Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ Π΄Ρ€ΠΎΠ±ΠΈ , Π³Π΄Π΅ ΠΈ Β β€” Ρ†Π΅Π»Ρ‹Π΅ числа. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ , ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Π’ΠΎΠ³Π΄Π°

Но Ρ‡Ρ‘Ρ‚Π½ΠΎ, Π° Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎ. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

e

Π‘ΠΌ. Ρ€Π°Π·Π΄Π΅Π» Β«Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈΒ» Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Β«eΒ».

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ

ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π±Ρ‹Π»Π° нСявным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ воспринята индийскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ Π² VII Π²Π΅ΠΊΠ΅ Π΄ΠΎ нашСй эры, ΠΊΠΎΠ³Π΄Π° Манава (ΠΎΠΊ. 750 Π³. Π΄ΠΎ Π½. э. β€” ΠΎΠΊ. 690 Π³. Π΄ΠΎ Π½. э.) выяснил, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ 2 ΠΈ 61, Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ явно Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹.

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ сущСствования ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ приписываСтся Гиппасу ΠΈΠ· ΠœΠ΅Ρ‚Π°ΠΏΠΎΠ½Ρ‚Π° (ΠΎΠΊ. 500 Π³Π³. Π΄ΠΎ Π½. э.), ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°ΡˆΡ‘Π» это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, изучая Π΄Π»ΠΈΠ½Ρ‹ сторон ΠΏΠ΅Π½Ρ‚Π°Π³Ρ€Π°ΠΌΠΌΡ‹. Π’ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π΅Π² ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ сущСствуСт Сдиная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π΄Π»ΠΈΠ½Ρ‹, достаточно малая ΠΈ нСдСлимая, которая Ρ†Π΅Π»ΠΎΠ΅ число Ρ€Π°Π· Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² любой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ. Однако Гиппас обосновал, Ρ‡Ρ‚ΠΎ Π½Π΅ сущСствуСт Π΅Π΄ΠΈΠ½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Π΄Π»ΠΈΠ½Ρ‹, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Π΅Ρ‘ сущСствовании ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΡŽ. Он ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ссли Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° содСрТит Ρ†Π΅Π»ΠΎΠ΅ число Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², Ρ‚ΠΎ это число Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΈ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ, ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ выглядСло ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

  • ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ ΠΊ Π΄Π»ΠΈΠ½Π΅ ΠΊΠ°Ρ‚Π΅Ρ‚Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ ΠΊΠ°ΠΊ a:b, Π³Π΄Π΅ a ΠΈ b Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ наимСньшими ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ….
  • По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°: aΒ² = 2bΒ².
  • Π’Π°ΠΊ ΠΊΠ°ΠΊ aΒ² Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, a Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ (Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ³ΠΎ числа Π±Ρ‹Π» Π±Ρ‹ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ).
  • ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ a:b нСсократима, b обязано Π±Ρ‹Ρ‚ΡŒ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ.
  • Π’Π°ΠΊ ΠΊΠ°ΠΊ a Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ a = 2y.
  • Π’ΠΎΠ³Π΄Π° aΒ² = 4yΒ² = 2bΒ².
  • bΒ² = 2yΒ², ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ bΒ² Ρ‡Π΅Ρ‚Π½ΠΎΠ΅, Ρ‚ΠΎΠ³Π΄Π° ΠΈ b Ρ‡Π΅Ρ‚Π½ΠΎ.
  • Однако Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ b Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠ΅. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅.

ГрСчСскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π½Π°Π·Π²Π°Π»ΠΈ это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ нСсоизмСримых Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ алогос (Π½Π΅Π²Ρ‹Ρ€Π°Π·ΠΈΠΌΡ‹ΠΌ), ΠΎΠ΄Π½Π°ΠΊΠΎ согласно Π»Π΅Π³Π΅Π½Π΄Π°ΠΌ Π½Π΅ Π²ΠΎΠ·Π΄Π°Π»ΠΈ Гиппасу Π΄ΠΎΠ»ΠΆΠ½ΠΎΠ³ΠΎ уваТСния. БущСствуСт Π»Π΅Π³Π΅Π½Π΄Π°, Ρ‡Ρ‚ΠΎ Гиппас ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΠ» ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅, Π½Π°Ρ…ΠΎΠ΄ΡΡΡŒ Π² морском ΠΏΠΎΡ…ΠΎΠ΄Π΅, ΠΈ Π±Ρ‹Π» Π²Ρ‹Π±Ρ€ΠΎΡˆΠ΅Π½ Π·Π° Π±ΠΎΡ€Ρ‚ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π°ΠΌΠΈ Β«Π·Π° созданиС элСмСнта всСлСнной, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π΅Ρ‚ Π΄ΠΎΠΊΡ‚Ρ€ΠΈΠ½Ρƒ, Ρ‡Ρ‚ΠΎ всС сущности Π²ΠΎ всСлСнной ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ свСдСны ΠΊ Ρ†Π΅Π»Ρ‹ΠΌ числам ΠΈ ΠΈΡ… ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΒ». ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Гиппаса поставило ΠΏΠ΅Ρ€Π΅Π΄ пифагорСйской ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ, Ρ€Π°Π·Ρ€ΡƒΡˆΠΈΠ² лСТавшСС Π² основС всСй Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ числа ΠΈ гСомСтричСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π΅Π΄ΠΈΠ½Ρ‹ ΠΈ Π½Π΅Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌΡ‹.

Π€Π΅ΠΎΠ΄ΠΎΡ€ ΠšΠΈΡ€Π΅Π½ΡΠΊΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΄ΠΎ 17 (ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ, СстСствСнно, Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ β€” 1, 4, 9 ΠΈ 16), Π½ΠΎ остановился Π½Π° этом, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ имСвшаяся Π² Π΅Π³ΠΎ инструмСнтарии Π°Π»Π³Π΅Π±Ρ€Π° Π½Π΅ позволяла Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· 17. По ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, историками ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π±Ρ‹Π»ΠΎ высказано нСсколько Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Богласно Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌΡƒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π–Π°Π½Π° Π˜Ρ‚Π°Ρ€Π° (1961), ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ основано Π½Π° пифагорСйской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… ΠΈ Π½Π΅Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… чисСл, Π² Ρ‚ΠΎΠΌ числС β€” Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число Π·Π° Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ дСлится Π½Π° восСмь Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… чисСл.

ПозТС Евдокс Книдский (410 ΠΈΠ»ΠΈ 408 Π³. Π΄ΠΎ Π½. э. β€” 355 ΠΈΠ»ΠΈ 347 Π³. Π΄ΠΎ Π½. э.) Ρ€Π°Π·Π²ΠΈΠ» Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΉ, которая ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»Π° Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ. Π­Ρ‚ΠΎ послуТило основаниСм для понимания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ сути ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° стала ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π½Π΅ числом, Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ сущностСй, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, ΡƒΠ³Π»Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ±ΡŠΡ‘ΠΌΡ‹, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ β€” сущностСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ (Π² соврСмСнном ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ этого слова). Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π±Ρ‹Π»ΠΈ противопоставлСны числам, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ лишь Β«ΠΏΡ€Ρ‹ΠΆΠΊΠ°ΠΌΠΈΒ» ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ числа ΠΊ сосСднСму, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, с 4 Π½Π° 5. Числа ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· наимСньшСй Π½Π΅Π΄Π΅Π»ΠΈΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ бСсконСчно.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½ΠΈΠΊΠ°ΠΊΠΎΠ΅ количСствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΠ»ΠΎΡΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Евдокс смог ΠΎΡ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ ΠΈ соизмСримыС, ΠΈ нСсоизмСримыС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΄Ρ€ΠΎΠ±ΠΈ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π΄Π²ΡƒΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΈ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ ΠΊΠ°ΠΊ равСнства Π΄Π²ΡƒΡ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π£Π±Ρ€Π°Π² ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ количСствСнныС значСния (числа), ΠΎΠ½ ΠΈΠ·Π±Π΅ΠΆΠ°Π» Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, состоящСй Π² нСобходимости Π½Π°Π·Π²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ числом. ВСория Евдокса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° грСчСским ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌ ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΡ‚ΡŒ нСвСроятный прогрСсс Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, прСдоставив ΠΈΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ логичСскоС обоснованиС для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с нСсоизмСримыми Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ. «Книга 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ²Β» Π•Π²ΠΊΠ»ΠΈΠ΄Π° посвящСна классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ°

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° ознамСновались принятиСм Ρ‚Π°ΠΊΠΈΡ… понятий ΠΊΠ°ΠΊ ноль, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа, Ρ†Π΅Π»Ρ‹Π΅ ΠΈ Π΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ числа, спСрва индийскими, Π·Π°Ρ‚Π΅ΠΌ китайскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ. ПозТС ΠΏΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ»ΠΈΡΡŒ арабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌΠΈ стали ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа алгСбраичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ (наряду ΠΈ Π½Π° Ρ€Π°Π²Π½Ρ‹Ρ… ΠΏΡ€Π°Π²Π°Ρ… с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами), Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΡŒ дисциплину, Π½Ρ‹Π½Π΅ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π°Π»Π³Π΅Π±Ρ€ΠΎΠΉ.

АрабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ соСдинили дрСвнСгрСчСскиС понятия «числа» ΠΈ Β«Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹Β» Π² Π΅Π΄ΠΈΠ½ΡƒΡŽ, Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΡƒΡŽ идСю вСщСствСнных чисСл. Они критичСски ΠΎΡ‚Π½ΠΎΡΠΈΠ»ΠΈΡΡŒ ΠΊ прСдставлСниям Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΎΠ± ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΡ…, Π² противовСс Π΅ΠΉ ΠΎΠ½ΠΈ Ρ€Π°Π·Π²ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΠ»ΠΈ понятиС числа Π΄ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π’ своих коммСнтариях Π½Π° ΠšΠ½ΠΈΠ³Ρƒ 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π•Π²ΠΊΠ»ΠΈΠ΄Π°, пСрсидский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль ΠœΠ°Ρ…Π°Π½ΠΈ (ΠΎΠΊ 800 Π³Π³. Π½. э.) исслСдовал ΠΈ классифицировал ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа (числа Π²ΠΈΠ΄Π°) ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΠΈΠ΅ кубичСскиС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа. Он Π΄Π°Π» ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Он Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π» этими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, Π½ΠΎ рассуТдал ΠΊΠ°ΠΊ ΠΎΠ± обособлСнных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ [Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ] являСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 10, 12, 3%, 6% ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ произнСсСны ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ количСствСнно. Π§Ρ‚ΠΎ Π½Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ произнСсти ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ количСствСнно. НапримСр, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ чисСл Ρ‚Π°ΠΊΠΈΡ… Ρ‚Π°ΠΊ 10, 15, 20 β€” Π½Π΅ ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°ΠΌΠΈ.

Π’ противовСс ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Π•Π²ΠΊΠ»ΠΈΠ΄Π°, Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡΡƒΡ‚ΡŒ Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, Аль ΠœΠ°Ρ…Π°Π½ΠΈ считал Ρ†Π΅Π»Ρ‹Π΅ числа ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΈ кубичСскиС ΠΊΠΎΡ€Π½ΠΈ β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Он Ρ‚Π°ΠΊΠΆΠ΅ Π²Π²Π΅Π» арифмСтичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ мноТСству ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½:

Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ слоТСния ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ.

ЕгипСтский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Абу Камил (ΠΎΠΊ. 850 Π³. Π½. э. β€” ΠΎΠΊ. 930 Π³. Π½. э.) Π±Ρ‹Π» ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ, ΠΊΡ‚ΠΎ счСл ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ коэффициСнтами Π² уравнСниях β€” Π² основном, Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΈΠ»ΠΈ кубичСских ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠΉ стСпСни. Π’ X Π²Π΅ΠΊΠ΅ иракский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль Π₯ашими Π²Ρ‹Π²Π΅Π» ΠΎΠ±Ρ‰ΠΈΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° (Π° Π½Π΅ наглядныС гСомСтричСскиС дСмонстрации) ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ произвСдСния, частного ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ½Ρ‹Ρ… матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π°Π΄ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Ал Π₯Π°Π·ΠΈΠ½ (900 Π³. Π½. э. β€” 971 Π³. Π½. э.) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹:

ΠŸΡƒΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° содСрТится Π² Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ нСсколько Ρ€Π°Π·, Ρ‚ΠΎΠ³Π΄Π° эта [данная] Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° соотвСтствуСт Ρ†Π΅Π»ΠΎΠΌΡƒ числу… КаТдая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая составляСт ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ, ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒ, ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΈΠ»ΠΈ, сравнСнная с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ составляСт Ρ‚Ρ€ΠΈ пятых ΠΎΡ‚ Π½Π΅Π΅, это Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°. И Π² Ρ†Π΅Π»ΠΎΠΌ, всякая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая относится ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎ число ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ. Если ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСна ΠΊΠ°ΠΊ нСсколько ΠΈΠ»ΠΈ Ρ‡Π°ΡΡ‚ΡŒ (l/n), ΠΈΠ»ΠΈ нСсколько частСй (m/n) Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΎΠ½Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ нСвыразимая ΠΈΠ½Π°Ρ‡Π΅ ΠΊΠ°ΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ€Π½Π΅ΠΉ.

МногиС ΠΈΠ· этих ΠΈΠ΄Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ·ΠΆΠ΅ пСрСняты СвропСйскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ послС ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° Π½Π° Π»Π°Ρ‚Ρ‹Π½ΡŒ арабских тСкстов Π² XII Π²Π΅ΠΊΠ΅. Аль Π₯ассар, арабский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ ΠΈΠ· ΠœΠ°Π³Ρ€ΠΈΠ±Π°, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΠΉΡΡ Π½Π° исламских Π·Π°ΠΊΠΎΠ½Π°Ρ… ΠΎ наслСдствС, Π² XII Π²Π΅ΠΊΠ΅ Π²Π²Π΅Π» ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΡΠΈΠΌΠ²ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½ΠΎΡ‚Π°Ρ†ΠΈΡŽ для Π΄Ρ€ΠΎΠ±Π΅ΠΉ, Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ² Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ. Π’Π° ΠΆΠ΅ нотация появилась Π·Π°Ρ‚Π΅ΠΌ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π€ΠΈΠ±ΠΎΠ½Π°Ρ‡Ρ‡ΠΈ Π² XIII Π²Π΅ΠΊΠ΅. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ XIVβ€”XVI Π²Π². ΠœΠ°Π΄Ρ…Π°Π²Π° ΠΈΠ· Π‘Π°Π½Π³Π°ΠΌΠ°Π³Ρ€Π°ΠΌΡ‹ ΠΈ прСдставитСли ΠšΠ΅Ρ€Π°Π»ΡŒΡΠΊΠΎΠΉ ΡˆΠΊΠΎΠ»Ρ‹ астрономии ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ исслСдовали бСсконСчныС ряды, сходящиСся ΠΊ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числам, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊ Ο€, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ДТСстадСва ΠΏΡ€ΠΈΠ²Π΅Π» эти Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² ΠΊΠ½ΠΈΠ³Π΅ Π™ΡƒΠΊΡ‚ΠΈΠ±Ρ…Π°Π·Π°.

НашС врСмя

Π’ XVII Π²Π΅ΠΊΠ΅ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΡ‡Π½ΠΎ ΡƒΠΊΡ€Π΅ΠΏΠΈΠ»ΠΈΡΡŒ комплСксныС числа, Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… внСсли Абрахам Π΄Π΅ ΠœΡƒΠ°Π²Ρ€ (1667β€”1754) ΠΈ Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ (1707β€”1783). Когда тСория комплСксных чисСл Π² XIX Π²Π΅ΠΊΠ΅ стала Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ ΠΈ Ρ‡Ρ‘Ρ‚ΠΊΠΎΠΉ, стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° алгСбраичСскиС ΠΈ трансцСндСнтныС (Π΄ΠΎΠΊΠ°Π·Π°Π² ΠΏΡ€ΠΈ этом сущСствованиС трансцСндСнтных чисСл), Ρ‚Π΅ΠΌ самым пСрСосмыслив Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΏΠΎ классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. По этой Ρ‚Π΅ΠΌΠ΅ Π² 1872 Π±Ρ‹Π»ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°, Π“Π΅ΠΉΠ½Π΅, ΠšΠ°Π½Ρ‚ΠΎΡ€Π° ΠΈ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄Π°. Π₯отя Π΅Ρ‰Ρ‘ Π² 1869 Π³ΠΎΠ΄Ρƒ ΠœΠ΅Ρ€Ρ Π½Π°Ρ‡Π°Π» рассмотрСния, схоТиС с Π“Π΅ΠΉΠ½Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ 1872 Π³ΠΎΠ΄ принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π³ΠΎΠ΄ΠΎΠΌ роТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ. Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡ, ΠšΠ°Π½Ρ‚ΠΎΡ€ ΠΈ Π“Π΅ΠΉΠ½Π΅ обосновывали свои Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ бСсконСчных рядов, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ Ρ€Π°Π±ΠΎΡ‚Π°Π» с (Π½Ρ‹Π½Π΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌ) Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ΠΌ сСчСниСм мноТСства вСщСствСнных чисСл, раздСляя всС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° Π΄Π²Π° мноТСства с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹ΠΌΠΈ характСристичСскими свойствами.

Π¦Π΅ΠΏΠ½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, тСсно связанныС с ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами (цСпная Π΄Ρ€ΠΎΠ±ΡŒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Π΄Π°Π½Π½ΠΎΠ΅ число, бСсконСчна Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ), Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ исслСдованы ΠšΠ°Ρ‚Π°Π»ΡŒΠ΄ΠΈ Π² 1613 Π³ΠΎΠ΄Ρƒ, Π·Π°Ρ‚Π΅ΠΌ снова ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ»ΠΈ ΠΊ сСбС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π­ΠΉΠ»Π΅Ρ€Π°, Π° Π² Π½Π°Ρ‡Π°Π»Π΅ XIX Π²Π΅ΠΊΠ° β€” Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π›Π°Π³Ρ€Π°Π½ΠΆΠ°. Π”ΠΈΡ€ΠΈΡ…Π»Π΅ Ρ‚Π°ΠΊΠΆΠ΅ внёс Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ.

Π’ 1761 Π³ΠΎΠ΄Ρƒ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ο€ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‡Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈ любом Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΌ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ n. Π₯отя Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π½Π΅Π·Π°Π²Π΅Ρ€ΡˆΡ‘Π½Π½Ρ‹ΠΌ, принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Π³ΠΎ достаточно строгим, особСнно учитывая врСмя Π΅Π³ΠΎ написания. Π›Π΅ΠΆΠ°Π½Π΄Ρ€ Π² 1794 Π³ΠΎΠ΄Ρƒ, послС ввСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ БСссСля-ΠšΠ»ΠΈΡ„Ρ„ΠΎΡ€Π΄Π°, ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ π² ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ο€ слСдуСт Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΠΎ (Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ Π΄Π°Π»ΠΎ Π±Ρ‹ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅). БущСствованиС трансцСндСнтных чисСл Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π›ΠΈΡƒΠ²ΠΈΠ»Π»Π΅ΠΌ Π² 1844β€”1851 Π³ΠΎΠ΄Π°Ρ…. ПозТС Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€ (1873) ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ… сущСствованиС, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΈ обосновал, Ρ‡Ρ‚ΠΎ любой ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» вСщСствСнного ряда содСрТит бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ трансцСндСнтных чисСл. Π¨Π°Ρ€Π»ΡŒ Π­Ρ€ΠΌΠΈΡ‚ Π΄ΠΎΠΊΠ°Π·Π°Π» Π² 1873 Π³ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ e трансцСндСнтно, Π° Π€Π΅Ρ€Π΄ΠΈΠ½Π°Π½Π΄ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½ Π² 1882 Π³ΠΎΠ΄Ρƒ, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° этом Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅, ΠΏΠΎΠΊΠ°Π·Π°Π» Ρ‚Ρ€Π°Π½ΡΡ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ο€. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½Π½Π° Π±Ρ‹Π»ΠΎ Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠΎΠΌ Π² 1885 Π³ΠΎΠ΄Ρƒ, Π΅Ρ‰Ρ‘ Π±ΠΎΠ»Π΅Π΅ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π”Π°Π²ΠΈΠ΄ΠΎΠΌ Π“ΠΈΠ»ΡŒΠ±Π΅Ρ€Ρ‚ΠΎΠΌ Π² 1893 Π³ΠΎΠ΄Ρƒ ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΄ΠΎ ΠΏΠΎΡ‡Ρ‚ΠΈ элСмСнтарного ΠΠ΄ΠΎΠ»ΡŒΡ„ΠΎΠΌ Π“ΡƒΡ€Π²ΠΈΡ†Π΅ΠΌ ΠΈ ΠŸΠ°ΡƒΠ»Π΅ΠΌ Π“ΠΎΡ€Π΄Π°Π½ΠΎΠΌ.

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ

Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π½Π΅ Ρ…Π²Π°Ρ‚Π°Π΅Ρ‚ ссылок Π½Π° источники ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ провСряСма, ΠΈΠ½Π°Ρ‡Π΅ ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ поставлСна ΠΏΠΎΠ΄ сомнСниС ΠΈ ΡƒΠ΄Π°Π»Π΅Π½Π°.
Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΡ‚Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ эту ΡΡ‚Π°Ρ‚ΡŒΡŽ, Π΄ΠΎΠ±Π°Π²ΠΈΠ² ссылки Π½Π° Π°Π²Ρ‚ΠΎΡ€ΠΈΡ‚Π΅Ρ‚Π½Ρ‹Π΅ источники.
Π­Ρ‚Π° ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΊΠ° установлСна 13 мая 2011.

biograf.academic.ru

Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число β€” WiKi

ΠΠ½Ρ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ

ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π±Ρ‹Π»Π° нСявным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ воспринята индийскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ Π² VII Π²Π΅ΠΊΠ΅ Π΄ΠΎ нашСй эры, ΠΊΠΎΠ³Π΄Π° Манава (ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 750β€”690 Π³ΠΎΠ΄Π° Π΄ΠΎ нашСй эры) выяснил, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ 2 ΠΈ 61, Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ явно Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹[источник Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½ 1303 дня].

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ сущСствования ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, Π° Ρ‚ΠΎΡ‡Π½Π΅Π΅ сущСствованиС нСсоизмСримых ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ приписываСтся ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Ρƒ Гиппасу ΠΈΠ· ΠœΠ΅Ρ‚Π°ΠΏΠΎΠ½Ρ‚Π° (ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 470 Π³ΠΎΠ΄ до нашСй эры). Π’ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π΅Π² ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ сущСствуСт Сдиная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π΄Π»ΠΈΠ½Ρ‹, достаточно малая ΠΈ нСдСлимая, которая Ρ†Π΅Π»ΠΎΠ΅ число Ρ€Π°Π· Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² любой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ[источник Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½ 1303 дня].

НСт Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Ρ‚ΠΎΠΌ, ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΊΠΎΠ³ΠΎ числа Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Гиппасом. Богласно Π»Π΅Π³Π΅Π½Π΄Π΅ ΠΎΠ½ Π½Π°ΡˆΡ‘Π» Π΅Π³ΠΎ, изучая Π΄Π»ΠΈΠ½Ρ‹ сторон ΠΏΠ΅Π½Ρ‚Π°Π³Ρ€Π°ΠΌΠΌΡ‹.[3] ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ€Π°Π·ΡƒΠΌΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ это Π±Ρ‹Π»ΠΎ Π·ΠΎΠ»ΠΎΡ‚ΠΎΠ΅ сСчСниС Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ это ΠΈ Π΅ΡΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΊ сторонС Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΌ ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅.

ГрСчСскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π½Π°Π·Π²Π°Π»ΠΈ это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ нСсоизмСримых Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ алогос (Π½Π΅Π²Ρ‹Ρ€Π°Π·ΠΈΠΌΡ‹ΠΌ), ΠΎΠ΄Π½Π°ΠΊΠΎ согласно Π»Π΅Π³Π΅Π½Π΄Π°ΠΌ Π½Π΅ Π²ΠΎΠ·Π΄Π°Π»ΠΈ Гиппасу Π΄ΠΎΠ»ΠΆΠ½ΠΎΠ³ΠΎ уваТСния. БущСствуСт Π»Π΅Π³Π΅Π½Π΄Π°, Ρ‡Ρ‚ΠΎ Гиппас ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΠ» ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅, Π½Π°Ρ…ΠΎΠ΄ΡΡΡŒ Π² морском ΠΏΠΎΡ…ΠΎΠ΄Π΅, ΠΈ Π±Ρ‹Π» Π²Ρ‹Π±Ρ€ΠΎΡˆΠ΅Π½ Π·Π° Π±ΠΎΡ€Ρ‚ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΏΠΈΡ„Π°Π³ΠΎΡ€Π΅ΠΉΡ†Π°ΠΌΠΈ Β«Π·Π° созданиС элСмСнта всСлСнной, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π΅Ρ‚ Π΄ΠΎΠΊΡ‚Ρ€ΠΈΠ½Ρƒ, Ρ‡Ρ‚ΠΎ всС сущности Π²ΠΎ всСлСнной ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ свСдСны ΠΊ Ρ†Π΅Π»Ρ‹ΠΌ числам ΠΈ ΠΈΡ… ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΒ». ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Гиппаса поставило ΠΏΠ΅Ρ€Π΅Π΄ пифагорСйской ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ, Ρ€Π°Π·Ρ€ΡƒΡˆΠΈΠ² лСТавшСС Π² основС всСй Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ числа ΠΈ гСомСтричСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π΅Π΄ΠΈΠ½Ρ‹ ΠΈ Π½Π΅Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌΡ‹.

Π€Π΅ΠΎΠ΄ΠΎΡ€ ΠšΠΈΡ€Π΅Π½ΡΠΊΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π»[4] ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π΄ΠΎ 17 (ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ, СстСствСнно, Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹Β β€” 1, 4, 9 ΠΈ 16), Π½ΠΎ остановился Π½Π° этом, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ имСвшаяся Π² Π΅Π³ΠΎ инструмСнтарии Π°Π»Π³Π΅Π±Ρ€Π° Π½Π΅ позволяла Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· 17. По ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ это Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, историками ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π±Ρ‹Π»ΠΎ высказано нСсколько Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Богласно Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΌΡƒ[5] ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π–Π°Π½Π° Π˜Ρ‚Π°Ρ€Π°[fr], ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ основано Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π΅Ρ‡Ρ‘Ρ‚Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число дСлится Π½Π° восСмь с остатком ΠΎΠ΄ΠΈΠ½[6].

ПозТС Евдокс Книдский (410 ΠΈΠ»ΠΈ 408Β Π³. Π΄ΠΎΒ Π½. э.Β β€” 355 ΠΈΠ»ΠΈ 347Β Π³. Π΄ΠΎΒ Π½. э.) Ρ€Π°Π·Π²ΠΈΠ» Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΉ, которая ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»Π° Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ. Π­Ρ‚ΠΎ послуТило основаниСм для понимания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ сути ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° стала ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π½Π΅ числом, Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ сущностСй, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, ΡƒΠ³Π»Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ±ΡŠΡ‘ΠΌΡ‹, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈΒ β€” сущностСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ (Π² соврСмСнном ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ этого слова). Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π±Ρ‹Π»ΠΈ противопоставлСны числам, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ лишь Β«ΠΏΡ€Ρ‹ΠΆΠΊΠ°ΠΌΠΈΒ» ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ числа ΠΊ сосСднСму, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, с 4 Π½Π° 5. Числа ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· наимСньшСй Π½Π΅Π΄Π΅Π»ΠΈΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ бСсконСчно.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½ΠΈΠΊΠ°ΠΊΠΎΠ΅ количСствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΠ»ΠΎΡΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Евдокс смог ΠΎΡ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ ΠΈ соизмСримыС, ΠΈ нСсоизмСримыС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΄Ρ€ΠΎΠ±ΠΈ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π΄Π²ΡƒΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΈ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ ΠΊΠ°ΠΊ равСнства Π΄Π²ΡƒΡ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π£Π±Ρ€Π°Π² ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ количСствСнныС значСния (числа), ΠΎΠ½ ΠΈΠ·Π±Π΅ΠΆΠ°Π» Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, состоящСй Π² нСобходимости Π½Π°Π·Π²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ числом. ВСория Евдокса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° грСчСским ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌ ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΡ‚ΡŒ нСвСроятный прогрСсс Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, прСдоставив ΠΈΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ логичСскоС обоснованиС для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с нСсоизмСримыми Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ. ДСсятая ΠΊΠ½ΠΈΠ³Π° «Начал» Π•Π²ΠΊΠ»ΠΈΠ΄Π° посвящСна классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ°

Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° ознамСновались принятиСм Ρ‚Π°ΠΊΠΈΡ… понятий ΠΊΠ°ΠΊ ноль, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа, Ρ†Π΅Π»Ρ‹Π΅ ΠΈ Π΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ числа, спСрва индийскими, Π·Π°Ρ‚Π΅ΠΌ китайскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ. ПозТС ΠΏΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ»ΠΈΡΡŒ арабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌΠΈ стали ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа алгСбраичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ (наряду ΠΈ Π½Π° Ρ€Π°Π²Π½Ρ‹Ρ… ΠΏΡ€Π°Π²Π°Ρ… с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами), Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΡŒ дисциплину, Π½Ρ‹Π½Π΅ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π°Π»Π³Π΅Π±Ρ€ΠΎΠΉ.

АрабскиС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ соСдинили дрСвнСгрСчСскиС понятия «числа» ΠΈ Β«Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹Β» Π² Π΅Π΄ΠΈΠ½ΡƒΡŽ, Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΡƒΡŽ идСю вСщСствСнных чисСл. Они критичСски ΠΎΡ‚Π½ΠΎΡΠΈΠ»ΠΈΡΡŒ ΠΊ прСдставлСниям Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΎΠ± ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΡ…, Π² противовСс Π΅ΠΉ ΠΎΠ½ΠΈ Ρ€Π°Π·Π²ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΠ»ΠΈ понятиС числа Π΄ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π’ своих коммСнтариях Π½Π° ΠšΠ½ΠΈΠ³Ρƒ 10 Π­Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π•Π²ΠΊΠ»ΠΈΠ΄Π°, пСрсидский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль ΠœΠ°Ρ…Π°Π½ΠΈ (ΠΎΠΊ 800Β Π³Π³. Π½. э.) исслСдовал ΠΈ классифицировал ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа (числа Π²ΠΈΠ΄Π°) ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΠΈΠ΅ кубичСскиС ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа. Он Π΄Π°Π» ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Он Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π» этими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, Π½ΠΎ рассуТдал ΠΊΠ°ΠΊ ΠΎΠ± обособлСнных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

Β Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ [Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ] являСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 10, 12, 3%, 6% ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ произнСсСны ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ количСствСнно. Π§Ρ‚ΠΎ Π½Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ произнСсти ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ количСствСнно. НапримСр, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ чисСл Ρ‚Π°ΠΊΠΈΡ…, ΠΊΠ°ΠΊ 10, 15, 20 β€” Π½Π΅ ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°ΠΌΠΈ.Β 

Π’ противовСс ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Π•Π²ΠΊΠ»ΠΈΠ΄Π°, Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡΡƒΡ‚ΡŒ Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых, Аль ΠœΠ°Ρ…Π°Π½ΠΈ считал Ρ†Π΅Π»Ρ‹Π΅ числа ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΈ кубичСскиС ΠΊΠΎΡ€Π½ΠΈΒ β€” ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Он Ρ‚Π°ΠΊΠΆΠ΅ Π²Π²Π΅Π» арифмСтичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ мноТСству ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½:

Β Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ слоТСния ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΠ· Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ.Β 

ЕгипСтский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Абу Камил (ΠΎΠΊ. 850Β Π³. Π½. э.Β β€” ΠΎΠΊ. 930Β Π³. Π½. э.) Π±Ρ‹Π» ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ, ΠΊΡ‚ΠΎ счСл ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ коэффициСнтами Π² уравнСниях — Π² основном, Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΈΠ»ΠΈ кубичСских ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠΉ стСпСни. Π’ X Π²Π΅ΠΊΠ΅ иракский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Аль Π₯ашими Π²Ρ‹Π²Π΅Π» ΠΎΠ±Ρ‰ΠΈΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° (Π° Π½Π΅ наглядныС гСомСтричСскиС дСмонстрации) ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ произвСдСния, частного ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ½Ρ‹Ρ… матСматичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π°Π΄ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами. Ал Π₯Π°Π·ΠΈΠ½ (900Β Π³. Π½. э.Β β€” 971Β Π³. Π½. э.) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹:

Β ΠŸΡƒΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° содСрТится Π² Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ нСсколько Ρ€Π°Π·, Ρ‚ΠΎΠ³Π΄Π° эта [данная] Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° соотвСтствуСт Ρ†Π΅Π»ΠΎΠΌΡƒ числу… КаТдая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая составляСт ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ, ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒ, ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΈΠ»ΠΈ, сравнСнная с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ составляСт Ρ‚Ρ€ΠΈ пятых ΠΎΡ‚ Π½Π΅Ρ‘, это Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°. И Π² Ρ†Π΅Π»ΠΎΠΌ, всякая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая относится ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎ число ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ. Если ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСна ΠΊΠ°ΠΊ нСсколько ΠΈΠ»ΠΈ Ρ‡Π°ΡΡ‚ΡŒ (l/n), ΠΈΠ»ΠΈ нСсколько частСй (m/n) Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΎΠ½Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ нСвыразимая ΠΈΠ½Π°Ρ‡Π΅ ΠΊΠ°ΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ€Π½Π΅ΠΉ.Β 

МногиС ΠΈΠ· этих ΠΈΠ΄Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ·ΠΆΠ΅ пСрСняты СвропСйскими ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌΠΈ послС ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° Π½Π° Π»Π°Ρ‚Ρ‹Π½ΡŒ арабских тСкстов Π² XII Π²Π΅ΠΊΠ΅. Аль Π₯ассар, арабский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ ΠΈΠ· ΠœΠ°Π³Ρ€ΠΈΠ±Π°, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΠΉΡΡ Π½Π° исламских Π·Π°ΠΊΠΎΠ½Π°Ρ… ΠΎ наслСдствС, Π² XII Π²Π΅ΠΊΠ΅ Π²Π²Π΅Π» ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΡΠΈΠΌΠ²ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½ΠΎΡ‚Π°Ρ†ΠΈΡŽ для Π΄Ρ€ΠΎΠ±Π΅ΠΉ, Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ² Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ. Π’Π° ΠΆΠ΅ нотация появилась Π·Π°Ρ‚Π΅ΠΌ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π€ΠΈΠ±ΠΎΠ½Π°Ρ‡Ρ‡ΠΈ Π² XIII Π²Π΅ΠΊΠ΅. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ XIVβ€”XVIΒ Π²Π². ΠœΠ°Π΄Ρ…Π°Π²Π° ΠΈΠ· Π‘Π°Π½Π³Π°ΠΌΠ°Π³Ρ€Π°ΠΌΡ‹ ΠΈ прСдставитСли ΠšΠ΅Ρ€Π°Π»ΡŒΡΠΊΠΎΠΉ ΡˆΠΊΠΎΠ»Ρ‹ астрономии ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ исслСдовали бСсконСчныС ряды, сходящиСся ΠΊ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числам, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊ Ο€, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ДТСстадСва ΠΏΡ€ΠΈΠ²Π΅Π» эти Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² ΠΊΠ½ΠΈΠ³Π΅ Β«Π™ΡƒΠΊΡ‚ΠΈΠ±Ρ…Π°Π·Π°Β».

НовоС врСмя

Π’ XVII Π²Π΅ΠΊΠ΅ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΡ‡Π½ΠΎ ΡƒΠΊΡ€Π΅ΠΏΠΈΠ»ΠΈΡΡŒ комплСксныС числа, Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… внСсли Абрахам Π΄Π΅ ΠœΡƒΠ°Π²Ρ€ (1667β€”1754) ΠΈ Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ (1707β€”1783). Когда тСория комплСксных чисСл Π² XIX Π²Π΅ΠΊΠ΅ стала Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ ΠΈ Ρ‡Ρ‘Ρ‚ΠΊΠΎΠΉ, стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° алгСбраичСскиС ΠΈ трансцСндСнтныС (Π΄ΠΎΠΊΠ°Π·Π°Π² ΠΏΡ€ΠΈ этом сущСствованиС трансцСндСнтных чисСл), Ρ‚Π΅ΠΌ самым пСрСосмыслив Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π•Π²ΠΊΠ»ΠΈΠ΄Π° ΠΏΠΎ классификации ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. По этой Ρ‚Π΅ΠΌΠ΅ Π² 1872 Π±Ρ‹Π»ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠ°, Π“Π΅ΠΉΠ½Π΅, ΠšΠ°Π½Ρ‚ΠΎΡ€Π° ΠΈ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄Π°. Π₯отя Π΅Ρ‰Ρ‘ Π² 1869 Π³ΠΎΠ΄Ρƒ ΠœΠ΅Ρ€Ρ Π½Π°Ρ‡Π°Π» рассмотрСния, схоТиС с Ρ€Π°Π±ΠΎΡ‚Π°ΠΌΠΈ Π“Π΅ΠΉΠ½Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ 1872 Π³ΠΎΠ΄ принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π³ΠΎΠ΄ΠΎΠΌ роТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ. Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡ, ΠšΠ°Π½Ρ‚ΠΎΡ€ ΠΈ Π“Π΅ΠΉΠ½Π΅ обосновывали свои Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ бСсконСчных рядов, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π”Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ Ρ€Π°Π±ΠΎΡ‚Π°Π» с (Π½Ρ‹Π½Π΅ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌΠΈ) Π΄Π΅Π΄Π΅ΠΊΠΈΠ½Π΄ΠΎΠ²Ρ‹ΠΌΠΈ сСчСниями мноТСства вСщСствСнных чисСл, раздСляя всС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π½Π° Π΄Π²Π° мноТСства с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹ΠΌΠΈ характСристичСскими свойствами.

Π¦Π΅ΠΏΠ½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, тСсно связанныС с ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами (цСпная Π΄Ρ€ΠΎΠ±ΡŒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Π΄Π°Π½Π½ΠΎΠ΅ число, бСсконСчна Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° число являСтся ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ), Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ исслСдованы ΠšΠ°Ρ‚Π°Π»ΡŒΠ΄ΠΈ Π² 1613 Π³ΠΎΠ΄Ρƒ, Π·Π°Ρ‚Π΅ΠΌ снова ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ»ΠΈ ΠΊ сСбС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π­ΠΉΠ»Π΅Ρ€Π°, Π° Π² Π½Π°Ρ‡Π°Π»Π΅ XIX Π²Π΅ΠΊΠ°Β β€” Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π›Π°Π³Ρ€Π°Π½ΠΆΠ°. Π”ΠΈΡ€ΠΈΡ…Π»Π΅ Ρ‚Π°ΠΊΠΆΠ΅ внёс Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π’ 1761 Π³ΠΎΠ΄Ρƒ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚ с ΠΏΠΎΠΌΠΎΡ‰ΡŽ Ρ†Π΅ΠΏΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ο€{\displaystyle \pi }Β  Π½Π΅ являСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числом, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‡Ρ‚ΠΎ ex{\displaystyle e^{x}}Β  ΠΈ tg⁑x{\displaystyle \operatorname {tg} x}Β  ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ любом Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΌ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ x{\displaystyle x}Β . Π₯отя Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›Π°ΠΌΠ±Π΅Ρ€Ρ‚Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π½Π΅Π·Π°Π²Π΅Ρ€ΡˆΡ‘Π½Π½Ρ‹ΠΌ, принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Π³ΠΎ достаточно строгим, особСнно учитывая врСмя Π΅Π³ΠΎ написания. Π›Π΅ΠΆΠ°Π½Π΄Ρ€ Π² 1794 Π³ΠΎΠ΄Ρƒ, послС ввСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ БСссСля β€” ΠšΠ»ΠΈΡ„Ρ„ΠΎΡ€Π΄Π°, ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Ο€2{\displaystyle \pi ^{2}}Β  ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ο€{\displaystyle \pi }Β  слСдуСт Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΠΎ (Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ Π΄Π°Π»ΠΎ Π±Ρ‹ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅).

БущСствованиС трансцСндСнтных чисСл Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π›ΠΈΡƒΠ²ΠΈΠ»Π»Π΅ΠΌ Π² 1844β€”1851 Π³ΠΎΠ΄Π°Ρ…. ПозТС Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€ (1873) ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΈΡ… сущСствованиС, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΈ обосновал, Ρ‡Ρ‚ΠΎ любой ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» вСщСствСнного ряда содСрТит бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ трансцСндСнтных чисСл. Π¨Π°Ρ€Π»ΡŒ Π­Ρ€ΠΌΠΈΡ‚ Π΄ΠΎΠΊΠ°Π·Π°Π» Π² 1873 Π³ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ e трансцСндСнтно, Π° Π€Π΅Ρ€Π΄ΠΈΠ½Π°Π½Π΄ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½ Π² 1882 Π³ΠΎΠ΄Ρƒ, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° этом Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅, ΠΏΠΎΠΊΠ°Π·Π°Π» Ρ‚Ρ€Π°Π½ΡΡ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ο€{\displaystyle \pi }Β . Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π›ΠΈΠ½Π΄Π΅ΠΌΠ°Π½Π½Π° Π±Ρ‹Π»ΠΎ Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π’Π΅ΠΉΠ΅Ρ€ΡˆΡ‚Ρ€Π°ΡΡΠΎΠΌ Π² 1885 Π³ΠΎΠ΄Ρƒ, Π΅Ρ‰Ρ‘ Π±ΠΎΠ»Π΅Π΅ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΎ Π”Π°Π²ΠΈΠ΄ΠΎΠΌ Π“ΠΈΠ»ΡŒΠ±Π΅Ρ€Ρ‚ΠΎΠΌ Π² 1893 Π³ΠΎΠ΄Ρƒ ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΄ΠΎ ΠΏΠΎΡ‡Ρ‚ΠΈ элСмСнтарного ΠΠ΄ΠΎΠ»ΡŒΡ„ΠΎΠΌ Π“ΡƒΡ€Π²ΠΈΡ†Π΅ΠΌ ΠΈ ΠŸΠ°ΡƒΠ»Π΅ΠΌ Π“ΠΎΡ€Π΄Π°Π½ΠΎΠΌ.

www.ru-wiki.org

Как ΠΏΠΎΠ½ΡΡ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число ΠΈΠ»ΠΈ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅? ΠŸΠΎΠΌΠΎΠ³ΠΈΡ‚Π΅ поТалуйста!!!

Π›ΡŽΠ±ΠΎΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число — это пСриодичСская Π΄Ρ€ΠΎΠ±ΡŒ: 5=5,0000…=5,(0) 1,257=1,257(0) 1/110=0,0(09) Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа прСдставимы Π² Π²ΠΈΠ΄Π΅ p/q, Π³Π΄Π΅ p — Ρ†Π΅Π»ΠΎΠ΅ число, Π° q — Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅. Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа Π² Ρ‚Π°ΠΊΠΎΠΉ записи нСльзя ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ это нСпСриодичСскиС Π΄Ρ€ΠΎΠ±ΠΈ. … Π•Π΄ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ — Π½Π΅Ρ‚. Π”ΠΎΠΊ-Π²ΠΎ ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏ доказываСтся ΠΈΠ½Π°Ρ‡Π΅, Ρ‡Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· 2.

ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅

Если запись бСсконСчная нСпСриодичСская — ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅, ΠΈΠ½Π°Ρ‡Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅.

Зависит ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅ Π²Π°ΠΌ прСдставлСно число.

Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числом считаСтся число ΠΎΡ‚ 0 Π΄ΠΎ 9 ΠΈΠ»ΠΈ ΠΈΡ… ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ. НапримСр: 0,5 — ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число, Π° Π΄Ρ€ΠΎΠ±ΡŒ 1/2 — Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΡ… Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл. Число 0,3333333 ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π΄Ρ€ΠΎΠ±ΡŒΡŽ 1/3 ΠΈ Ρ‚. Π΄.

К Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ числам относятся ΠΈ Ρ†Π΅Π»Ρ‹Π΅, ΠΈ Π΄Ρ€ΠΎΠ±Π½Ρ‹Π΅, ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅, ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅, ΠΈ Π΄Π°ΠΆΠ΅ Π½ΡƒΠ»ΡŒ. Π‘ мСтафизичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа относятся ΠΊ Ρ‚Π΅ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Ρ‹ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. Числа ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ относятся ΠΊ Π³Ρ€ΡƒΠΏΠΏΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π² Ρ„ΠΎΡ€ΠΌΠ΅ бСсконСчной дСсятичной нСпСриодичСской Π΄Ρ€ΠΎΠ±ΠΈ. Они Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ Π΄Ρ€ΠΎΠ±ΡŒΡŽ m/n, Π³Π΄Π΅ Ρ‚ ΠΈ ΠΏ- Ρ†Π΅Π»Ρ‹Π΅ числа. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ Ρ‚Π°ΠΊΠΈΡ… ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл ΡΠ²Π»ΡΡŽΡ‚ΡΡ числа ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 2; 0,1010010001; lg2; cos20Β±; …Π‘ мСтафизичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа относятся ΠΊ области Ρ‚Π΅Ρ… Π½Π΅ΡƒΠ»ΠΎΠ²ΠΈΠΌΡ‹Ρ… явлСний Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ ΠΌΠΈΡ€Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Ρ‹ с Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ.

touch.otvet.mail.ru

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *