Калькулятор степеней — возвести в степень онлайн
Калькулятор помогает быстро возвести число в степень онлайн. Основанием степени могут быть любые числа (как целые, так и вещественные). Показатель степени также может быть целым или вещественным, и также как положительным, так и отрицательным. Следует помнить, что для отрицательных чисел возведение в нецелую степень не определено и потому калькулятор сообщит об ошибке в случае, если вы всё же попытаетесь это выполнить.
Что такое натуральная степень числа?
Число p
называют n
-ой степенью числа a
, если p
равно числу a
, умноженному само на себя n
раз: p = an = a·...·a
n
— называется показателем степени, а число a
— основанием степени.
Как возвести число в натуральную степень?
Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:
Пример 1. Возвести число три в четвёртую степень. То есть необходимо вычислить 3
Решение: как было сказано выше, 34
= 3·3·3·3
= 81
.
Ответ: 34 = 81
.
Пример 2. Возвести число пять в пятую степень. То есть необходимо вычислить 55
Решение: аналогично, 55
= 5·5·5·5·5
= 3125
.
Ответ: 55 = 3125
.
Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n
раз.
Что такое отрицательная степень числа?
Отрицательная степень-n
числа a
— это единица, поделённая на a
в степени n
: a-n = .При этом отрицательная степень существует только для отличных от нуля чисел, так как в противном случае происходило бы деление на ноль.
Как возвести число в целую отрицательную степень?
Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.
Пример 1. Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2-4
Решение: как было сказано выше,2-4 = = = 0.0625
.Ответ: 2-4 = 0.0625
.
programforyou.ru
показатель и основание степени. Онлайн калькулятор
Степень с натуральным показателем
Произведение, в котором все множители одинаковые, можно записывать короче:
4 · 4 · 4 = 43
Выражение 43 (а также результат его вычисления) называется степенью.
Степень – это краткая запись произведения одинаковых сомножителей.
Число, показывающее количество одинаковых сомножителей, называют показателем степени. Возводимое в степень число называют основанием степени:
Запись 43 читается так: четыре в степени три
или четыре в третьей степени
.
Степенью числа a с натуральным показателем n (где n > 1) называют произведение n множителей, каждый из которых равен a.
Пример 1. Вычислим 24:
Пример 2. Вычислим 37:
Если какое-нибудь число берётся сомножителем 2 раза, то произведение называется второй степенью этого числа, если какое-нибудь число берётся сомножителем 3 раза, то произведение называется третьей степенью этого числа и т. д. Например, произведение 16 из первого примера – это четвёртая степень числа 2.
Первой степенью числа называют само это число. Например, 21 = 2, 51 = 5, 1001 = 100, т. е. первая степень любого числа равна самому числу:
a1 = a
Вторую степень числа называют иначе квадратом числа. Например, запись 52 читают пять в квадрате
. Третью степень числа называют иначе кубом числа. Например, запись 53 читают пять в кубе
. Эти названия заимствованы из геометрии.
Возведение в степень – это вычисление значения степени. Например, если стоит задача вычислить значение степени 35
, то её можно переформулировать так: возвести число 3 в пятую степень
.
Пример: вычислить значение степени 35.
Решение: данная степень равна произведению: 3 · 3 · 3 · 3 · 3. Перемножаем сомножители и получаем ответ: 243.
Ответ: 35 = 243.
Степень часто используют для записи очень больших или очень малых чисел. Например, скорость света, которая примерно равна 300 000 000 (триста миллионов) метров в секунду удобнее записывать так: 3 · 10
Степень можно использовать для представления разрядной единицы в виде степени:
399 = 3 · 100 + 9 · 10 + 9 · 1 = 3 · 102 + 9 · 101 + 9 · 1
Также степень часто используют в записи разложения числа на простые множители:
1000 = 23 · 53
Калькулятор возведения в степень
Данный калькулятор поможет вам выполнить возведение в степень. Просто введите основание с показателем степени и нажмите кнопку Вычислить
.
naobumium.info
Калькулятор степеней онлайн: формула, примеры с решением
Возведение в степень — это арифметическая операция повторяющегося умножения. Если требуется перемножить число n-ное количество раз, то достаточно возвести его в n-ную степень.
Основные действия со степенями
В первую очередь степень — это повторяющееся умножение. Число 13 4 — это 13 × 13 × 13 × 13, где перемножаются четыре одинаковых сомножителя. Если умножить 134 на 132, то мы получим (13 × 13 × 13 × 13) × (13 × 13), что логично превращается в 136. Это и есть первое правило возведения в степень, которое гласит: при умножении чисел, возведенных в степень, их показатели суммируются. Математически это записывается как:
am × an = a(m+n).
Если разделить 134 на 132, то нам потребуется вычислить дробь вида:
(13 × 13 × 13 × 13) / (13 × 13).
Мы можем просто сократить числа в числителе и знаменателе, и в результате останется 13 × 13 = 132. Очевидно, деление чисел, возведенных в степень, соответствует вычитанию их показателей. Второе правило действий со степенями математически выглядит так:
am / an = a(m – n).
Теперь давайте возведем 114 в куб, то есть в третью степень. Для этого нам потребуется вычислить выражение (11 × 11 × 11 × 11) × (11 × 11 × 11 × 11) × (11 × 11 × 11 × 11). Получилось 12 сомножителей, следовательно, при возведении в n-ную степень числа в степени m, показатели перемножаются. Третье правило записывается так:
(am)n = a(m × n).
Это основные правила работы со степенными выражениями. Однако число можно возвести в отрицательную степень, дробную и нулевую. Какой результат даст выражение 150? Давайте воспользуемся вторым правилом действий степенями и попробуем разделить 154 на 154, что запишется как дробь:
154 / 154.
Очевидно, что в числителе и знаменателе стоят одни и те же числа, а когда число делится само на себя, оно превращается в единицу. Но согласно правилу действий со степенными числами это будет эквивалентно 150. Следовательно:
154 / 154 = 150 = 1.
Таким образом, четвертое правило гласит, что любое положительное число в нулевой степени равняется единице. Выглядит это правило так:
a0 = 1.
При помощи второго правила легко объяснить и работу с отрицательными степенями. К примеру, давайте разделим 82 на 84 и запишем выражение в виде дроби.
(8 × 8) / (8 × 8 × 8 × 8).
Мы можем сократить две восьмерки в числителе и знаменателе и преобразовать дробь в 1 / (8 × 8). Но согласно правилу в ответе мы должны получить 8-2. В знаменателе у нас как раз стоит восьмерка в квадрате. Таким образом:
a-m = 1 / am
При этом для значения -1 правило трансформируется в элегантную формулу:
a-1 = 1 / a.
И последнее правило, которое пригодится вам при работе со степенными функциями, гласит о дробных степенях. Что мы можем сделать с выражением 7(1/2). Очевидно, что возвести его в квадрат, и тогда по третьему правилу в результате у нас останется только семерка. Степень 1/2 — это извлечение квадратного корня, так как при возведении его в квадрат мы получаем целое число. Степень 1/3 соответствует извлечению кубического корня, но как быть с показателем 2/3? Логично, что это кубический корень из числа, возведенного в квадрат. Последнее правило гласит, что знаменатель дробного показателя означает извлечение корня, а числитель — возведение в степень. Математически это выглядит как:
a(m/n) есть корень n-ной степени из am.
Теперь вы знаете, как проводить любые арифметические операции со степенными выражениями.
Вы можете использовать наш калькулятор для вычисления степенных функций. Программа позволяет определить основание, показатель и результат операции. Кроме того, калькулятор сопровождается иллюстрацией графика функций: параболы, кубической параболы и параболы в n-ной степени. Рассмотрим пару примеров.
Примеры из реальной жизни
Депозит в банке
Если мы положим на банковский депозит $1 000 под годовую ставку в размере 9% годовых, то сколько денег на счету будет через 20 лет? Рост с течением времени рассчитываются по экспоненциальной формуле вида:
Рост = a × e(kt),
где a – начальное значение, e – константа, равная 2,718; k – коэффициент роста; t – время.
Для решения банковской задачи нам потребуется возвести 2,718 в степень, равную 20 × 0,09 = 1,8. Воспользуемся нашим калькулятором и введем в ячейку «Число, x =» значение 2,718, а в ячейку «Степень, n =» значение 1,8. Мы получим ответ, равный 6,049. Теперь, для подсчета суммы на банковском счету нам необходимо умножить начальное значение $1 000 на прирост в размере 6,049. В итоге, через 20 лет на депозите будет $6 049.
Школьная задача
Пусть в школьной задаче требуется построить график функции y = x2,5. Это алгебраическая задача, для решения которой требуется задаться тремя значениями «x» и вычислить соответствующие ему значения «y». После чего по найденным точкам построить график функции. Введите в ячейку «Степень, n =» значение 2,5. После этого последовательно рассчитайте значения «y», вводя в «Число, x =» аргументы 1, 2, 3. Вы получите соответствующие значения функции 1; 5,657; 15,588. Вам останется только нарисовать кривую по найденным точкам.
Заключение
Возведение в степень — арифметическая операция последовательного умножения. Степени имеют больше значение в прикладных науках, так как большинство реальных процессов описываются при помощи степенных функций. Используйте наш калькулятор для расчетов любых практических или школьных задач.
bbf.ru
Возведение в степень онлайн
Предлагаемый нами бесплатный калькулятор включает такую нужную для многих функцию, как калькулятор степеней. С его помощью выполнить возведение числа в степень проще простого, задайте выражение — получите результат. Калькулятор производит возведение в степень онлайн, как и любые другие функции, прямо на нашем сайте.
Как возвести число в степень в калькуляторе?
Возведение в степень — это действие умножения числа самого на себя n раз, где число xy — степень, x — основание степени, y=n — показатель степени. Чтобы возвести в степень на калькуляторе, используйте соответствующие кнопки на панели управления. Если вам нужна более подробная информация по работе с цифровой панелью калькулятора, перейдите на страницу кнопки онлайн калькулятора.
Функция возведения в степень в калькуляторе представлена пятью кнопками: возведение в квадрат, возведение в куб, возведение в n степень произвольного числа, возведение в степень основания равного 10-ти и возведение в степень экспоненты.
Кнопки калькулятора, отвечающие за возведение в степень:
Возведение в квадрат и в куб
Первой степенью числа является само число. Любое число в нулевой степени равно 1. Возведение в квадрат — вторая степень, куб — третья. Квадрат числа всегда имеет положительное значение, за исключением квадрата комплексных чисел.
Эти кнопки калькулятора упрощают ввод операции: х2 — возведение в квадрат, х3 — в куб. Одним нажатием в поле ввода вставляется запись вида ^2 или ^3.
Пример возведение в квадрат и куб:
Возведение в n степень
Используйте эту кнопку, когда нужно рассчитать какое-либо число в степени n. Кнопка xy выводит в строке ввода выражения знак степени (циркумфлекс).
Наш онлайн калькулятор возведение в степень обозначает обычной «двухэтажной» записью на дисплее, а вот в поле ввода выражения нужно, конечно, использовать циркумфлекс.
Пример возведение чисел в степень:
Вычисление степени числа 10
Нажатие этой кнопки вставляет в поле ввода запись вида: 10^(), т.е. основанием степени записывается число 10. Удобно применять, когда нужно написать возведение в какую-нибудь степень именно числа 10.
Пример, как найти степень числа 10:
Экспонента в степени
Нажав на кнопку, увидите в строке запись exp(). Чтобы посчитать число е в степени, нужно возвести число Эйлера в степень ex = exp(x). Кому интересно знать, чему равно число е: его значение 2.71828182845905.
Пример, как возвести е в степень:
Возведение в дробную степень
Допустим, нас интересует дробная степень числа xy1/y2. Так как возведение в степень — действие, обратное к извлечению корня, расчёт сводится к нахождению корня степени y2 из числа x в степени y1. Если значение y2 чётное, то дробную степень можно вычислить только при положительном основании, так как корень отрицательного числа не существует и калькулятор в подобной ситуации выдаст вам ошибку!
При возведении в дробную степень не забывайте закрывать основание в скобки, иначе знаменатель дроби в показателе степени уйдет в знаменатель основания!
Этот пример показывает, как возвести в дробную степень на калькуляторе:
Наш онлайн калькулятор позволяет возвести как в положительную, так и в отрицательную степень. При отрицательном значении показателя, основание должно принять вид (1/x), другими словами, числитель и знаменатель основания степени должны поменяться местами и только после этого можно начинать возведение. Калькулятор позволяет возвести число в отрицательную степень автоматически, опуская все промежуточные преобразования и выдавая сразу окончательный ответ.
При возведении в отрицательную степень всевозможных функций, в том числе тригонометрических, онлайн калькулятор автоматически учитывает их четность/нечетность по правилу знаков.
Этот пример показывает, как возвести в отрицательную степень на калькуляторе:
Дробное число в степени калькулятор тоже рассчитает.
Возведение дроби в степень с помощью калькулятора:
В калькуляторе можно рассчитать и корень в степени.
Возведение корня в степень с помощью калькулятора:
Все функции нашего бесплатного калькулятора собраны в одном разделе. Функции онлайн калькулятора >>
Возведение в степень онлайн was last modified: Март 3rd, 2016 by Admin
compuzilla.ru
Возведение в степень и извлечение корня из числа онлайн.
Корень нечётной степени из положительного числа
В результате вычисления корня нечётной степени из положительного числа будет положительное число: .
Пример Вычислим корни нечётной степени из 8, 27, 125, 243
Корни 3 степени также называют кубическими корнями.
В результате вычисления корней 5-ой степени из положительных чисел, получили также положительные числа.
Корень нечётной степени из отрицательного числа
В результате вычисления корня нечётной степени из отрицательного числа будет отрицательное число: .
Пример Найдем корни 3 и 5 степеней из отрицательных чисел.
Корень четной степени из положительного числа
Корень чётной степени из положительного числа имеет два значения, положительное и отрицательное: .
Пример Вычислим корни 2 и 4 степени.
Корень 2-й степени называют квадратный корнем.
Корень четной степени из отрицательного числа
Корень четной степени из отрицательного числа не существует для вещественных чисел.
Корень любой степени из нуля
calcs.su
Возведение в степень — онлайн калькулятор, секретные примеры, игры
Возведение в степень – операция, тесно связанная с умножением, это операция – результат многократного умножения какого-либо числа на само себя. Изобразим формулой: a1 * a2 * … * an = an.
Например, а=2, n=3: 2 * 2 * 2=2^3 = 8.
Вообще возведение в степень часто используется в различных формулах по математике и физике. Эта функция имеет более научное предназначение, чем четыре основные: Сложение, Вычитание, Умножение, Деление.
Возведение числа в степень
Возведение числа в степень – операция не сложная. Оно связано с умножением подобно связи умножения и сложения. Запись an – краткая запись n-ого количество чисел «а» умноженных друг на друга.
Рассмотри возведение в степень на самых простых примерах, переходя к сложным.
Например, 42. 42 = 4 * 4 = 16. Четыре в квадрате (во второй степени) равно шестнадцати. Если вам не понятно умножение 4 * 4, то читайте нашу стать об умножении.
Рассмотрим еще одни пример: 5^3. 5^3 = 5 * 5 * 5 = 25 * 5 = 125. Пять в кубе (в третьей степени) равно ста двадцати пяти.
Еще один пример: 9^3. 9^3 = 9 * 9 * 9 = 81 * 9 = 729. Девять в кубе равняется семи сотням двадцати девяти.
Формулы возведения в степень
Чтобы грамотно возводить в степень нужно помнить и знать формулы, указанные ниже. В этом нет ничего сверх естественного, главное понять суть и тогда они не только запомнятся, но и покажутся легкими.
Возведение одночлена в степень
Что из себя представляет одночлен? Это произведение чисел и переменных в любом количестве. Например, двух – одночлен. И вот именно о возведении в степень таких одночленов данная статья.
Пользуясь формулами возведения в степень вычислить возведение одночлена в степень будет не трудно.
Например, (3x^2y^3)^2= 3^2 * x^2 * 2 * y^(3 * 2) = 9x^4y^6; Если возводить одночлен в степень, то в степень возводится каждая составная одночлена.
Возводя в степень переменную уже имеющую степень, то степени перемножаются. Например, (x^2)^3 = x^(2 * 3) = x^6;
Возведение в отрицательную степень
Отрицательная степень – обратное число. Что такое обратное число? Любому числу Х обратным будет 1/X. То есть Х-1=1/X. Это и есть суть отрицательной степени.
Рассмотрим пример (3Y)^-3:
(3Y)^-3 = 1/(27Y^3).
Почему так? Так как в степени имеется минус, то просто переносим в знаменатель данное выражение, а затем возводим в его в третью степень. Просто не так ли?
Возведение в дробную степень
Начнем рассмотрение вопрос на конкретном примере. 43/2. Что означает степень 3/2? 3 – числитель, означает возведение числа (в данном случае 4) в куб. Число 2 – знаменатель, это извлечение корня второй степени из числа (в данном случае 4).
Тогда получаем квадратный корень из 43 = 2^3 = 8. Ответ: 8.
Итак, знаменатель дробной степени может быть, как 3, так и 4 и до бесконечности любым числом и это число определяет степень квадратного корня, извлекаемого из заданного числа. Конечно же, знаменатель не может быть равным нулю.
Возведение корня в степень
Если корень возводится в степень, равной степени самого корня, то ответом будет подкоренное выражение. Например, (√х)2 = х. И так в любом случае равенства степени корня и степени возведения корня.
Если (√x)^4. То (√x)^4=x^2. Чтобы проверить решение переведем выражение в выражение с дробной степенью. Так как корень квадратный, то знаменатель равен 2. А если корень возводится в четвертую степень, то числитель 4. Получаем 4/2=2. Ответ: x = 2.
В любом случае лучший вариант просто перевести выражение в выражение с дробной степенью. Если не будет сокращаться дробь, значит такой ответ и будет, при условии, что корень из заданного числа не выделяется.
Возведение в степень комплексного числа
Что такое комплексное число? Комплексное число – выражение, имеющее формулу a + b * i; a, b – действительные числа. i – число, которое при возведение в квадрат дает число -1.
i^2=-1.
Рассмотрим пример. (2 + 3i)^2.
(2 + 3i)^2 = 22 +2 * 2 * 3i +(3i)^2 = 4+12i^-9=-5+12i.
Запишитесь на курс «Ускоряем устный счет, НЕ ментальная арифметика», чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.
Возведение в степень онлайн
С помощью нашего калькулятора, Вы сможете посчитать возведение числа в степень:
Загрузка калькулятора…
Возведение в степень 7 класс
Возведение в степень начинают проходить школьники только в седьмом классе.
Возведение в степень – операция, тесно связанная с умножением, это операция – результат многократного умножения какого-либо числа на само себя. Изобразим формулой: a1 * a2 * … * an=an.
Например, а=2, n=3: 2 * 2 * 2 = 2^3 = 8.
Примеры для решения:
Возведение в степень презентация
Презентация по возведению в степень, рассчитанную на семиклассников. Презентация может разъяснить некоторые непонятные моменты, но, вероятно, таких моментов не будет благодаря нашей статье.
Скачать презентацию
Итог
Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше — записывайтесь на наш курс: Ускоряем устный счет — НЕ ментальная арифметика.
Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.
cepia.ru
Возведение в степень | Формулы с примерами
Формула возведения в степень
Степенью числа a с показателем n, называется произведение n сомножителей, каждый из которых равен a.
a — действительное число,
n — натуральное число.
Калькулятор возведения в степень онлайн
Правило возведения в степень
Степень показывает количество раз, которое некое число умножается на себя. Она обозначается малой цифрой (показателем степени) справа вверху от основного числа (основани степени).
Возведение в степень — действие нахождения степени:
Умножение числа на себя один раз называется возведением числа в квадрат.
Умножение числа на себя два раза называется возведением в куб.
Свойства возведения в степень
1. Если отрицательно число возвести в четную степень, то получим положительное число.
Пример
(-2)22 > 0;
(-3)34 > 0; (-5)88 > 0. |
2.Если отрицательное число возвести в нечетную степень, то получим отрицательное число.
! Возведение в степень — действие третьей ступени, его выполняют перед действиями второй ступени (умножением и делением) и первой ступени (сложением и вычитанем).
Возведение в степень примеры
1. x3 = x • x • x ;
a = x ;
2. k5 = k • k • k • k • k ;
a = k ;
3. 181 = 18 ;
a = 18;
4. 118 = 1;
a = 1 ;
5. 0 7 = 0;
a = 0;
6. 53 = 5 • 5 • 5 = 125 ;
a = 5 ;
7. 74 = 7 • 7 • 7 • 7 = 2 401 ;
a = 5 ;
formula-xyz.ru