С1 ГИА по математике — сокращение дробей.
2014-07-06 | Автор: Анна
Задания этого типа – совсем несложные, если вы знаете правила работы со степенями – то есть свойства степени. Если что-то оказалось подзабыто – ничего страшного, как раз и повторим.
Свойства степени:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Примеры:
1. Сократите дробь:
Чтобы решить пример такого типа, надо разложить основания степеней на “кирпичики” – найти такие числа, которые присутствовали бы и в числителе, и в знаменателе, и представить все в виде степеней этих чисел. В данном случае это числа 2 и 3: , .
Тогда:
Ответ: 12
2. Сократите дробь:
Решение:
Ответ: 200
3. Сократите дробь:
Решение:
Ответ: 33
Теперь разберем задание, в котором степени представлены в буквенном виде:
4. Сократите дробь:
Решение:
Ответ: 0,1 (обязательно через запятую)
5. Сократите дробь:
В этом примере можно приводить все как к степени двойки, так и к степени четверки:
Решение:
Ответ: 0,25
6. Сократите дробь:
Сначала преобразуем суммы и разности в степенях:
Решение:
Ответ: 0,08
easy-physic.ru
Дробная степень числа
Дробный показатель
Число с дробным показателем степени равно корню, с показателем равным знаменателю и подкоренным числом в степени равной числителю.
Чтобы разобраться, почему число в дробной степени равно корню, надо вспомнить правило извлечения корня из степени:
Чтобы извлечь корень из степени, надо показатель степени разделить на показатель корня:
Следовательно, если показатель степени не делится на показатель корня, то получается дробная степень:
Поэтому извлечение корня всегда может быть заменено возведением в степень.
Действия над степенями с дробными показателями
Действия над степенями с дробными показателями совершаются по тем же правилам, которые установлены для степеней с целым показателем.
При доказательстве этого положения, будем сначала предполагать, что члены дробей: и , служащих показателями степеней, положительны.
В частном случае n или q могут равняться единице.
При умножении дробный степеней с одинаковыми основаниями их показатели складываются:
При делении дробных степеней с одинаковыми основаниями из показателя делимого вычитается показатель делителя:
Чтобы возвести степень в другую степень в случае дробных показателей, достаточно перемножить показатели степеней:
Чтобы извлечь корень из дробной степени, достаточно показатель степени разделить на показатель корня:
Правила действий применимы не только к положительным дробным показателям, но и к отрицательным.
naobumium.info
Сокращение алгебраических дробей | Алгебра
Сокращение алгебраических (рациональных) дробей основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.
Сокращать можно только множители!
Члены многочленов сокращать нельзя!
Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе, нужно предварительно разложить на множители.
Рассмотрим примеры сокращения дробей.
В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.
Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36 это — 12. После сокращения от 24 остается 2, от 36 — 3.
Степени сокращаем на степень с наименьшим показателем. Сократить дробь — значит, разделить числитель и знаменатель на один и тот же делитель, а при делении степеней показатели вычитаем.
a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.
b и b сокращаем на b, полученные в результате единицы не пишем.
c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ — единица (ее не пишем). Таким образом,
Числитель и знаменатель данной алгебраической дроби — многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо многочлены разложить на множители. В числителе есть общий множитель 4x. Выносим его за скобки:
И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе — 1. По 1 свойству алгебраических дробей, дробь равна 4x.
Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.
В числителе — полный квадрат суммы, в знаменателе — разность квадратов. После разложения по формулам сокращенного умножения получаем:
Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):
В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе — формула разности кубов:
В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:
Многочлен в числителе состоит из 4 слагаемых. Группируем первое слагаемое со вторым, третье — с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:
В числителе вынесем за скобки общий множитель (x+2):
Сокращаем дробь на (x+2):
Сокращать можем только множители! Чтобы сократить данную дробь, нужно стоящие в числителе и знаменателе многочлены разложить на множители. В числителе общий множитель a³, в знаменателе — a⁵. Вынесем их за скобки:
Сокращаем дробь на общий делитель (1+a):
А как сокращать дроби вида
в которых стоящие в числителе и знаменателе выражения отличаются только знаками?
Примеры сокращения таких дробей мы рассмотрим в следующий раз.
www.algebraclass.ru
Умножение дробей. Возведение дроби в степень
Для начала давайте вспомним правило умножения обыкновенных дробей.
Для того чтобы умножить дробь на дробь, надо числитель умножить на числитель, а знаменатель на знаменатель и первое произведение записать в числителе новой дроби, второе – в знаменателе.
Например
Аналогичным образом происходит умножение рациональных дробей. Давайте докажем, что это правило на самом деле действует при умножении рациональных дробей.
Иначе говоря, докажем, что произведение двух рациональных дробей тождественно равно дроби, у которой числитель равен произведению числителей, а знаменатель – произведению знаменателей перемножаемых дробей при любых допустимых значениях переменных, кроме b равное нулю и d равное нулю.
Получили, что равенство верно при любых допустимых значениях переменных, т.е. является тождеством.
Правило умножения рациональных дробей
Чтобы умножить дробь на дробь, нужно перемножить их числители и перемножить их знаменатели и первое произведение записать числителем, а второе – знаменателем дроби.
В буквенном виде это правило записывают так:
Это правило выполняется и когда произведение трёх и более рациональных дробей.
Прежде чем выполнять умножение рациональных дробей, полезно их числители и знаменатели разложить на множители. Это облегчит сокращение той рациональной дроби, которая получится в результате умножения.
Пример 1: умножить дроби.
Решение:
Пример 2: умножить дроби.
Решение:
Пример 3: Представить произведение дробей в виде рациональной дроби.
Решение
:Пример 4: выполнить умножение.
Решение:
Теперь рассмотрим, как выполняется возведение рациональной дроби в степень.
Проверим это равенство на конкретных примерах.
Правило возведения рациональной дроби в степень:
Чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе, а второй в знаменателе дроби.
Пример 5: возвести в третью степень дробь.
Пример 6: возвести во вторую степень дробь.
Пример 7:
Итоги
Чтобы умножить дробь на дробь, нужно перемножить их числители и перемножить их знаменатели и первое произведение записать числителем, а второе – знаменателем
Чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе, а второй в знаменателе дроби.
videouroki.net
Возведение дроби в степень: отрицательная, буквенная, со степенью
Дробь представляет собой отношение числителя к знаменателю, причём знаменатель не должен равняться нулю, а числитель может быть любой.
При возведении любой дроби в произвольную степень нужно возводить отдельно числитель и знаменатель дроби в эту степень, после чего мы должны эти степени сосчитать и таким образом получим дробь, возведённую в степень.
Например:
(2/7)^2 = 2^2/7^2 = 4/49
(2 / 3)^3 = (2 / 3) · (2 / 3) · (2 / 3) = 2^3 / 3^3
Отрицательная степень
Если мы имеем дело с отрицательной степенью, то мы должны сначала “Перевернуть дробь”, а уж потом возводить её в степень по правилу написанному выше.
(2/7)^(-2) = (7/2)^2 = 7^2/2^2
Буквенная степень
При работе с буквенными значениями такими как “x” и “у” возведение в степень происходит по тому же правилу что и раньше.
Также мы можем проверить себя возведя дробь ½ в 3 степень в результате чего мы получим ½ * ½ * ½ = 1/8 что в сущности тоже самое что и
(1/2)^3 = 1/8.
Буквенное возведение в степень x^y
Умножение и деление дробей со степенями
Если мы умножаем степени с одинаковыми основаниями, то само основание остается прежним, а показатели степеней мы складываем. Если же мы делим степени с одинаковым основаниями, тогда основание степени также остаётся прежним, а показатели степеней вычитаются.
Это очень легко можно показать на примере:
(3^23)*(3^8)=3^(23+8) = 3^31
(2^4)/(2^3) = 2^(4-3) = 2^1 = 2
Тоже самое мы могли бы получить если бы просто возвели в степень 3 и 4 отдельно знаменатель и числитель соответственно.
Возведение дроби со степенью в еще одну степень
При возведении дроби, которая уже находится в степени, ещё раз в степень мы должны сначало сделать внутреннее возведение в степень после чего переходить в во внешнюю часть возведения в степень. Другими словами мы можем просто напросто перемножить эти степени и возвести дробь в полученную степень.
Например:
(2^4)^2 = 2^ 4·2 = 2^8
Возведение в единицу, квадратный корень
Также нельзя забывать что возведение абсолютно любой дроби в нулевую степень даст нам 1, так же как и любое другое число при возведении в степень равную нулю мы получим 1.
Обычный квадратный корень также можно представить в виде степени дроби
Квадратный корень 3 = 3^(1/2)
Если же мы имеем дело с квадратным корнем под которым находится дробь, то мы можем представить эту дробь в числителе которой будет находится квадратный корень 2 – степени ( т.к. квадратный корень)
А в знаменателе также будет находится квадратный корень , т.е. другими словами мы будем видеть отношение двух корней, это может пригодится для решения некоторых задач и примеров.
Если мы возведём дробь, которая находится под квадратным корнем во вторую степень то мы получим ту же самую дробь.
Произведение двух дробей под одной степенью будет равнятся произведению этих двух дробей, каждая в отдельности из которых будет под своей степенью.
Помните: на ноль делить нельзя!
Также не стоит забывать об очень важном замечании для дроби такой как знаменатель не должен равняться нулю. В дальнейшем во многих уравнениях мы будем использовать это ограничение, называемое ОДЗ – область допустимых значений
При сравнении двух дробей с одним и тем же основанием но разными степенями, большее будет являться та дробь у которой степень будет больше, а меньшей та у которой степень меньше, при равенстве не только оснований, но и степеней, дробь считается одинаковой.
Примеры:
например: 14^3.8 / 14^(-0.2) = 14^(3.8 -0.2) = 139.6
6^(1,77) · 6^( — 0,75) = 6^(1,77+( — 0,75)) = 79,7 – 1,3 = 78,6
Нужна помощь в учебе?
Предыдущая тема: Умножение и деление дробей: сокращение дробей + полезные советы
Следующая тема:   Преобразование рациональных выражений: способы преобразований и примеры
Все неприличные комментарии будут удаляться.
www.nado5.ru