Найти длину диагонали параллелограмма – StackPath

Формулы диагонали параллелограмма

 

Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

 

1. Длина диагонали параллелограмма через стороны, известную диагональ и угол.

 

a, b — стороны параллелограмма

D большая диагональ

d меньшая диагональ

αβ — углы параллелограмма

 

Формулы диагонали через стороны и углы параллелограмма (по теореме косинусов), (D, d):

 

 

Формулы диагонали через стороны и известную диагональ (по формуле- сумма квадратов диагоналей), (Dd

):

 

 

2. Длина диагонали параллелограмма через площадь, известную диагональ и угол.

 

 

D большая диагональ

d меньшая диагональ

α β — углы между диагоналями

S — площадь параллелограмма

 

Формулы диагонали через площадь, известную диагональ и угол между диагоналями, (Dd):

 

 

 



 

 

Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии

zdesformula.ru

Как найти длину диагонали параллелограмма

Результатом соединения в четырехугольнике противоположных друг другу вершин является построение его диагоналей. Существует общая формула, связывающая длины этих отрезков с другими измерениями фигуры. По ней, в частности, можно найти длину
диагонали
параллелограмма.

Инструкция

  • Постройте параллелограмм, выбрав при необходимости масштаб так, чтобы все известные измерения максимально соответствовали начальным данным. Хорошее понимание условий задачи и построение наглядного графика – залог быстроты решения. Помните, что в этой фигуре стороны попарно параллельны и равны.
  • Проведите обе диагонали, соединив противоположные вершины. Эти отрезки обладают несколькими свойствами: они пересекаются в середине своих длин, а любой из них делит фигуру на два симметрично одинаковых треугольника. Длины диагоналей параллелограмма связаны формулой суммы квадратов:d1² + d2² = 2•(а² + b²), где а и b – длина и ширина.
  • Очевидно, что знать только длины основных измерений параллелограмма недостаточно для того, чтобы вычислить хотя бы одну диагональ. Рассмотрим задачу, в которой заданы стороны фигуры: а = 5 и b = 9. Также известно, что одна из диагоналей больше другой в 2 раза.
  • Составьте два уравнения с двумя неизвестными:d1 = 2•d2d1² + d2² = 2•(а² + b²) = 212.
  • Подставьте d1 из первого уравнения во второе:5•d2² = 212 → d2 ≈ 6,5;Найдите длину первой диагонали:d1 = 13.
  • Частными случаями параллелограмма являются прямоугольник, квадрат и ромб. Диагонали первых двух фигур представляют собой равные отрезки, следовательно, формулу можно переписать в более простом виде:2•d² = 2•(а² + b²) → d = √(а² + b²), где а и b – длина и ширина прямоугольника;2•d² = 2•2•а² → d = √2•а², где а – сторона квадрата.
  • Длины диагоналей ромба – не равные величины, однако равны его стороны. Исходя из этого, формулу тоже можно упростить:d1² + d2² = 4•а².
  • Эти три формулы можно вывести также из отдельного рассмотрения треугольников, на которые фигуры делятся диагоналями. Они прямоугольные, значит, можно применить теорему Пифагора. Диагонали – это гипотенузы, катеты – стороны четырехугольников.

completerepair.ru

Диагонали и признаки параллелограмма [wiki.eduVdom.com]

Теорема 1. Свойство диагоналей параллелограмма. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Рис.2

Следующая теорема выражает признаки параллелограмма.

Теорема 2. Если в выпуклом четырехугольнике:

  1. противоположные стороны равны между собой, или

  2. две противоположные стороны равны и параллельны, или

  3. диагонали точкой пересечения делятся пополам, то такой четырехугольник — параллелограмм.

Доказательство проведем для одного из этих признаков, например для признака 1.

Пусть ABCD — четырехугольник, у которого АВ = CD, ВС = AD (рис.1).

Рис.1

Докажем, что ABCD — параллелограмм, т. е. что АВ || CD, ВС || AD. Проведем диагональ АС и получим два треугольника ABC и ADC. Так как АС — общая сторона, АВ = CD, ВС = AD (по условию), то Δ ABC = Δ ADC. Поэтому ∠ 1 = ∠ 2, ∠ 4 = ∠ 3, а из равенства накрест лежащих углов следует параллельность прямых: ВС || AD, АВ || CD.



Пример 1. Диагональ BD параллелограмма ABCD (рис. 2) равна 8 см. Найти длину медианы к стороне АС в треугольнике ABC.

Рис.2

Решение. Согласно теореме 1 диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. Поэтому ВО — медиана треугольника ABC к стороне АС и ВО = 1/2 * BD = 1/2 * 8 = 4 (см).

www.wiki.eduvdom.com

Как найти стороны параллелограмма

Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

 

1. Формулы длины сторон через диагонали и угол между ними.

 

a, b — стороны параллелограмма

D большая диагональ

d меньшая диагональ

α, β — углы между диагоналями

 

Формулы сторон параллелограмма через диагонали и угол между ними (по теореме косинусов), (a, b):

 

 

Формулы сторон параллелограмма через диагонали и сторону, (a, b):

 

Формулы сторон параллелограмма , (a, b):

 

 

2. Формулы длины сторон параллелограмма через высоту.

 

a, b — стороны параллелограмма

Hb высота на сторону b

Ha — высота на сторону a

α β — углы параллелограмма

 

Формулы сторон параллелограмма через высоту, (a, b):

 

 

3. Дополнительные, интересные формулы параллелограмма:

 

a, b — стороны параллелограмма

D большая диагональ

d меньшая диагональ

α — острый угол между диагоналями

 

Формула суммы квадратов диагоналей:

 

Формула разности квадратов сторон:

 

 



 

Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии

zdesformula.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *