Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой пСрпСндикулярной – , .

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ пСрпСндикулярной Π΄Π°Π½Π½ΠΎΠΉ плоскости ΠΎΠ½Π»Π°ΠΉΠ½

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŽ этого ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ пСрпСндикуляной Π΄Π°Π½Π½ΠΎΠΉ плоскости. ДаСтся ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ с пояснСниями. Для построСния уравнСния прямой Π²Π²Π΅Π΄ΠΈΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ коэффициСнты уравнСния плоскости Π² ячСйки ΠΈ Π½Π°ΠΆΠΈΠΌΠ°ΠΉΡ‚Π΅ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡƒ «Π Π΅ΡˆΠΈΡ‚ΡŒ».

ΠžΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ всС ячСйки?

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ Π²Π²ΠΎΠ΄Π° Π΄Π°Π½Π½Ρ‹Ρ…. Числа вводятся Π² Π²ΠΈΠ΄Π΅ Ρ†Π΅Π»Ρ‹Ρ… чисСл (ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹: 487, 5, -7623 ΠΈ Ρ‚.Π΄.), дСсятичных чисСл (Π½Π°ΠΏΡ€. 67., 102.54 ΠΈ Ρ‚.Π΄.) ΠΈΠ»ΠΈ Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π”Ρ€ΠΎΠ±ΡŒ Π½ΡƒΠΆΠ½ΠΎ Π½Π°Π±ΠΈΡ€Π°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ a/b, Π³Π΄Π΅ a ΠΈ b (b>0) Ρ†Π΅Π»Ρ‹Π΅ ΠΈΠ»ΠΈ дСсятичныС числа. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ 45/5, 6.6/76.4, -7/6.7 ΠΈ Ρ‚.Π΄.

Β 

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ пСрпСндикулярной Π΄Π°Π½Π½ΠΎΠΉ плоскости

Наша Ρ†Π΅Π»ΡŒ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ M0 ΠΈ пСрпСндикулярной ΠΊ Π΄Π°Π½Π½ΠΎΠΉ плоскости Ax+By+Cz+D=0.

ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π³Π΄Π΅ n(A,B,C

)βˆ’ называСтся Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ плоскости.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(x0, y0, z0) ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ q(l, m, n) ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ прямая (2) Π±Ρ‹Π»Π° ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Π° плоскости (1), Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ q(l, m, n) прямой (2) Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ n(A,B,C) плоскости (1)(Рис. 1). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π² качСствС Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой (2) ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡ‚ΡŒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ плоскости (1) .

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(x0, y0, z0) ΠΈ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ плоскости (1) ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΡΡ‰ΡƒΡŽ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(5, -4, 4) ΠΈ пСрпСндикулярной плоскости

РСшСниС.

ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ (1), Π³Π΄Π΅ :

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

M0(5, -4, 4) ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° плоскости (4) Π² (3), ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

ΠžΡ‚Π²Π΅Ρ‚:

matworld.ru

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π΄Π°Π½Π½ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ.

НайдСм ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π·Π°Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ М0(Ρ…0,Ρƒ0) пСрпСндикулярно Π΄Π°Π½Π½ΠΎΠΌΡƒ Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ .

Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ Π½Π° прямой ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ М(Ρ…;Ρƒ) ΠΈ рассмотрим Π²Π΅ΠΊΡ‚ΠΎΡ€ .ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ n ΠΈ М0М пСрпСндикулярны, Ρ‚ΠΎ ΠΈΡ… скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ: ,Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (10.8) называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π·Π°Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ.

ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой Π½Π° плоскости.

Π›ΡŽΠ±Π°Ρ прямая Π½Π° плоскости ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π°Π΄Π°Π½Π° ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка

Ах + Π’Ρƒ + Π‘ = 0.

Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми. Условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ пСрпСндикулярности прямых.

Условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄Π²ΡƒΡ… прямых:

Π°) Если прямыС Π·Π°Π΄Π°Π½Ρ‹ уравнСниями (4) с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом, Ρ‚ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС ΠΈΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ состоит Π² равСнствС ΠΈΡ… ΡƒΠ³Π»ΠΎΠ²Ρ‹Ρ… коэффициСнтов:

k1 = k2.

Π±) Для случая, ΠΊΠΎΠ³Π΄Π° прямыС Π·Π°Π΄Π°Π½Ρ‹ уравнСниями Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅ (6), Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС ΠΈΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ коэффициСнты ΠΏΡ€ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… Π² ΠΈΡ… уравнСниях ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹, Ρ‚. Π΅.

5. Условия пСрпСндикулярности Π΄Π²ΡƒΡ… прямых:

Π°) Π’ случаС, ΠΊΠΎΠ³Π΄Π° прямыС Π·Π°Π΄Π°Π½Ρ‹ уравнСниями (4) с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС ΠΈΡ… пСрпСндикулярности Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΡ… ΡƒΠ³Π»ΠΎΠ²Ρ‹Π΅ коэффициСнты ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ ΠΏΠΎ Π·Π½Π°ΠΊΡƒ, Ρ‚. Π΅.

Π±) Если уравнСния прямых Π·Π°Π΄Π°Π½Ρ‹ Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅ (6), Ρ‚ΠΎ условиС ΠΈΡ… пСрпСндикулярности (Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС) Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ равСнства A1A2 + B1B2 = 0.

ВычислСниС расстояния ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ прямой.

РасстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ прямой опрСдСляСтся Π΄Π»ΠΈΠ½ΠΎΠΉ пСрпСндикуляра, ΠΎΠΏΡƒΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΏΡ€ΡΠΌΡƒΡŽ.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ.

| x — x1 y — y1 z — z1 |

| x2 — x1 y2 — y1 z2 — z1 | = 0

| x3 — x1 y3 — y1 z3 — z1 |

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π΄Π°Π½Π½ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ.

ΠŸΡƒΡΡ‚ΡŒ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π·Π°Π΄Π°Π½Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ:

Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ

M(x0, y0, z0) пСрпСндикулярно Π΄Π°Π½Π½ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ β†’n = {A, B, C} .

РСшСниС. ΠŸΡƒΡΡ‚ΡŒ P(x, y, z) β€” ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° пространства. Π’ΠΎΡ‡ΠΊΠ° P ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ плоскости Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

MP = {x βˆ’ x0, y βˆ’ y0, z βˆ’ z0} ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ β†’n = {A, B, C} (рис.1).

Β 

Написав условиС ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (β†’n, MP) = 0 Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

A(x βˆ’ x0) + B(y βˆ’ y0) + C(z βˆ’ z0) = 0 (1)

Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ искомоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. Π’Π΅ΠΊΡ‚ΠΎΡ€ β†’n = {A, B, C} называСтся Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ плоскости.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ плоскости ΠΈ ΠΊΠ°ΠΊΡƒΡŽβ€“Π½ΠΈΠ±ΡƒΠ΄ΡŒ Ρ‚ΠΎΡ‡ΠΊΡƒ, ΠΏΡ€ΠΈΠ½Π°ΠΆΠ΄Π΅ΠΆΠ°Ρ‰ΡƒΡŽ плоскости.

Если Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ (1) Ρ€Π°ΡΠΊΡ€Ρ‹Ρ‚ΡŒ скобки ΠΈ привСсти ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Ρ‡Π»Π΅Π½Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΎΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости:

Ax + By + Cz + D = 0 ,

Π³Π΄Π΅ D = βˆ’Ax0 βˆ’ By0 βˆ’ Cz0 .

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ(Π² пространствС).

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ A(x1, y1) ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ a(m, n):

Условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ пСрпСндикулярности прямой ΠΈ плоскости.

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ прямая ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π±Ρ‹Π»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ ΠΊ плоскости ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой Π±Ρ‹Π»ΠΈ пСрпСндикулярны. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΡ… скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ прямая ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π±Ρ‹Π»ΠΈ пСрпСндикулярны, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ ΠΊ плоскости ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой Π±Ρ‹Π»ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Π΅. Π­Ρ‚ΠΎ условиС выполняСтся, Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π±Ρ‹Π»ΠΎ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

ВычислСниС расстояния ΠΎΡ‚ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ Π΄Π°Π½Π½ΠΎΠΉ плоскости.

ΠŸΡƒΡΡ‚ΡŒ Pa = (xa, ya, za) Ρ‚ΠΎΡ‡ΠΊΠ°, расстояниС ΠΎΡ‚ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ΄ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ.

ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΡŽ n = (A, B, C) ΠΈ ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Pb = (xb, yb, zb)

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° P = (x,y,z) Π»Π΅ΠΆΠΈΡ‚ Π½Π° плоскости Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Ax+By+Cz+D=0

НаимСньшСС расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Pa ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ выраТСния (A xa + B ya + C za + D) / sqrt(A2 + B2 + C2)

Π—Π½Π°ΠΊ самого выраТСния Π΄Π°Π΅Ρ‚ располоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ плоскости: с ΠΊΠ°ΠΊΠΎΠΉ ΠΎΠ½Π° стороны.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ окруТности.

ΠΈΠ»ΠΈ .

Β 

Эллипс.

Эллипсом называСтся мноТСство всСх Ρ‚Π°ΠΊΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… сумма расстояний Π΄ΠΎ Π΄Π²ΡƒΡ… фиксированных Ρ‚ΠΎΡ‡Π΅ΠΊ постоянна.

Π“ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π°.

Π“ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»ΠΎΠΉ называСтся мноТСство всСх Ρ‚Π°ΠΊΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ΄ΡƒΠ»ΡŒ разности расстояний Π΄ΠΎ Π΄Π²ΡƒΡ… фиксированных Ρ‚ΠΎΡ‡Π΅ΠΊ Π΅ΡΡ‚ΡŒ постоянная ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°.

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π°.

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΉ называСтся мноТСство всСх Ρ‚Π°ΠΊΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… расстояниС Π΄ΠΎ фиксированной Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π²Π½ΠΎ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ Π΄ΠΎ фиксированной прямой, Π½Π΅ проходящСй Ρ‡Π΅Ρ€Π΅Π· эту Ρ‚ΠΎΡ‡ΠΊΡƒ.


Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ΅ΠΌΡ‹Π΅ страницы:

lektsia.com

β„–1. Π° ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ, пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, ΠΈ привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ

с. 1
ΠšΠžΠΠ’Π ΠžΠ›Π¬ΠΠΠ― Π ΠΠ‘ΠžΠ’Π β„–2

Π’Π°Ρ€ΠΈΠ°Π½Ρ‚ 20


β„–1. Π°) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈ привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ;

Π±) ΠŸΡ€ΠΈΠ²Π΅ΡΡ‚ΠΈ ΠΎΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ ΠΈ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ расстояниС ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄ΠΎ прямой.

РСшСниС:

Π°) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π±) ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой приводится ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ (Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ) Π²ΠΈΠ΄Ρƒ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Π΅ΠΈΡ… частСй уравнСния Π½Π° Π½ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ , Π³Π΄Π΅ Π·Π½Π°ΠΊ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΡƒ .

Π‘Π²ΠΎΠ±ΠΎΠ΄Π½Ρ‹ΠΉ Ρ‡Π»Π΅Π½ Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ уравнСния с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ числСнно Ρ€Π°Π²Π΅Π½ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄ΠΎ прямой.

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

Π±) ;


β„–2. Π°) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , Π² каноничСском Π²ΠΈΠ΄Π΅ ΠΈ привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ;

Π±) Π—Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ парамСтричСскиС уравнСния прямой, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ этой прямой ΠΈ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ этой Ρ‚ΠΎΡ‡ΠΊΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°.

РСшСниС:

Π°) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π±) ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ ΠΈΠ· каноничСского уравнСния , Π³Π΄Π΅ – ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ (пСрСмСнная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‰Π°Ρ значСния ΠΎΡ‚ Π΄ΠΎ )

Π’ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ прямой, Ссли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ прямой

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ прямой , Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ этой Ρ‚ΠΎΡ‡ΠΊΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° .

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

;

Π±) ;


β„–3. Π°) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой ;

Π±) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой ΠΈ Π½Π°ΠΉΡ‚ΠΈ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

РСшСниС:

Π°) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно прямой ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π±) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно прямой ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠΉ прямой ΠΈ прямой Ρ€Π°Π²Π½ΠΎ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ прямой , ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

Π±) ; .

β„–4. Найти ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ прямой .

РСшСниС:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡƒΡ‡ΠΊΠ° прямых с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Из мноТСства прямых этого ΠΏΡƒΡ‡ΠΊΠ° слСдуСт Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ с Π΄Π°Π½Π½ΠΎΠΉ прямой ΡƒΠ³ΠΎΠ» , Ρ‚. Π΅. ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡƒΠ³Π»ΠΎΠ²Ρ‹Π΅ коэффициСнты этих прямых. Π’. ΠΊ. , Ρ‚ΠΎ Π·Π°Π΄Π°Ρ‡Π° ΠΈΠΌΠ΅Π΅Ρ‚ 2 Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя прямыми опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС, , Π° для опрСдСлСния коэффициСнта Π΄Π°Π½Π½ΠΎΠΉ прямой прСдставим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅ уравнСния с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ,

УравнСния прямых, проходящих Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ прямой ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚:


β„–5. Π°) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈ привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ;

Π±) ΠŸΡ€ΠΈΠ²Π΅ΡΡ‚ΠΈ ΠΎΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ ΠΈ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ расстояниС ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄ΠΎ плоскости.

РСшСниС:

Π°) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π±) ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости приводится ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ (Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ) Π²ΠΈΠ΄Ρƒ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Π΅ΠΈΡ… частСй уравнСния Π½Π° Π½ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ , Π³Π΄Π΅ Π·Π½Π°ΠΊ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΡƒ .

Π‘Π²ΠΎΠ±ΠΎΠ΄Π½Ρ‹ΠΉ Ρ‡Π»Π΅Π½ Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ уравнСния с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ числСнно Ρ€Π°Π²Π΅Π½ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄ΠΎ прямой.

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

;

Π±) ;


β„–6. Π°) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ , ΠΈ Π½Π°ΠΉΡ‚ΠΈ расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ этой плоскости;

Π±) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ пСрпСндикулярно ΠΏΠ΅Ρ€Π²ΠΎΠΉ плоскости.

РСшСниС:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

РасстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ плоскости опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π±) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ пСрпСндикулярно плоскости ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;;

Π±) .
β„–7. Π°) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ каноничСскиС ΠΈ парамСтричСскиС уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ;

Π±) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно прямой ;

Π²) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ .

РСшСниС:


Π°) ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

Π±) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно прямой ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π²) ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ , ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;;

Π±) ;

Π²)


β„–8. Π°) Найти ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ плоскостями ΠΈ ;

Π±) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ пСрСсСчСния плоскостСй ΠΈ ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ;

Π²) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ каноничСскиС уравнСния прямой, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠ±Ρ‰ΠΈΠΌΠΈ уравнСниями , , ΠΈ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ прямой.

РСшСниС:


Π°) Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ плоскостями ΠΈ

Π±) Π”Π²Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ плоскости Π·Π°Π΄Π°ΡŽΡ‚ ΠΏΡƒΡ‡ΠΎΠΊ плоскостСй, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Из мноТСства этого ΠΏΡƒΡ‡ΠΊΠ° Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ Ρ‚Ρƒ, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , Ρ‚. Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° :

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ искомой плоскости ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π²) БистСма, составлСнная ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ плоскостСй , называСтся ΠΎΠ±Ρ‰ΠΈΠΌΠΈ уравнСниями прямой пСрСсСчСния этих плоскостСй:

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ каноничСскиС уравнСния прямой Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… этой прямой:

ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ , ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ прямой , ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

Π±) ;

Π²) ;


β„–9. Π°) Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ прямой ;

Π±) Найти Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния прямой ΠΈ плоскости ;

Π²) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· эту Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно плоскости

РСшСниС:


Π°) Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ прямой вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π±) ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния прямой ΠΈ плоскости ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· систСмы, составлСнной ΠΈΠ· ΠΈΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π²) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно плоскости ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

Π±) ;

Π²)


β„–10. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΡ€ΠΈΠ²ΡƒΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка ΠΈ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ.

Π”Π°Π½ΠΎ:

РСшСниС:

Π›ΡŽΠ±ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» Ξ± ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΠΊ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒΡΡ слагаСмого с ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ прСобразования ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΡ€ΠΈ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅ систСмы Π²ΠΎΠΊΡ€ΡƒΠ³ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° ΡƒΠ³ΠΎΠ» Ξ± (Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки) ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ,

Π‘Π΄Π΅Π»Π°Π΅ΠΌ Π·Π°ΠΌΠ΅Π½Ρƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…:

Π—Π°ΠΌΠ΅Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ пСрСнос систСмы Π² Ρ‚ΠΎΡ‡ΠΊΡƒ . Π’ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π΅ΡΡ‚ΡŒ каноничСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹ с Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ осью , Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ»ΡƒΠΎΡΡŒ , мнимая .



с. 1

www.prerek.ru

β„–1. Π° ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ, пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, ΠΈ привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ

с. 1
ΠšΠžΠΠ’Π ΠžΠ›Π¬ΠΠΠ― Π ΠΠ‘ΠžΠ’Π β„–2

Π’Π°Ρ€ΠΈΠ°Π½Ρ‚ 20


β„–1. Π°) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈ привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ;

Π±) ΠŸΡ€ΠΈΠ²Π΅ΡΡ‚ΠΈ ΠΎΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ ΠΈ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ расстояниС ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄ΠΎ прямой.

РСшСниС:

Π°) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π±) ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой приводится ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ (Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ) Π²ΠΈΠ΄Ρƒ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Π΅ΠΈΡ… частСй уравнСния Π½Π° Π½ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ , Π³Π΄Π΅ Π·Π½Π°ΠΊ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΡƒ .

Π‘Π²ΠΎΠ±ΠΎΠ΄Π½Ρ‹ΠΉ Ρ‡Π»Π΅Π½ Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ уравнСния с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ числСнно Ρ€Π°Π²Π΅Π½ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄ΠΎ прямой.

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

Π±) ;


β„–2. Π°) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , Π² каноничСском Π²ΠΈΠ΄Π΅ ΠΈ привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ;

Π±) Π—Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ парамСтричСскиС уравнСния прямой, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ этой прямой ΠΈ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ этой Ρ‚ΠΎΡ‡ΠΊΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°.

РСшСниС:

Π°) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π±) ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ ΠΈΠ· каноничСского уравнСния , Π³Π΄Π΅ – ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ (пСрСмСнная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‰Π°Ρ значСния ΠΎΡ‚ Π΄ΠΎ )

Π’ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ прямой, Ссли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ прямой

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ прямой , Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ этой Ρ‚ΠΎΡ‡ΠΊΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° .

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

;

Π±) ;


β„–3. Π°) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой ;

Π±) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой ΠΈ Π½Π°ΠΉΡ‚ΠΈ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

РСшСниС:

Π°) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно прямой ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π±) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно прямой ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠΉ прямой ΠΈ прямой Ρ€Π°Π²Π½ΠΎ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ прямой , ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

Π±) ; .

β„–4. Найти ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ прямой .

РСшСниС:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡƒΡ‡ΠΊΠ° прямых с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Из мноТСства прямых этого ΠΏΡƒΡ‡ΠΊΠ° слСдуСт Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ с Π΄Π°Π½Π½ΠΎΠΉ прямой ΡƒΠ³ΠΎΠ» , Ρ‚. Π΅. ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡƒΠ³Π»ΠΎΠ²Ρ‹Π΅ коэффициСнты этих прямых. Π’. ΠΊ. , Ρ‚ΠΎ Π·Π°Π΄Π°Ρ‡Π° ΠΈΠΌΠ΅Π΅Ρ‚ 2 Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя прямыми опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС, , Π° для опрСдСлСния коэффициСнта Π΄Π°Π½Π½ΠΎΠΉ прямой прСдставим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅ уравнСния с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ,

УравнСния прямых, проходящих Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ прямой ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚:


β„–5. Π°) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈ привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ;

Π±) ΠŸΡ€ΠΈΠ²Π΅ΡΡ‚ΠΈ ΠΎΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ ΠΈ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ расстояниС ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄ΠΎ плоскости.

РСшСниС:

Π°) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ , ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π±) ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости приводится ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ (Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ) Π²ΠΈΠ΄Ρƒ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Π΅ΠΈΡ… частСй уравнСния Π½Π° Π½ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ , Π³Π΄Π΅ Π·Π½Π°ΠΊ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΡƒ .

Π‘Π²ΠΎΠ±ΠΎΠ΄Π½Ρ‹ΠΉ Ρ‡Π»Π΅Π½ Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ уравнСния с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ числСнно Ρ€Π°Π²Π΅Π½ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄ΠΎ прямой.

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

;

Π±) ;


β„–6. Π°) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ , ΠΈ Π½Π°ΠΉΡ‚ΠΈ расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ этой плоскости;

Π±) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ пСрпСндикулярно ΠΏΠ΅Ρ€Π²ΠΎΠΉ плоскости.

РСшСниС:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

РасстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ плоскости опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π±) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ пСрпСндикулярно плоскости ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;;

Π±) .
β„–7. Π°) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ каноничСскиС ΠΈ парамСтричСскиС уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ;

Π±) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно прямой ;

Π²) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ .

РСшСниС:


Π°) ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

Π±) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно прямой ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π²) ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ , ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;;

Π±) ;

Π²)


β„–8. Π°) Найти ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ плоскостями ΠΈ ;

Π±) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΡΠΌΡƒΡŽ пСрСсСчСния плоскостСй ΠΈ ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ;

Π²) ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ каноничСскиС уравнСния прямой, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠ±Ρ‰ΠΈΠΌΠΈ уравнСниями , , ΠΈ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ прямой.

РСшСниС:


Π°) Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ плоскостями ΠΈ

Π±) Π”Π²Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ плоскости Π·Π°Π΄Π°ΡŽΡ‚ ΠΏΡƒΡ‡ΠΎΠΊ плоскостСй, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Из мноТСства этого ΠΏΡƒΡ‡ΠΊΠ° Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ Ρ‚Ρƒ, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ , Ρ‚. Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° :

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ искомой плоскости ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π²) БистСма, составлСнная ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ плоскостСй , называСтся ΠΎΠ±Ρ‰ΠΈΠΌΠΈ уравнСниями прямой пСрСсСчСния этих плоскостСй:

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ каноничСскиС уравнСния прямой Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… этой прямой:

ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ , ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ прямой , ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

Π±) ;

Π²) ;


β„–9. Π°) Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ прямой ;

Π±) Найти Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния прямой ΠΈ плоскости ;

Π²) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· эту Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно плоскости

РСшСниС:


Π°) Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ прямой вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π±) ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния прямой ΠΈ плоскости ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· систСмы, составлСнной ΠΈΠ· ΠΈΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π²) Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно плоскости ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠžΡ‚Π²Π΅Ρ‚: Π°) ;

Π±) ;

Π²)


β„–10. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΡ€ΠΈΠ²ΡƒΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка ΠΈ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ.

Π”Π°Π½ΠΎ:

РСшСниС:

Π›ΡŽΠ±ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» Ξ± ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΠΊ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒΡΡ слагаСмого с ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ прСобразования ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΡ€ΠΈ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅ систСмы Π²ΠΎΠΊΡ€ΡƒΠ³ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° ΡƒΠ³ΠΎΠ» Ξ± (Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки) ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ,

Π‘Π΄Π΅Π»Π°Π΅ΠΌ Π·Π°ΠΌΠ΅Π½Ρƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…:

Π—Π°ΠΌΠ΅Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ пСрСнос систСмы Π² Ρ‚ΠΎΡ‡ΠΊΡƒ . Π’ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π΅ΡΡ‚ΡŒ каноничСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹ с Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ осью , Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ»ΡƒΠΎΡΡŒ , мнимая .



с. 1

prerek.ru

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ пСрпСндикулярной Π΄Π°Π½Π½ΠΎΠΉ прямой ΠΎΠ½Π»Π°ΠΉΠ½

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŽ этого ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ пСрпСндикуляной Π΄Π°Π½Π½ΠΎΠΉ прямой. ДаСтся ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ с пояснСниями. Для построСния уравнСния плоскости Π·Π°Π΄Π°ΠΉΡ‚Π΅ Π²ΠΈΠ΄ уравнСния прямой (каноничСский ΠΈΠ»ΠΈ парамСтричСский) Π²Π²Π΅Π΄ΠΈΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ коэффициСнты уравнСния прямой Π² ячСйки ΠΈ Π½Π°ΠΆΠΈΠΌΠ°ΠΉΡ‚Π΅ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡƒ «Π Π΅ΡˆΠΈΡ‚ΡŒ».

ΠžΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ всС ячСйки?

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ Π²Π²ΠΎΠ΄Π° Π΄Π°Π½Π½Ρ‹Ρ…. Числа вводятся Π² Π²ΠΈΠ΄Π΅ Ρ†Π΅Π»Ρ‹Ρ… чисСл (ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹: 487, 5, -7623 ΠΈ Ρ‚.Π΄.), дСсятичных чисСл (Π½Π°ΠΏΡ€. 67., 102.54 ΠΈ Ρ‚.Π΄.) ΠΈΠ»ΠΈ Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π”Ρ€ΠΎΠ±ΡŒ Π½ΡƒΠΆΠ½ΠΎ Π½Π°Π±ΠΈΡ€Π°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ a/b, Π³Π΄Π΅ a ΠΈ b (b>0) Ρ†Π΅Π»Ρ‹Π΅ ΠΈΠ»ΠΈ дСсятичныС числа. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ 45/5, 6.6/76.4, -7/6.7 ΠΈ Ρ‚.Π΄.

Β 

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ пСрпСндикулярной Π΄Π°Π½Π½ΠΎΠΉ прямой βˆ’ тСория, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

Π—Π°Π΄Π°Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° M0(x0, y0, z0) ΠΈ прямая L:

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости Ξ±, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0 ΠΈ пСрпСндинулярной прямой L.

РСшСниС. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0 ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ n={A, B, C} ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой L ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ q={m, p, l}. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ прямая L ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Ξ± пСрпСндикулярны Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ плоскостти ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ (Рис.1). Π’ΠΎΠ³Π΄Π° вмСсто ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° плоскости Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой L. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости:

Упростим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (3):

Π³Π΄Π΅ D=βˆ’mx0βˆ’px0βˆ’lx0.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (4) опрСдСляСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(x0, y0, z0) ΠΈ пСрпСндикулярной прямой (1).

ΠžΡ‚Π²Π΅Ρ‚. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости прпоходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(x0, y0, z0) ΠΈ пСрпСндикулярной прямой (1) ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ (4).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Найти ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости Ξ±, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΡΡ‰ΡƒΡŽ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(3, βˆ’1, 2) ΠΈ пСрпСндикулярной прямой L:

РСшСниС. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости Ξ±, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(x0, y0, z0) ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ n={A, B, C} прСдставляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ (2).

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой L ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄: :

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ прямая L Π±Ρ‹Π»Π° пСрпСндикулярна плоскости Ξ±, Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ плоскости Ξ± Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ прямой L, Ρ‚.Π΅. ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости (2) ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ M0 ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° q Π² (8), ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Упростим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (9):

ΠžΡ‚Π²Π΅Ρ‚: Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(3, βˆ’1, 2) ΠΈ пСрпСндикулярной прямой (7) ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ (10).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Найти ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости Ξ±, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΡΡ‰ΡƒΡŽ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(4, 3, βˆ’6) ΠΈ пСрпСндикулярной прямой L, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ парамСтричСским ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ:

РСшСниС. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ парамСтричСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (11) ΠΊ каноничСскому Π²ΠΈΠ΄Ρƒ:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости Ξ±, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(x0, y0, z0) ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ n={A, B, C} прСдставляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой L ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ прямая L Π±Ρ‹Π»Π° пСрпСндикулярна плоскости Ξ±, Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ плоскости Ξ± Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ прямой L, Ρ‚.Π΅. ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости (12) ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ M0 ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° q Π² (13), ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Упростим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (13):

ΠžΡ‚Π²Π΅Ρ‚. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ M0(4, 3, βˆ’6) ΠΈ пСрпСндикулярной прямой (11) ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ (14).

matworld.ru

Как Π½Π°ΠΉΡ‚ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ пСрпСндикулярной прямой

Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ всякая прямая ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записана Π² Π²ΠΈΠ΄Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ уравнСния. Π Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΠΉ, каноничСский ΠΈ парамСтричСский способы задания прямой, ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ свои условия пСрпСндикулярности.

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ

  • ΠŸΡƒΡΡ‚ΡŒ Π΄Π²Π΅ прямыС Π² пространствС Π·Π°Π΄Π°Π½Ρ‹ каноничСскими уравнСниями:(x-x1)/q1 = (y-y1)/w1 = (z-z1)/e1;(x-x2)/q2 = (y-y2)/w2 = (z-z2)/e2.
  • Числа q, w ΠΈ e, прСдставлСнныС Π² знамСнатСлях, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΊ этим прямым. ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠΉ Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π»Π΅ΠΆΠΈΡ‚ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой Π»ΠΈΠ±ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅ΠΉ.
  • ΠšΠΎΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми ΠΈΠΌΠ΅Π΅Ρ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:cosΞ» = Β± (q1Β·q2 + w1Β·w2 + e1Β·e2) / √ [(q1)Β² + (w1)Β² + (e1)Β²] Β· [(q2)Β² + (w2)Β² + (e2)Β²].
  • ΠŸΡ€ΡΠΌΡ‹Π΅, Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ каноничСскими уравнСниями, Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΈΡ… Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹. Π’ΠΎ Π΅ΡΡ‚ΡŒ, ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми (ΠΎΠ½ ΠΆΠ΅ – ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ) Ρ€Π°Π²Π΅Π½ 90Β°. ΠšΠΎΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° Π² этом случаС обращаСтся Π² ноль. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ косинус Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Π΄Ρ€ΠΎΠ±ΡŒΡŽ, Ρ‚ΠΎ Π΅Π³ΠΎ равСнство Π½ΡƒΠ»ΡŽ эквивалСнтно Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŽ. Π’ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… это Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Ρ‚Π°ΠΊ:q1Β·q2 + w1Β·w2 + e1Β·e2 = 0.
  • Для прямых Π½Π° плоскости Ρ†Π΅ΠΏΠΎΡ‡ΠΊΠ° рассуТдСний выглядит Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ, Π½ΠΎ условиС пСрпСндикулярности Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Ρ‡ΡƒΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΠΎ: q1Β·q2 + w1Β·w2 = 0, Ρ‚.ΠΊ. Ρ‚Ρ€Π΅Ρ‚ΡŒΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° отсутствуСт.
  • ΠŸΡƒΡΡ‚ΡŒ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ прямыС Π·Π°Π΄Π°Π½Ρ‹ ΠΎΠ±Ρ‰ΠΈΠΌΠΈ уравнСниями:J1 Β· x + K1 Β· y + L1 Β· z = 0;J2 Β· x + K2 Β· y + L2 Β· z = 0.
  • Π—Π΄Π΅ΡΡŒ коэффициСнты J, K, L – это ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠΠΎΡ€ΠΌΠ°Π»ΡŒ – это Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, пСрпСндикулярный ΠΊ прямой.
  • ΠšΠΎΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Π² Ρ‚Π°ΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅:cosΞ» = (J1Β·J2 + K1Β·K2 + L1Β·L2) / √ [(J1)Β² + (K1)Β² + (L1)Β²] Β· [(J2)Β² + (K2)Β² + (L2)Β²].
  • ΠŸΡ€ΡΠΌΡ‹Π΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны Π² Ρ‚ΠΎΠΌ случаС, Ссли Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹. Π’ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅, соотвСтствСнно, это условиС выглядит Ρ‚Π°ΠΊ:J1Β·J2 + K1Β·K2 + L1Β·L2 = 0.
  • ΠŸΡ€ΡΠΌΡ‹Π΅ Π½Π° плоскости, Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ ΠΎΠ±Ρ‰ΠΈΠΌΠΈ уравнСниями, пСрпСндикулярны, ΠΊΠΎΠ³Π΄Π° J1Β·J2 + K1Β·K2 = 0.

completerepair.ru

Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ прямой, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ это Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π° плоскости. Π’ пространствС Ρ‚Π°ΠΊΠΈΡ… прямых ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ бСсконСчноС мноТСство.
ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π·Π°Π΄Π°Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ, которая Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ΡŒ прямой, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°Ρ‚ΡŒ Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²:

  1. ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой, пСрпСндикулярно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ получСнная прямая;
  2. ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ прямой;
  3. ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой.

ВсС эти ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· уравнСния прямой, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄Π°Π½Π½ΠΎΠΉ Π² условии Π·Π°Π΄Π°Ρ‡ΠΈ.
Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€.
Β 
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1.
Боставим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой Π½Π° плоскости, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ (17; β€”19) пСрпСндикулярно прямой .
Β 
РСшСниС.
ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой:

Β  Β 

ΠŸΡ€ΡΠΌΠ°Ρ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΡ‹ ΠΈΡ‰Π΅ΠΌ, ΠΈ прямая, которая Π·Π°Π΄Π°Π½Π° ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, β€” пСрпСндикулярны. БоотвСтствСнно, Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой Π±ΡƒΠ΄Π΅Ρ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ искомой прямой.
Боставим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, Ссли извСстны ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ:

Β  Β 

Β  Β 

Β 
ΠžΡ‚Π²Π΅Ρ‚. .
Β 

ru.solverbook.com

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *