Великие задачи математики – Великие проблемы математики на сайте Игоря Гаршина. Величайшие математические загадки

Содержание

Великие проблемы математики на сайте Игоря Гаршина. Величайшие математические загадки



Великие проблемы математики на сайте Игоря Гаршина. Величайшие математические загадки

Хорошая теория – самая практичная вещь на свете.

«Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы — логика и интуиция, анализ и конструкция, общность и конкретность…» (Р. Курант, Г. Роббинс. Что такое математика?)

Американский математик Джно Данциг, будучи аспирантом, опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно ему показалось сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил — 2 «нерешаемые» проблемы в статистике, над которыми бились многие ученые. [Неужели правда?]

В  течение тысячелетия математика породила 7 величайших загадок. 25 мая 2000 г. Институт математики Клея объявил о награде в $1 млн за решение каждой из этих главных математических проблем. Их обзорный список:

  1. Уравнение Навье-Стокса о турбулентных потоках, 1822 [гидроаэродинамика]. Решения этих уравнений неизвестны [эмпирические степенные функции-многочлены?], и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Это позволит существенно изменить способы проведения гидро- и аэродинамических расчетов. [Интегрирование криволинейных тензоров как матрицы роторов и дивергенций?].
  2. Гипотеза Римана, 1859 [теория чисел]. Считается, что распределение простых чисел среди натуральных не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.
  3. Гипотеза Пуанкаре, 1904 [топология или геометрия многомерных пространств]: всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере [т.е. 4-мерного тороида быть не может, а наша Вселенная — трехмерная сфера?].
  4. Гипотеза Ходжа, 1941 [алгебра, топология?]. В ХХ веке математики открыли мощный метод исследования формы сложных объектов — использование вместо самого объекта простых «кирпичиков», которые склеиваются между собой и образуют его подобие [разве это не есть «кубические интегралы»?]. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких «кирпичиков» и объектов.
  5. Теория Янга-Миллса [связь геометрии с квантовой физикой], 1954. Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц [!!!], написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий [!!]. Из уравнений Янга-Миллса
    следовало существование частиц, которые действительно наблюдались в лабораториях, поэтому теория Янга — Миллса принята большинством физиков. несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.
  6. Гипотеза Берча и Свиннертона-Дайера, 1960 [алгебра и теория чисел?]. Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x2 + y2 = z2. [Гипотеза Пьера Ферма — частный случай гипотезы Берча и Свиннертона-Дайера? А нельзя ли ее также доказать с помощью модальных функций?]
  7. Гипотеза Кука, 1971 [математическая логика и кибернетика?]: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки? Эта проблема — также одна из нерешенных задач
    логики
    и информатики. Ее решение революционно изменило бы основы криптографии [также как и доказательство гипотезы Римана — ниже].
  8. И ещё одна большая тайна в математике, восьмая — Гипотеза Эстерле-Массера, 1988? (также из теории чисел).

Разделы страницы о нерешённых проблемах математики:

Смотрите также о нерешённых проблемах физики.


  • Семь величайших загадок математики. Михаил Витебский
  • Приз в 1 миллион долларов за решение каждой из семи математических проблем.

Диофант Александрийский (3-й век) — древнегреческий математик. В основном труде «Арифметика» (сохранились 6 книг из 13) [ее любил штудировать Пьер Ферма] дал решение задач, приводящихся к т.н. диофантовым уравнениям (решения которых только в целых числах), и впервые ввел буквенную символику в алгебру.

Задачи по теории чисел принадлежат к области высшей арифметики.

Гипотеза Берча-Свиннертона-Дайера

Берч и Свиннертон-Дайер предпoложили, что числo решений опрeделяeтся значением связанной с уравнением дзета-функции в точке 1: если значение дзета-функции в точке 1 равно 0, то имеется бескoнечнoе число решeний, и наобopот, если не равно 0, то имеется только конечное число таких решений (например, доказательство отсутствия целых решений уравнения x

n + yn = zn [ВТФ]).

  • Проблемы 2000 года: Гипотеза Берча-Свиннертон-Дайера.
  • Ученые нашли решение древней математической задачи. Задача 1000-летней давности заключается в вычислении натурального числа, способного составлять площадь прямоугольного треугольника, стороны которого представлены выраженными рациональными числами. Значение площади такого треугольника и называется конгруэнтным. Наименьшее известное конгруэнтное число — 5 (длины сторон соответствующего ему треугольника — 3/2, 20/3 и 41/6). Потом следуют 6, 7, 13, 14, 15, 20 и так далее. Существует простое правило: если число s конгруэнтно, то конгруэнтным будет и число s?n2, где n — натуральное. Таким образом, основная сложность здесь — это именно поиск новых конгруэнтных чисел, свободных от квадратов. Возможное доказательство тесно связано с одной из открытых проблем современной математики — гипотезой Бёрча и Свиннертон-Дайера.

Гипотеза Римана и распределение простых чисел

Простые числа (те, которое делится без остатка только на единицу и на само себя) — это ключ к разрешению многих математических проблем, они также играют большую роль в криптографии (шифровании), благодаря чему интересуют не только математиков, но и военных, разведку и контрразведку. Первым проблему определения простых чисел поставил древнегреческий ученый Эратосфен примерно в 220 году до нашей эры, предложив один из путей определения простых чисел. С тех пор ученые постепенно продвигались вперед.

Знаменитая «Гипотеза Римана» была сформулирована немецким математиком Георгом Фридрихом Бернардом Риманом

в 1859 году. Согласно ей, характер распределения простых чисел может существенно отличаться от предполагаемого в настоящее время. Дело в том, что математикам до сих пор не удавалось обнаружить какой-либо системы в характере распределения простых чисел. Так, считается, что в окрестности целого числа х среднее расстояние между последовательными простыми числами пропорционально логарифму х. Тем не менее, уже давно известны так называемые парные простые числа (простые числа-близнецы, разность между которыми равна 2): 11 и 13, 29 и 31, 59 и 61. Иногда они образуют целые скопления, например 101, 103, 107, 109 и 113. У математиков давно существовало подозрение, что такие скопления существуют и в области очень больших простых чисел, однако ни доказать, ни опровергнуть это утверждение до сих пор не удавалось. Если такие «кластеры» будут найдены, стойкость криптографических ключей, используемых в настоящее время, может в одночасье оказаться под очень большим вопросом.

Математическое сообщество в полной мере оценило важность задачи — гипотеза Римана была признана одной из 7 важнейших научных проблем тысячелетия. Институт математики Clay в США предложил $1 млн. за ее доказательство либо опровержение. Преамбула с «Арбузного блога».

Великая теорема Ферма [частный случай гипотезы БСД?]

Статьи о Великой Теореме Ферма
  • Великая теорема Ферма.
Статьи математиков (любителей и профессионалов) с попыткой доказать ВТФ

Читайте также статью В.А. Белотелова и статьи в сборнике А.Ф. Рудыкина (помещены выше в разделе о проблеме распределения простых чисел).

  • Доказательство ВТФ Смолиным. И ряд статей с гипотезами и решениями по Великой Теореме.
  • Гипотеза П. Ферма или его Великая теорема? Рудыкин А. Ф. Zip [100K] | Word Doc [630K]. Автором в доступной форме изложено доказательство Великой теоремы Ферма. Доказательство основано на уравнении из книги: Gerhard Frey, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ. Saraviensis, Series Mathematicae 1 (1986), 1-40.
  • Статьи А.А. Назарова:
    1. Элементарное доказательство Великой теоремы Ферма и его обобщение — Zip. [8К] | Word Doc [40K]. Арону Рувимовичу Майзелису, школьному учителю, посвящается.
    2. Элементарное доказательство Великой теоремы Ферма для школьников старших классов — Word Doc [120K]. Доказательство ВТФ, которое доведено до школьного уровня. Доказательство основывается на геометрическом представлении натурального числа в его аксиоматическом определении. Центральным соотношением xn-1 + yn-1 – zn-1 = (x + y – z)n-1 дается обоснование справедливости доказательств из предыдущей статьи. Само предлагаемое доказательство, методически, может оказаться полезным для средней школы (6-9 классы) в качестве одного из приемов введения в комбинаторику и теорию групп. Имеется также самое краткое, на взгляд автора, доказательство ВТФ, 3 части которого находятся в Zip-архиве. [27К] |
    3. Об элементарном доказательстве ВТФ: Word Doc [80K].
  • Великая теорема Ферма Сорокин.: Zip [25K] | Word Doc [100K].

Гипотеза Эстерле-Массера

Независимо друг от друга abc-гипотеза предложена математиками Дэвидом Массером в 1985 году и Джозефом Эстерле в 1988 году, а ее решение составляет одну из главных проблем теории чисел. Гипотеза утверждает, что для любого действительного числа r > 1 существует не более конечного числа троек натуральных чисел a, b и c таких, что для них выполняются условия: a + b = c; a, b и c взаимно просты в совокупности (то есть у них нет общих делителей) и c > rad (abc)r.

Радикалом (rad) натурального числа N называется число, которое представляет собой произведение всех различных простых (отличных от единицы чисел, делящихся только на себя и на единицу) делителей числа N. Например, rad(15) = 15, так как у этого числа простые делители 3 и 5, а rad(18) = 6, поскольку простых делителей у числа 18 ровно два — это 3 и 2.

Гипотеза Эстерле-Массера важна для теории диофантовых уравнений, а ее справедливость позволит провести еще одно доказательство великой теоремы Ферма для больших степеней.

  • «Японский Перельман» согласился объяснить главнейшую тайну математики. Доказательство Мотидзуки занимает более 500 страниц текста, а понять и проверить его способно небольшое число математиков. У эксперта может уйти до 500 часов работы для понимания доказательства, тогда как у математика-аспиранта это займет около десяти лет.

Статьи математиков-энтузиастов по решению задач теории чисел

Гипотезы и возможные доказательства решения проблем простых чисел, в т.ч. Диофантовых уравнений, проблем Ландау и Гольдбаха.

  • Белотелов В.А. (г. Заволжье) — статьи о числах:
  • Богомолов Сергей. Локализация области поиска сомножителей произведения простых чисел: RTF-файл [21K].
  • Немлихер И.А., Немлихер Е.А., Никулин Г.И. Методика определения делимости чисел натурального числового ряда и ее практическое применение. Можете скачать статью [RTF, упакованный в ZIP 30К] или загрузить сам RTF-файл [320 Кбайт].
  • Рудыкин А.Ф. Некоторые «доказательства»: Великая теорема Ферма и прочее: Zip-файл [400 К, упакованные в 90 К]. Предлагаемая статья призвана послужить исключению распространенных ошибок при доказательстве Великой теоремы Ферма и других математических задач. Представлено:
    1. 1. Завершение проблемы Великой теоремы Ферма (Бледнов В. А., 2004).
    2. 2. Теорема Ферма. Бесконечный спуск для нечётных показателей n (А. Ф. Горбатов).
    3. 3. Доказательство теоремы Ферма методами элементарной алгебры (Бобров А.В.).
    4. 4. Великая теорема Ферма – два коротких доказательства (Бобров А.В. — доказательство аналогично предыдущему).
    5. 5. Доказательство Великой теоремы Ферма с помощью метода бесконечных (неопределенных) спусков (А.В. Тарасов, 2008).
    6. 6. Алгоритм решения Диофантовых уравнений (X Всероссийский симпозиум по прикладной и промышленной математике. Санкт-Петербург, 19 мая 2009 г.). В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом: — Великая теорема Ферма; — Уравнение Пелля; — поиск Пифагоровых троек; — Уравнение Каталана; — уравнение Гипотезы Билля; — уравнения эллиптических кривых и др.
    7. 7. Общее доказательство Гипотезы Биля, Великой теоремы Ферма и Теоремы Пифагора (Н.М. Козий, 2007).
    8. 8. Закономерность распределения простых чисел в ряду натуральных чисел (Белотелов В.А., 2008).
  • Фомюк Г.А., Кудина Е.А. Закономерность распределения простых чисел в натуральном числовом ряду. Доказательство гипотезы Римана. Скачать книгу можно со страниц по обзору этой работы («Гипотеза Римана доказана?»): на русском, а также Zip [90K] на этом сайте.
    Геннадий и Елена Фомюки нашли простую (арифметическую) формулу для нахождения простых чисел:
    Q = A + 18 * X, где Q — искомое простое число, A – базовое простое число (1, 5, 7, 11, 13 или 17), x – любое натуральное число (1, 2, 3, 4, …).
    [Правда, эта формула в ряде случаев (нашел пока 2) дает и квадраты простых чисел: 7 + 18 * 1 = 25 = 52, 13 + 18 * 2 = 49 = 72.
    Справедливости ради заметим, что это доказательство критикуется другими исследователями.
  • Статьи Александра Щербакова о чётных числах:

Научные новости о попытках решения проблем с простыми числами

  • Математики справились с задачей, мучившей человечество 2200 лет. [Утро.ру] В последние десятилетия на помощь математикам в проверке делимости огромных чисел пришли компьютеры. Трое математиков индийского института технологии в городе Канпур, объявили, что разработали метод, позволяющий безошибочно и быстро определять, простым ли является то или иное число.

Геометрия многомерных пространств и гипотеза Пуанкаре

Над гипотезой о вероятных формах Вселенной бились лучшие умы 20 века.

Решение гипотеза Пуанкаре Григорием Перельманом

Российский математик Григорий Перельман решил гипотезу Пуанкаре. В 2002-2003 годах он совершил прорыв, предложив ряд новых идей. Он развил и довел до конца метод, предложенный в 1980-е годы Ричардом Гамильтоном. В своих работах Перельман утверждает, что построенная им теория позволяет доказать не только гипотезу Пуанкаре, но и гипотезу геометризации Тёрстона.

Суть метода состоит в том, что для геометрических объектов можно определить некоторое уравнение «плавной эволюции», похожее на уравнение ренормализационной группы в теорфизике. Исходная поверхность в ходе этой эволюции будет деформироваться и, как показал Перельман, в конце концов плавно перейдет именно в сферу. Сила этого подхода состоит в том, что, минуя все промежуточные моменты, можно сразу заглянуть «в бесконечность», в самый конец эволюции, и обнаружить там сферу.

В  2002 году Г. Перельман опубликовал решение гипотезы Пуанкаре, и до сих пор ни один пристрастный анализ не нашел в нем ошибки.

Г.Перельман родился 13 июня 1966 года в Ленинграде, в семье служащих [Папа — физик, написавший известный учебник]. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики [работал].
  • Полное доказательство гипотезы Пуанкаре предъявлено уже тремя независимыми группами математиков.
  • Notes and commentary on Perelman’s Ricci flow papers.
  • Ученый отказался от награды. Гениальный математик Перельман уже отказался от европейской математической премии и, возможно, откажется от миллионного вознаграждения и медали Филда. [Взгляд]
  • Научный мир боится странностей российского гения.
  • Россиянин решил знаменитую математическую задачу. Шэрон Бегли.
  • Математик Перельман отказался от высшей награды. Ему присудили медаль заочно. Г.Перельман заявил американским журналистам, что принял такое решение в знак протеста против царящих в современном математическом мире нравов. По его мнению большинство математиков – люди честные, но они почему-то мирятся с существованием рядом с собой всяких шарлатанов. [2006]
  • Григорий Перельман не отказывался от миллиона. Он не принял медаль Филдса.

Топология и гипотеза Ходжа

Гипотеза Ходжа сформулирована в 1941 году и состоит в том, что для особенно хороших типов пространств, называемых проективными алгебраическими многообразиями, так называемые циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.

В XX веке математики изобрели мощные методы исследования формы сложных объектов. Основная идея состоит в том, чтобы выяснить, до какой степени мы можем аппроксимировать форму данного объекта, склеивая вместе простые тела возрастающей размерности. Этот метод оказался эффективным при описании разнообразных объектов встречающихся в математике. При этом были не ясны геометрические обоснования метода: в некоторых случаях было необходимо прибавлять части, которые не имели никакого геометрического истолкования.

Доказать гипотезу Ходжа удалось для некоторых частных случаев. Более общее доказательство пока не найдено, не найдено и доказательство обратного — что гипотеза неверна.

  • Проблемы 2000 года: гипотеза Ходжа. [2005]

Квантовая физика и геометрия (гипотеза Янга-Миллса)

Тео́рия Я́нга—Ми́ллса — калибровочная теория с неабелевой калибровочной группой. Калибровочные поля в этой теории называются полями Янга — Миллса. Такие теории были предложены в 1954 году Чж. Янгом (Yang) и Р. Миллсом (Mills), однако долгое время рассматривались лишь как математические изыски, не имеющие отношения к реальности.

Несмотря на это, именно на основе теорий Янга — Миллса в 1970-х годах были созданы две краеугольные теории Стандартной Модели в физике элементарных частиц: квантовая хромодинамика (теория сильных взаимодействий) на основе группы SU(3) и теория электрослабых взаимодействий на основе группы SU(2).

  • Теория Янга-Миллса. [Компутерра]

Теория графов и теорема Шварца-Кристоффеля

Теорема Шварца — Кристоффеля относится к теории функций комплексного переменного и носит название немецких математиков Карла Шварца и Элвина Кристоффеля. Она касается проблемы о конформном отображении некой канонической области (единичного круга Δ или верхней полуплоскости H+) на внутренность произвольного многоугольника. Теорема дает общий вид таких отображений, что важно с практической точки зрения.

Сформулированная 140 лет назад формула Шварца–Кристоффеля является незаменимой для проектирования различных объектов, включая здания, мосты, а также самолеты. Она определяет уровень внешней и внутренней сопротивляемости структуры и степень запаса ее прочности. Однако классическая формула не могла быть применена для сложных объектов, имеющих отверстия и сложные формы.

  • Британский профессор решил теорему Шварца–Кристоффеля.
  • Доказательства великих завихрений.

Уравнение Навье-Стокса

Уравнения Навье — Стокса описывают движение вязкой ньютоновской жидкости и являются основой гидродинамики. Численные решения уравнений Навье — Стокса используются во многих практических приложениях и научных работах. Однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях, поэтому нет полного понимания свойств уравнений Навье — Стокса. В частности, решения уравнений Навье — Стокса часто включают в себя турбулентность, которая остаётся одной из важнейших нерешённых проблем в физике, несмотря на её огромную важность для науки и техники. (Существование и гладкость решений уравнений Навье — Стокса, Википедия)

Среди 7 проблем тысячелетия 6-я проблема является чисто прикладной задачей. От ее решения зависит качество проектирования самолетов, ракет, снарядов, гидротурбин, подводных лодок, газо- и нефтепроводов. В биологии и медицине решение этого уравнения дает всю правду о течении крови в сосудах, жидкости в клетках сосудов и т.д.

Решить уравнения Навье-Стокса не могут с 1822 года. Более того, не могут доказать: правильно ли мы решаем это уравнение, а их приходится решать на компьютерах в силу большой размерности, где 3 — уже много. Поэтому, прежде, чем вычислять, надо доказать теорему существования и единственности решения (СЕР), что составляет суть проблемы и важно потому, что аварии на газопроводах, гидростанциях, авиакатастрофы могут оказаться следствием неправильных расчетов уравнения Навье-Стокса, а не слепой случайности. (Чоро Тукембаев)

  • Американка Пенелопа Смит (Penelope Smith) из Университета Лихай (Lehigh University, Вифлеем, штат Пенсильвания) опубликовала 26.09.2006 сатью «Immortal Smooth Solution of the Three Space Dimensional Navier-Stokes System«. Она выяснила, что уравнения Навье-Стокса могут быть перезаписаны в форме дифференциальных уравнений, которые она знала, как решать. В статье представлено это решение и она уверена в нём. Смит когда-то также посещала те же самые семинары, что и наш Григорий Перельман. Большой вклад в развитие теории уравнений Навье-Стокса внесла некогда и наша петербургская женщина-математик — Ольга Ладыженская. Главным результатом Ладыженской в этой области стало полное решение проблемы в двумерном случае.
  • Статьи Чоро Тукембаева:
  • Работы Талайбека Омурова, Кыргызстан:
  • Работы Намаза Алтаева (Казахстан, г.Шымкент): Намаз считает, что принятые подходы к решению уравнений Эйлера и Навье-Стокса методами математической физики ведут в тупик. Он полагает, что природу этих уравнений можно удовлетворительно интерпретировать, если за основу анализа брать основополагающие принципы теоретической и эмпирической физики.

Задача притяжения трех тел

Задача о движении трех материальных точек под действием ньютоновских сил взаимного притяжения — «задача трех тел» — получила в математике, механике и астрономии широкую известность. Достаточно просмотреть посвященные этой задаче главы в книгах Уиттекера, Биркгофа, Зигеля и статьи Арнольда и Смейла, чтобы убедиться в богатстве и плодотворности круга идей, так или иначе обязанных ей своим возникновением. [Странно, почепму это математическая, а не физическая задача.]

Задача трех тел описывается системой дифференциальных уравнений; ей соответствует фазовый поток в 18-мерном фазовом пространстве.

  • Сербские физики нашли новые решения ньютоновской задачи трех тел.
  • Найдено 152 новых решения ньютоновской задачи трех тел.

Гипотеза Кука

Может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки? Недавно установлена связь между гипотезой Ж.Эдмондса и проблемой С.А.Кука.

Допустим, находясь в большой компании, Вы хотите убедиться, что там же находится Ваш знакомый. Если Вам скажут, что он сидит в углу, то Вам достаточно доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствии этой информации Вы будете вынуждены обойти всю комнату, рассматривая гостей. Точно так же, если кто-то сообщит Вам, что число 13717421 можно представить, как произведение двух меньших чисел, непросто быстро убедиться в истинности информации, но если Вам сообщат, что исходное число можно разложить на множители 3607 и 3803, то это утверждение легко проверяется с помощью калькулятора.

Это примеры иллюстрируют общее явление: решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения. Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема является одной из нерешенных проблем логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

Обзоры. статьи и новости о других важных математических проблемах и задачах: проблемах Гилберта, теореме Атия-Сингера

ABC-гипотеза (гипотеза Эстерле-Массера)

Независимо друг от друга abc-гипотеза предложена математиками Дэвидом Массером в 1985 году и Джозефом Эстерле в 1988 году. Ее решение составляет одну из главных проблем теории чисел. Гипотеза утверждает, что для любого действительного числа r > 1 существует не более конечного числа троек натуральных чисел a, b и c таких, что для них выполняются условия: a + b = c; a, b и c взаимно просты в совокупности (то есть у них нет общих делителей) и c > rad(abc)r.

Радикалом (rad) натурального числа N называется число, которое представляет собой произведение всех различных простых (отличных от единицы чисел, делящихся только на себя и на единицу) делителей числа N. Например, rad (15) = 15, так как у этого числа простые делители 3 и 5, а rad (18) = 6, поскольку простых делителей у числа 18 ровно два — это 3 и 2.

Гипотеза Эстерле-Массера важна для теории диофантовых уравнений, а ее справедливость позволит провести еще одно доказательство великой теоремы Ферма для больших степеней.

И вот, в 2012 году японский математик Синъити Мотидзуки представил доказательство abc-гипотезы, которое занимает более 500 страниц текста. Понять и проверить его способно небольшое число математиков. У эксперта может уйти до 500 часов работы для понимания доказательства, тогда как у математика-аспиранта это займет около 10 лет. В настоящее время проверкой работы Мотидзуки занимаются десять математиков. Отдельные этапы доказательства математика ясны, но «всеобъемлющая стратегия остается совершенно неуловимой». Считается, что проверить корректность доказательства Мотидзуки удастся к 2017 году,

Работа японского ученого содержит революционные идеи и использует оригинальные обозначения, ранее не встречавшиеся в математической литературе.

  • Доказательство «японского Перельмана» совершило революцию в математике. [29.07.16]

Атия-Сингера теорема

Теорема Атьи — Зингера об индексе — один из наиболее популярных математических результатов последнего пятилетия. Такой интерес к проблеме индекса объясняется ее положением на стыке анализа и топологии, а также тем, что для ее решения потребовались новейшие математические разработки.

  • Пале. Р. Семинар по теореме Атьи — Зингера об индексе.

Гильберта проблемы

Пробле́мы Ги́льберта — список из 23 кардинальных проблем математики, представленный Давидом Гильбертом на II Международном Конгрессе математиков в Париже в 1900 году. Тогда эти проблемы (охватывающие основания математики, алгебру, теорию чисел, геометрию, топологию, алгебраическую геометрию, группы Ли, вещественный и комплексный анализ, дифференциальные уравнения, математическую физику и теорию вероятностей, а также вариационное исчисление) не были решены.

На данный момент решены 16 проблем из 23. Ещё 2 не являются корректными математическими проблемами (одна сформулирована слишком расплывчато, чтобы понять, решена она или нет, другая, далёкая от решения, — физическая, а не математическая). Из оставшихся 5 проблем две не решены никак, а три решены только для некоторых случаев. (Из Википедии)

  • Проблемы Гильберта.
  • 23 проблемы Гильберта. Сборник комментариев

Новые математические гипотезы

  • Thurston’s Geometrization Conjecture. Гипотезы геометризации

Новости о «неключевых», но важных математических достижениях

  • Высшей награды в области математики удостоена работа 40-летней давности. Высшая награда в области математики — норвежская Премия Абеля – присуждена двум ученым: британцу сэру Майклу Фрэнсису Атьи и Айсадору М. Зингеру из США за работу на стыке двух наук – физики и математики. Норвежская Академия наук и литературы выделила 6 млн крон «за их открытие и доказательство теоремы об индексе с помощью топологии, геометрии и математического анализа, а также за их выдающуюся роль в создании новых связей между математикой и теоретической физикой». 75-летний Атья из университета Эдинбурга и 79-летнйи Зингер из технологического института Массачусетса еще 40 лет назад разработали то, что сейчас называется теоремой Атия-Сингера. [2004]


Ключевые слова для поиска сведений о великих математических загадках и проблемах:

На русском языке: великие проблемы математики, величайшие математические загадки, доказательство Перельмана, гипотеза Римана, Пуанкаре, Ходжа, Кука, Берча, Свиннертона-Дайера, проблемы Гильберта, Гольдбаха, Ландау, теория Янга-Миллса, Великая теорема Ферма, уравнение Навье-Стокса, закономерность распределение простых чисел, премия Института математики Клея, главные достижения математиков; На английском языке: mathematic problems.

www.garshin.ru

Книга Величайшие математические задачи читать онлайн бесплатно, автор Иэн Стюарт на Fictionbook

Переводчик Наталья Лисова

Редактор Наталья Нарциссова

Руководитель проекта И. Серёгина

Корректоры Е. Аксёнова, М. Миловидова

Компьютерная верстка А. Фоминов

Дизайн обложки О. Сидоренко

© Joat Enterprises, 2013

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2014

Все права защищены. Никакая часть электронного экземпляра этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.

* * *

Фонд некоммерческих программ «Династия» основан в 2002 г. Дмитрием Борисовичем Зиминым, почетным президентом компании «Вымпелком».

Приоритетные направления деятельности Фонда – поддержка фундаментальной науки и образования в России, популяризация науки и просвещение.

В рамках программы по популяризации науки Фондом запущено несколько проектов.

В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект «Библиотека «Династии» – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными.

Книга, которую вы держите в руках, выпущена в рамках этого проекта.

Более подробную информацию о Фонде «Династия» вы найдете по адресу www.dynastyfdn.ru.

* * *

Мы должны знать – мы будем знать!

Давид Гильберт,
речь о математических проблемах, произнесенная в 1930 г. по случаю присвоения Гильберту звания Почетного гражданина Кёнигсберга

Предисловие

Математика – обширная, непрерывно растущая и столь же непрерывно меняющаяся область знания. Среди бесчисленных вопросов, которыми задаются математики и на которые они по большей части находят ответы, есть немало и таких, которые стоят особняком и возвышаются над всеми прочими, словно горные пики – над предгорьями. Это действительно сложные проблемы, и любой математик отдал бы правую руку за возможность первым найти решение одной из таких масштабных задач. Некоторые из них оставались нерешенными десятилетиями, иные – столетиями, а есть и такие, что не поддавались усилиям математиков несколько тысячелетий. И до сих пор существуют проблемы, которые ученым только предстоит разрешить. Так, последняя теорема Ферма оставалась для математиков камнем преткновения 350 лет, пока Эндрю Уайлс не доказал ее, потратив на эту работу семь лет жизни. Гипотеза Пуанкаре была неприступна больше 100 лет, пока эксцентричный гений Григорий Перельман не нашел доказательство и не превратил ее в теорему (отказавшись при этом от всяких академических почестей и премии в миллион долларов за эту работу). А гипотеза Римана и сегодня, через 150 лет после того, как была сформулирована, остается нерешенной.

Книга «Великие математические задачи» рассказывает о некоторых крупнейших математических проблемах, работа над которыми открыла перед научной мыслью совершенно новые направления и возможности. Читатель познакомится с истоками этих задач, узнает, почему они так важны и какое место занимают в общем контексте математики и естественных наук. В книге представлены как решенные, так и нерешенные задачи из самых разных периодов истории математики. По существу, рассказ охватывает две с лишним тысячи лет развития науки, однако основное внимание в книге сосредоточено на вопросах, которые либо до сих пор остаются нерешенными, либо были решены относительно недавно, в последние полвека.

Фундаментальная цель математики – раскрывать внутреннюю простоту сложных на первый взгляд вопросов. Это заявление может показаться неочевидным и даже странным, поскольку математическое представление о «простоте» опирается на множество сложных технических концепций. Но важная особенность этой книги заключается именно в том, что акцент в ней сделан на глубинную простоту, а сложности мы стараемся обойти стороной или объясняем простыми словами.

Математика – более молодая и многообразная наука, чем многие думают. По приблизительным оценкам в мире сегодня живет около 100 000 математиков-исследователей, которые каждый год выпускают более двух миллионов страниц новых математических изысканий. Это не «новые числа», поисками которых математики не занимаются вообще. И не «новые величины», подобные уже известным, только больше, хотя мы действительно иногда работаем с достаточно большими величинами. Так, про одно недавнее алгебраическое исследование, проведенное командой из 25 математиков, какой-то шутник сказал: «Расчет размером с Манхэттен». Но и это не совсем верно – ребята поскромничали. Размером с Манхэттен у них был ответ, а расчет занимал гораздо больше места. Впечатляет, не правда ли? Но главное в математических исследованиях все-таки качество, а не размер и даже не количество. Расчет размером с Манхэттен, о котором шла речь, котируется в обоих отношениях, поскольку дает важную информацию о группе симметрии, играющей существенную роль в математике и, судя по всему, в квантовой физике. Блестящие математические рассуждения и выводы могут уложиться в одну строчку – а могут занять целую энциклопедию. Все зависит от существа и сложности задачи.

При мысли о математике на ум в первую очередь приходят страницы, заполненные малопонятными значками и формулами. Однако те два миллиона страниц, о которых мы говорили, содержат по большей части слова, а не специальные символы. Слова необходимы для объяснения существа проблемы, описания хода мысли и смысла вычислений, и, кроме того, без них невозможно объяснить, какое место все это занимает в постоянно строящемся здании математики. Как заметил на границе XVIII и XIX вв. великий Карл Гаусс, главное в математике – «идеи, а не символы». Тем не менее обычно математические идеи излагаются языком символов. И многие исследовательские работы содержат больше символов, чем слов. Четкости, которую обеспечивают формулы, не всегда можно достичь словами.

Тем не менее нередко математические идеи можно объяснить словами, оставив в стороне большую часть специальных символов. И именно этот принцип лег в основу книги, которую вы держите в руках. Она рассказывает, чем занимаются математики, как они думают и почему предмет их исследований интересен и важен для всего человечества. Она показывает также (и это очень важно), как сегодняшние математики справляются с вызовами своих предшественников, как одна за другой великие загадки прошлого уступают мощным методикам настоящего, тем самым изменяя и математику, и естественные науки будущего. Математика по праву относится к величайшим достижениям человечества, и ее важнейшие задачи – решенные и нерешенные – уже не одну тысячу лет направляют и стимулируют творческие силы человека.

Ковентри, июнь 2012 г.

1. Великие задачи

Телепередачи о математике попадаются редко, а хорошие и того реже. Одной из наиболее удачных среди них, причем не только по содержанию, но и по степени увлекательности и вовлеченности зрителей, стала программа о Великой теореме Ферма, которую в 1996 г. снял для научно-популярной серии Horizon британской корпорации BBC Джон Линч. Саймон Сингх, который также участвовал в создании этой программы, превратил рассказанную в ней историю в захватывающую книгу-бестселлер. На своем сайте он рассказал, что поразительный успех передачи стал для всех сюрпризом.

«В нашей программе целых 50 минут математики рассказывают о математике. Не сказать, чтобы это был надежный рецепт создания телевизионного блокбастера, но наша передача взбудоражила зрителей и привлекла внимание критиков. Она получила премию BAFTA как лучшая документальная программа, Приз Италии, другие международные награды и была номинирована на Emmy. Это доказывает, что математика может быть не менее захватывающей темой, чем любая другая».

Я думаю, что успех телепрограммы и книги был обусловлен несколькими причинами, которые имеют немаловажное значение и для моего рассказа. Но чтобы не слишком разбрасываться, я буду говорить только о документальном фильме.

Последняя теорема Ферма – одна из величайших математических проблем, но возникла она из невинного на первый взгляд замечания, сделанного одним из ведущих математиков XVII в. на полях классического учебника. Постепенно проблема приобрела известность, поскольку никто не мог ни доказать, ни опровергнуть утверждение, содержавшееся в оставленной Пьером Ферма заметке на полях. Несмотря на усилия, предпринимавшиеся множеством необычайно умных людей, такое положение вещей сохранялось более 300 лет, поэтому когда в 1995 г. британскому математику Эндрю Уайлсу удалось наконец справиться с этой проблемой, масштаб его достижения был очевиден каждому. Не нужно было даже знать, в чем заключается проблема, не говоря уже о ее решении. В какой-то мере достижение Уайлса – то же самое, что покорение Эвереста.

Помимо научного значения, успешное доказательство теоремы Ферма связано с интереснейшей жизненной историей. В 10 лет Эндрю Уайлс так заинтересовался этой проблемой, что решил стать математиком и обязательно решить ее. Он выполнил первую часть плана и даже выбрал своей специализацией теорию чисел – обширную область математики, к которой относится и Великая теорема Ферма. Однако чем больше он узнавал о математике, тем труднее казалось выполнить задуманное. Теорема Ферма – загадочная диковинка, обособленный вопрос из разряда тех, которые умеет задавать любой специалист по теории чисел (ведь для этого не нужно никаких доказательств). Она не укладывается ни в одну систему мощных доказательных средств. Великий Гаусс в письме к Генриху Ольберсу попросту отмахнулся от нее, заметив, что эта проблема «мне не особенно интересна, поскольку легко можно сформулировать множество подобных утверждений, которые никто не может ни доказать, ни опровергнуть». Уайлс решил, что его детская мечта неосуществима, и отложил теорему Ферма в долгий ящик. Однако затем, будто по волшебству, другие математики совершили прорывное открытие, неожиданно связавшее теорему со стержневой темой теории чисел, причем именно той, которой и занимался Уайлс. Гаусс, как оказалось, в свое время недооценил значение этой проблемы, что для него вообще-то было нехарактерно; он не подозревал, что она может быть связана с глубокой, но на первый взгляд достаточно далекой областью математики.

 

Теперь, когда связь была установлена, Уайлс мог работать над загадкой Ферма и одновременно проводить значимые исследования в рамках современной теории чисел. Даже если с доказательством Великой теоремы ничего бы не получилось, все, что удалось открыть в ходе исследований, было бы достойно публикации. Так что старые наработки были извлечены на свет божий, и Уайлс начал всерьез обдумывать проблему. Через семь лет усердных трудов (а работал он втайне от ученого сообщества, что для математиков совсем не характерно) Уайлс пришел к выводу, что решение найдено. На престижной конференции по теории чисел он прочел серию лекций под невнятным названием, которое никого не обмануло. Новость разлетелась и произвела сенсацию, причем не только в академических кругах, но и в средствах массовой информации. Теорема Ферма доказана!

Полученное Уайлсом доказательство, полное оригинальных идей, оказалось красивым и элегантным. К несчастью, специалисты вскоре обнаружили в его логике серьезный пробел. Как это ни печально, при решении великих (и обычно очень известных) математических задач такое происходит сплошь и рядом, и, как правило, для очередного доказательства такой поворот событий оказывается роковым. Однако на этот раз судьба была благосклонна: при помощи бывшего своего ученика Ричарда Тейлора Уайлсу удалось ликвидировать пробел, исправить доказательство и завершить работу. Эмоциональное напряжение этого момента очень хорошо видно на экране: пожалуй, это единственный случай, когда ученый-математик расплакался перед камерой при одном только воспоминании о тех драматических событиях и последовавшем за ними триумфе.

Вы, наверное, заметили, что я так и не рассказал вам, в чем, собственно, заключается Великая теорема Ферма. Я сделал (или, вернее, не сделал) это намеренно: о самой теореме речь пойдет в свое время. Ведь успех телепередачи с сутью теоремы почти не связан. Мало того, математики никогда не придавали особого значения тому, верна ли теорема, которую Ферма небрежно набросал на полях книги, или нет. От ответа на этот вопрос ничего особенно важного не зависит. Откуда же такой интерес к нему? Все очень просто. Огромное значение может иметь именно то, что все математическое сообщество было не в состоянии найти этот ответ. И дело вовсе не в самоуважении: это означало, что в существующих математических теориях не хватает чего-то принципиально важного. К тому же теорема очень просто формулируется, и это добавляет загадочности всей ситуации. Как может что-то настолько на первый взгляд простое оказаться таким сложным?

Математиков не слишком заботил ответ на вопрос, поставленный Ферма, зато глубоко заботил тот факт, что они ответа не знают. К тому же им хотелось найти метод решения этой проблемы, поскольку он, по идее, должен был пролить свет не только на вопрос Ферма, но и на множество других вопросов. Опять же так нередко случается с математическими загадками: методы, использованные для их решения, часто важнее результатов. Разумеется, иногда результат тоже важен – все зависит от его следствий.

Доказательство Уайлса слишком сложно для телепередачи, разобраться в нем могут только специалисты. В нем есть математическая красота и интрига, как мы убедимся в свое время, но любая попытка объяснить что-то подобное по телевизору привела бы к немедленной потере интереса у большей части аудитории. Поэтому программа разумно сосредоточилась на более личном вопросе: каково это – решить математическую проблему, известную своей сложностью и влекущую за собой целый шлейф исторических ассоциаций? Телезрителям показали, что существует небольшая, но увлеченная группа математиков, разбросанных по всему миру, что все они глубоко погружены в предмет своих исследований, общаются друг с другом, следят за последними разработками и вообще посвящают значительную часть жизни продвижению математических знаний. Создатели фильма очень живо показали эмоциональную вовлеченность и социальное единство этих людей. Это не разумные автоматы, а реальные люди, любящие свое дело. В этом и заключается главный посыл фильма.

Мы можем сформулировать три основные причины успеха этой программы: серьезная и известная проблема, герой с увлекательной, по-человечески интересной историей и группа поддержки – целая каста эмоционально вовлеченных в процесс людей. Но я подозреваю, что существует и четвертая причина, не столь явная. Люди, не связанные с математикой, по многим объективным причинам редко слышат о новых достижениях в этой области, да и не так уж сильно интересуются этим. В газетах лишь изредка упоминается что-нибудь связанное с математикой, а если и упоминается, то лишь приводятся какие-то отрывочные или тривиальные факты. Наконец, действия и достижения математиков где-то там за кулисами не оказывают, на первый взгляд, никакого влияния на повседневную жизнь. А школьная математика зачастую предстает перед учащимися как уже закрытая книга, где на каждый вопрос есть готовый ответ. Школьникам обычно кажется, что ничего нового в математике днем с огнем не сыщешь.

Если смотреть под таким углом зрения, то главное в достижении Уайлса – не то, что Великая теорема Ферма была доказана, а то, что наконец-то в математике свершилось хоть что-то новое. Поскольку на поиск доказательства теоремы у ученых ушло больше 300 лет, многие зрители восприняли открытие Уайлса как первое существенное достижение в математике за весь этот период. Я не говорю, что все действительно именно так и решили. Понятно, что подобная позиция рассыпалась бы в прах при первом же очевидном вопросе вроде: «Почему правительство тратит немалые деньги на финансирование университетских математических исследований?» Но на подсознательном уровне все сочли, что это именно так, не задаваясь вопросами и не размышляя. Поэтому достижение Уайлса приобрело в глазах нематематиков еще большие масштабы.

Одна из целей этой книги – наглядно продемонстрировать всем, в том числе и неспециалистам, что математика сейчас на подъеме, а новые открытия в ней – совсем не редкость. Вы почти ничего об этом не слышите просто потому, что большая часть математических работ слишком сложна для неспециалистов, а средства массовой информации с опаской относятся к интеллектуалам и боятся публиковать что-либо сложнее «X-фактора». Кроме того, практическое приложение математики обычно скрыто от глаз потребителя, причем зачастую намеренно, чтобы не волновать его. «Что? Работа моего айфона построена на математических формулах? Но у меня же по математике всегда была пара! Как я буду входить в “Фейсбук”?»

Исторически новые достижения в математике часто следуют за открытиями в других областях знания. Исаак Ньютон, разработав законы механики и всемирного тяготения, которые описывают движение планет, не избавился разом от всех проблем в понимании устройства Солнечной системы. Наоборот, после этого перед математиками встал ряд новых вопросов: да, конечно, мы знаем законы, но что они подразумевают? В поисках ответов Ньютон придумал дифференциальное (интегральное) исчисление, но и у нового метода обнаружились ограничения. Зачастую он вместо ответа на вопрос просто дает иную его формулировку. Так, с его помощью некоторые задачи можно легко записать в виде специальной формулы, известной как дифференциальное уравнение. Решение этого уравнения и есть искомый ответ. Но это решение еще надо найти. Тем не менее дифференциальное исчисление послужило мощным стартом. Оно показало, что ответ в принципе возможен, и снабдило ученых эффективным методом его поиска. До сих пор, хотя прошло уже больше 300 лет, этот метод помогает математикам совершать крупные открытия.

По мере того как росла сумма математических знаний человечества, все большую роль в мотивации новых исследований стал играть еще один фактор: внутренние запросы самой математики. Если, к примеру, вы умеете решать алгебраические уравнения первой, второй, третьей и четвертой степеней, вам не нужно обладать очень уж богатым воображением, чтобы задаться вопросом об уравнениях пятой степени. (По существу, степень уравнения есть мера его сложности, но чтобы задать очевидный вопрос, не обязательно даже знать, что это такое.) Если решение не дается – как, собственно, и было, – то этот факт сам по себе заставляет математиков еще более усердно искать его, и при этом неважно, будет ли вожделенный результат иметь какую-либо практическую пользу.

Я не утверждаю, что практическое приложение не имеет значения. Но если какая-то конкретная математическая составляющая раз за разом возникает в вопросах, скажем, физики волн – океанских волн, вибраций, звука, света, – то понятно, что исследовать ее закономерности было бы полезно. Не обязательно знать заранее, какое приложение найдет новая идея: тема волн фигурирует во многих важных областях, так что серьезные результаты непременно где-нибудь пригодятся. В данном случае этим «где-нибудь» стали радио, телевидение и радары. Если кто-то придумает новый подход к тепловым потокам и без всякого математического обоснования предложит новый блестящий метод, то, безусловно, будет очень полезно разобраться во всем этом как в чисто математической задаче. И даже если вам нет никакого дела до тепловых потоков, результат обязательно пригодится где-то еще. Фурье-анализ, разработанный в ходе исследования именно этой области, оказался, возможно, самой полезной математической идеей всех времен. Это, по существу, основа современных телекоммуникаций: он обеспечивает работу цифровых камер, помогает реставрировать старые кинофильмы и звукозаписи, а его современное расширение использует ФБР для хранения отпечатков пальцев.

За несколько тысячелетий подобная взаимосвязь между практическим применением математики и ее внутренней структурой привела к тому, что они тесно переплелись и стали почти неотделимы друг от друга. Тем не менее математика делится на две области: чистую и прикладную. Это деление помогает оценить место математических открытий в структуре человеческого знания, однако оно довольно условно. В лучшем случае так можно различить два конца одного непрерывного спектра математических стилей и методов. В худшем – такая классификация вводит нас в заблуждение относительно того, что именно приносит пользу и что служит источником идей. Как и в других областях науки, силу математике придает сочетание абстрактных рассуждений и вдохновения, почерпнутого из внешнего мира. Говоря попросту, они питают друг друга. Разделить математику на две составляющие не просто невозможно – это бессмысленно.

Большинство по-настоящему важных математических задач – великих задач, которым посвящена эта книга, – возникли внутри математического поля в процессе своеобразной интеллектуальной медитации. Причина проста: это сугубо математические задачи. Математика часто представляется набором изолированных областей, в каждой из которых господствуют собственные методы: это алгебра, геометрия, тригонометрия, математический анализ, комбинаторика, теория вероятностей. Ее обычно так и преподают, и не без причины: четкое разделение тем помогает учащимся разложить по полочкам учебный материал в своей голове. И действительно, такое деление – вполне разумный способ понять в первом приближении структуру математической науки, особенно классической, давно устоявшейся. Однако на переднем крае исследований это четкое деление часто рушится. И дело не только в том, что границы между основными областями математики размыты, – в реальности их просто нет.

Каждый математик-исследователь знает, что в любой момент внезапно и непредсказуемо может оказаться, что проблема, над которой он работает, требует свежих идей из какой-то совершенно посторонней, на первый взгляд, области. Более того, новые исследования часто захватывают сразу несколько областей. К примеру, мои исследования сосредоточены по большей части на формировании структур в динамических системах – системах, которые изменяются во времени по определенным правилам. Типичный пример – движение животных. Лошадь при движении рысью раз за разом повторяет одну и ту же последовательность движений ног, и в этих движениях есть четкая закономерность: копыта ударяют по земле попеременно, диагональными парами. Иными словами, лошадь ставит сначала левую переднюю и правую заднюю ноги, затем правую переднюю и левую заднюю. О чем же эта задача? О паттернах, и тогда решать ее надо методами теории групп – алгебры симметрий? Или это задача из динамики – и тогда к решению нужно привлекать ньютоновские дифференциальные уравнения?

 

Ответ таков: эта задача по определению относится к обеим названным областям. Причем это не пересечение областей, где мог бы находиться материал, общий для обеих, – они почти не пересекаются. Нет, это новая «область», охватывающая два традиционных раздела математики. Она как мост через реку, разделяющую две страны, связывает их, но не принадлежит ни одной. Но этот мост – не узкая полоса дороги: по размерам его можно сравнить с каждой из соединяемых стран. И, что еще важнее, используемые здесь методы не ограничиваются теми, что используются на прилежащих территориях. Фактически в моих исследованиях пригодились знания во всех областях математики, которые я когда-либо изучал. Так, курс по теории Галуа, который я слушал в Кембридже студентом, был посвящен решению (или, точнее, анализу причин, по которым мы не можем их решить) алгебраических уравнений пятой степени. В курсе по теории графов говорилось о сетях, т. е. о точках, соединенных линиями. Я не занимался динамическими системами, поскольку защищал докторскую по алгебре, но с годами познакомился с основными понятиями по этой теме – от статических состояний до хаоса. Итак, теория Галуа, теория графов, динамические системы: три отдельные области. По крайней мере я считал их таковыми до 2011 г., когда меня вдруг заинтересовал вопрос распознавания хаотической динамики в сети динамических систем, и тогда необходимым для исследования оказалось все то, что я узнал 45 лет назад на курсе по теории Галуа.

Итак, математика не похожа на политическую карту мира, где страны разделяются четкими границами и аккуратно окрашиваются каждая в свой цвет: розовый, зеленый или голубой. Она скорее напоминает естественный ландшафт, где никогда нельзя сказать наверняка, где заканчивается долина и начинаются предгорья, где лес переходит в лесостепь, кустарниковые заросли и настоящие степи, где озера вплавляют в окружающий ландшафт свои водяные зеркала, а реки связывают заснеженные горные склоны с далеким океаном. Но этот вечно меняющийся математический ландшафт состоит не из скал, воды и растений, а из идей, и соединяет все вместе не география, а логика. К тому же это динамичный ландшафт: он изменяется с появлением новых идей, с каждым новым открытием, с изобретением каждого нового метода. Важные концепции с множеством приложений подобны горным пикам, универсальные методики – широким рекам, несущим путешественников через плодородные равнины. Чем четче вырисовывается ландшафт, тем проще разглядеть на нем непокоренные еще вершины или неисследованные местности, которые часто воздвигают перед путником неожиданные и нежеланные препятствия. Со временем некоторые из этих пиков и препятствий становятся знаковыми. Это и есть великие проблемы математики.

Что делает математическую задачу великой? Интеллектуальная глубина в сочетании с простотой и элегантностью. Плюс к тому она должна быть сложной. Кто угодно может взобраться на холмик, но Эверест – совсем другое дело. Сформулировать великую задачу обычно нетрудно, хотя условия могут быть как элементарными, так и очень специальными и понятными только профессионалу. Если Великая теорема Ферма и проблема четырех красок без особых пояснений понятны всякому, кто знаком со школьной математикой, то, к примеру, гипотезу Ходжа или теорию Янга – Миллса даже сформулировать невозможно без привлечения глубоких концепций с переднего края науки (в конце концов, последняя имеет непосредственное отношение к квантовой теории поля). Тем не менее для специалиста в соответствующей области формулировки этих проблем звучат просто и естественно. Для их изложения не нужны многие страницы непонятного текста. И, наконец, существуют задачи, для детального понимания которых требуется уровень хотя бы университетского курса математики. Но более общий уровень понимания существа проблемы – откуда она взялась, почему важна, что можно было бы сделать, имея ее решение, – как правило, доступен любому интересующемуся, и именно это я попытаюсь вам объяснить. Правда, гипотеза Ходжа – крепкий орешек в этом отношении, поскольку она очень технична и очень абстрактна. Однако это одна из семи математических задач тысячелетия, за решение которых Институт Клэя предлагает приз в 1 млн долларов, и потому о ней непременно стоит рассказать.

Великие задачи несут в себе громадный творческий потенциал: они помогают создавать новую математику. В 1900 г. на Международном конгрессе математиков в Париже Давид Гильберт прочел лекцию, в которой перечислил 23 важнейшие математические проблемы. Он не включил в свой список Великую теорему Ферма, но упомянул ее во вступительном слове. Надо отметить, что, когда выдающийся математик перечисляет великие, по его мнению, проблемы, остальные математики относятся к этому очень серьезно. Понятно, что ни одна задача не оказалась бы в этом списке, не будь она важной и сложной. Для человека естественно отвечать на вызов и преодолевать препятствия. С тех самых пор решение одной из гильбертовых проблем стало отличным способом завоевать себе математические «золотые шпоры». Многие из этих задач слишком специальны, чтобы включать их в эту книгу, другие представляют собой скорее программу, направление исследований, чем конкретные задачи, а некоторые мы рассмотрим позже по отдельности. Но сам список тоже заслуживает упоминания, и я включил его с кратким комментарием в примечаниях.

Именно это делает великие математические задачи великими. Проблема редко заключается в том, чтобы найти ответ. Математики очень четко представляют себе, какими должны быть ответы буквально всех великих задач, – или представляли, если на сегодняшний день решение уже известно. В самом деле, ожидаемый ответ часто заключен уже в формулировку вопроса. Гипотеза представляет собой правдоподобную догадку, предположение, основанное на совокупности данных. Как правило, хорошо изученные гипотезы со временем находят подтверждение, хотя так происходит не всегда. А в случае теоремы Ферма слово «теорема» употребляется (или, точнее, употреблялось) неверно – у теоремы обязательно должно быть доказательство, а его-то, пока не появился Уайлс, и не хватало.

Доказательство – вот то, чего требуют великие задачи и что делает их такими сложными. Любой человек, обладающий определенными знаниями, способен провести несколько вычислений, заметить явную закономерность и кратко сформулировать ее суть. Но математики требуют большего: они настаивают на полном, логически безупречном доказательстве. Или, если гипотеза не подтверждается, на столь же полном опровержении. Вообще же невозможно оценить всю чарующую привлекательность великой задачи, не понимая до конца жизненно важную роль доказательства в любом математическом предприятии. Обоснованное предположение может сделать кто угодно, трудно лишь доказать его истинность. Или ложность.

Концепция математического доказательства менялась с течением времени, причем требования к логике, как правило, становились все строже. Многочисленные высокоинтеллектуальные философские дискуссии о природе доказательства поднимали важные вопросы. Предлагались и внедрялись точные определения понятия «доказательство». Сегодня мы учим студентов, что доказательство начинается с набора некоторых явных допущений, известных как аксиомы. Аксиомы – это, так сказать, правила игры. В принципе возможны и другие аксиомы, но они относятся к другим играм. Первым такой подход предложил древнегреческий математик Евклид, но и сегодня он вполне применим. Доказательство на основе принятых аксиом представляет собой серию шагов, каждый из которых является логическим следствием либо аксиом, либо уже доказанных утверждений, либо того и другого. По существу, математика исследует логический лабиринт, перекрестками в котором служат утверждения, а проходами – достоверные умозаключения. Доказательство – путь через лабиринт, который начинается с аксиом. Утверждение, на котором он заканчивается, и есть то, что требовалось доказать.

1. Вот как выглядят на сегодняшний день проблемы Гильберта и их статус: 1. Континуум-гипотеза. Существует ли бесконечное кардинальное число строго между кардиналами множеств целых и действительных чисел? Решена Полом Коэном в 1963 г. – ответ на вопрос зависит от того, какие аксиомы используются в теории множеств. 2. Логическая непротиворечивость арифметики. Доказать, что стандартные аксиомы арифметики не могут привести к противоречию. Решена Куртом Геделем в 1931 г.: с обычными аксиомами теории множеств такое доказательство невозможно. 3. Равносоставленность равновеликих тетраэдров. Если два тетраэдра имеют одинаковый объем, то всегда ли можно разрезать один из них на конечное число многоугольников и собрать из них второй? Решена в 1901 г. Максом Деном, ответ отрицательный. 4. Прямая как кратчайшее расстояние между двумя точками. Сформулировать аксиомы геометрии на основе данного определения прямой и посмотреть, что из этого следует. Слишком расплывчатая задача, чтобы можно было рассчитывать на определенное решение, но сделано немало. 5. Группы Ли без опоры на дифференцируемость. Технический вопрос теории групп преобразований. В одной из интерпретаций ее решил Эндрю Глисон в 1950-е гг., в другой – Хидехико Ямабе. 6. Аксиомы физики. Разработать строгую систему аксиом для математических областей физики, таких как теория вероятностей или механика. Систему аксиом для вероятностей построил Андрей Колмогоров в 1933 г. 7. Иррациональные и трансцендентные числа. Доказать, что определенные числа являются иррациональными или трансцендентными. Решена в 1934 г. Александром Гельфондом и Теодором Шнайдером. 8. Гипотеза Римана. Доказать, что все нетривиальные нули римановой дзета-функции лежат на критической линии. См. главу 9. 9. Законы взаимности в числовых полях. Обобщить классический закон квадратичной взаимности (о квадратах по определенному модулю) на более высокие степени. Частично решена. 10. Условия существования решений диофантовых уравнений. Найти алгоритм, позволяющий определить, имеет ли данное полиномиальное уравнение со многими переменными решения в целых числах. Невозможность доказал Юрий Матиясевич в 1970 г. 11. Квадратичные формы с алгебраическими числами в качестве коэффициентов. Технические вопросы решения диофантовых уравнений со многими переменными. Решена частично. 12. Теорема Кронекера об абелевых полях. Технические вопросы обобщения теоремы Кронекера. Не доказана до сих пор. 13. Решение уравнений седьмой степени при помощи функций специального вида. Доказать, что общее уравнение седьмой степени не может быть решено с использованием функций двух переменных. В одной из интерпретаций возможность такого решения доказали Андрей Колмогоров и Владимир Арнольд. 14. Конечность полной системы функций. Расширить теорему Гильберта об алгебраических инвариантах на все группы преобразований. Опроверг Масаёси Нагата в 1959 г. 15. Исчислительная геометрия Шуберта. Герман Шуберт нашел нестрогий метод подчета различных геометрических конфигураций. Задача в том, чтобы сделать этот метод строгим. Полного решения до сих пор нет. 16. Топология кривых и поверхностей. Сколько связанных компонент может иметь алгебраическая кривая заданной степени? Сколько различных периодических циклов может иметь алгебраическое дифференциальное уравнение заданной степени? Ограниченное продвижение. 17. Представление определенных форм в виде суммы квадратов. Если рациональная функция всегда принимает неотрицательные значения, то должна ли она обязательно выражаться в виде суммы квадратов? Решили Эмиль Артин, Д. Дюбуа и Альбрехт Пфистер. Верно для действительных чисел, неверно в некоторых других числовых системах. 18. Заполнение пространства многогранниками. Общие вопросы о заполнении пространства конгруэнтными многогранниками. Имеет отношение к гипотезе Кеплера, ныне доказанной (см. главу 5). 19. Аналитичность решений в вариационном исчислении. Вариационное исчисление отвечает на такие вопросы, как «найти кратчайшую кривую с заданными свойствами». Если подобная задача формулируется при помощи красивых функций, то должно ли решение тоже быть красивым? Доказали Эннио де Джорджи в 1957 г. и Джон Нэш. 20. Граничные задачи. Разобраться в решениях дифференциальных уравнений физики в определенной области пространства, если заданы свойства решения на ограничивающей эту область поверхности. В основном решена (вклад внесли многие математики). 21. Существование дифференциальных уравнений с заданной монодромией. Особый тип комплексного дифференциального уравнения, в котором можно разобраться при помощи данных о его точках сингулярности и группе монодромии. Доказать, что может существовать любая комбинация этих данных. Ответ «да» или «нет» в зависимости от интерпретации. 22. Униформизация с использованием автоморфных функций. Технический вопрос об упрощении уравнений. Решил Пауль Кебе вскоре после 1900 г. 23. Развитие вариационного исчисления. Гильберт призывал к выдвижению новых идей в области вариационного исчислении. Многое сделано, но формулировка слишком неопределенная, чтобы задачу можно было считать решенной.

fictionbook.ru

чем математика похожа на литературу и как решаются великие задачи — T&P

В своей книге «Величайшие математические задачи» английский популяризатор науки профессор Иэн Стюарт не только старается максимально доступно объяснить теорему Ферма, гипотезу Кеплера и прочие задачи, которые многим кажутся непостижимыми. Он также наглядно показывает, что новые открытия в математике происходят постоянно, а их практическое применение у каждого перед глазами, просто мало кто задумывается, например, что работа его смартфона построена на математических формулах. «Теории и практики» публикуют отрывок из книги Стюарта, которую выпустило издательство «Альпина нон-фикшн».

Исторически новые достижения в математике часто следуют за открытиями в других областях знания. Исаак Ньютон, разработав законы механики и всемирного тяготения, которые описывают движение планет, не избавился разом от всех проблем в понимании устройства Солнечной системы. Наоборот, после этого перед математиками встал ряд новых вопросов: да, конечно, мы знаем законы, но что они подразумевают? В поисках ответов Ньютон придумал дифференциальное (интегральное) исчисление, но и у нового метода обнаружились ограничения. Зачастую он вместо ответа на вопрос просто дает иную его формулировку. Так, с его помощью некоторые задачи можно легко записать в виде специальной формулы, известной как дифференциальное уравнение. Решение этого уравнения и есть искомый ответ. Но это решение еще надо найти. Тем не менее дифференциальное исчисление послужило мощным стартом. Оно показало, что ответ в принципе возможен, и снабдило ученых эффективным методом его поиска. До сих пор, хотя прошло уже больше 300 лет, этот метод помогает математикам совершать крупные открытия.

По мере того как росла сумма математических знаний человечества, все большую роль в мотивации новых исследований стал играть еще один фактор: внутренние запросы самой математики. Если, к примеру, вы умеете решать алгебраические уравнения первой, второй, третьей и четвертой степеней, вам не нужно обладать очень уж богатым воображением, чтобы задаться вопросом об уравнениях пятой степени. (По существу, степень уравнения есть мера его сложности, но чтобы задать очевидный вопрос, не обязательно даже знать, что это такое.) Если решение не дается — как, собственно, и было, — то этот факт сам по себе заставляет математиков еще более усердно искать его, и при этом неважно, будет ли вожделенный результат иметь какую-либо практическую пользу.

Я не утверждаю, что практическое приложение не имеет значения. Но если какая-то конкретная математическая составляющая раз за разом возникает в вопросах, скажем, физики волн — океанских волн, вибраций, звука, света, — то понятно, что исследовать ее закономерности было бы полезно. Не обязательно знать заранее, какое приложение найдет новая идея: тема волн фигурирует во многих важных областях, так что серьезные результаты непременно где-нибудь пригодятся. В данном случае этим «где-нибудь» стали радио, телевидение и радары. Если кто-то придумает новый подход к тепловым потокам и без всякого математического обоснования предложит новый блестящий метод, то, безусловно, будет очень полезно разобраться во всем этом как  в чисто математической задаче. И даже если вам нет никакого дела до тепловых потоков, результат обязательно пригодится где-то еще. Фурье-анализ, разработанный в ходе исследования именно этой области, оказался, возможно, самой полезной математической идеей всех времен. Это, по существу, основа современных телекоммуникаций: он обеспечивает работу цифровых камер, помогает реставрировать старые кинофильмы и звукозаписи, а его современное расширение использует ФБР для хранения отпечатков пальцев.

За несколько тысячелетий подобная взаимосвязь между практическим применением математики и ее внутренней структурой привела к тому, что они тесно переплелись и стали почти неотделимы друг от друга. Тем не менее математика делится на две области: чистую и прикладную. Это деление помогает оценить место математических открытий в структуре человеческого знания, однако оно довольно условно. В лучшем случае так можно различить два конца одного непрерывного спектра математических стилей и методов. В худшем — такая классификация вводит нас в заблуждение относительно того, что именно приносит пользу и что служит источником идей. Как и в других областях науки, силу математике придает сочетание абстрактных рассуждений и вдохновения, почерпнутого из внешнего мира. Говоря попросту, они питают друг друга. Разделить математику на две составляющие не просто невозможно — это бессмысленно.

Большинство по-настоящему важных математических задач — великих задач, которым посвящена эта книга, — возникли внутри математического поля в процессе своеобразной интеллектуальной медитации. Причина проста: это сугубо математические задачи. Математика часто представляется набором изолированных областей, в каждой из которых господствуют собственные методы: это алгебра, геометрия, тригонометрия, математический анализ, комбинаторика, теория вероятностей. Ее обычно так и преподают, и не без причины: четкое разделение тем помогает учащимся разложить по полочкам учебный материал в своей голове. И действительно, такое деление — вполне разумный способ понять в первом приближении структуру математической науки, особенно классической, давно устоявшейся. Однако на переднем крае исследований это четкое деление часто рушится. И дело не только в том, что границы между основными областями математики размыты, — в реальности их просто нет.

Каждый математик-исследователь знает, что в любой момент внезапно и непредсказуемо может оказаться, что проблема, над которой он работает, требует свежих идей из какой-то совершенно посторонней, на первый взгляд, области. Более того, новые исследования часто захватывают сразу несколько областей. К примеру, мои исследования сосредоточены по большей части на формировании структур в динамических системах — системах, которые изменяются во времени по определенным правилам. Типичный пример — движение животных. Лошадь при движении рысью раз за разом повторяет одну и ту же последовательность движений ног, и в этих движениях есть четкая закономерность: копыта ударяют по земле попеременно, диагональными парами. Иными словами, лошадь ставит сначала левую переднюю и правую заднюю ноги, затем правую переднюю и левую заднюю. О чем же эта задача? О паттернах, и тогда решать ее надо методами теории групп — алгебры симметрий? Или это задача из динамики — и тогда к решению нужно привлекать ньютоновские дифференциальные уравнения?

Ответ таков: эта задача по определению относится к обеим названным областям. Причем это не пересечение областей, где мог бы находиться материал, общий для обеих, — они почти не пересекаются. Нет, это новая «область», охватывающая два традиционных раздела математики. Она как мост через реку, разделяющую две страны, связывает их, но не принадлежит ни одной. Но этот мост — не узкая полоса дороги: по размерам его можно сравнить с каждой из соединяемых стран. И, что еще важнее, используемые здесь методы не ограничиваются теми, что используются на прилежащих территориях. Фактически в моих исследованиях пригодились знания во всех областях математики, которые я когда-либо изучал. Так, курс по теории Галуа, который я слушал в Кембридже студентом, был посвящен решению (или, точнее, анализу причин, по которым мы не можем их решить) алгебраических уравнений пятой степени. В курсе по теории графов говорилось о сетях, т. е. о точках, соединенных линиями. Я не занимался динамическими системами, поскольку защищал докторскую по алгебре, но с годами познакомился с основными понятиями по этой теме — от статических состояний до хаоса. Итак, теория Галуа, теория графов, динамические системы: три отдельные области. По крайней мере я считал их таковыми до 2011 г., когда меня вдруг заинтересовал вопрос распознавания хаотической динамики в сети динамических систем, и тогда необходимым для исследования оказалось все то, что я узнал 45 лет назад на курсе по теории Галуа.

Итак, математика не похожа на политическую карту мира, где страны разделяются четкими границами и аккуратно окрашиваются каждая в свой цвет: розовый, зеленый или голубой. Она скорее напоминает естественный ландшафт, где никогда нельзя сказать наверняка, где заканчивается долина и начинаются предгорья, где лес переходит в лесостепь, кустарниковые заросли и настоящие степи, где озера вплавляют в окружающий ландшафт свои водяные зеркала, а реки связывают заснеженные горные склоны с далеким океаном. Но этот вечно меняющийся математический ландшафт состоит не из скал, воды и растений, а из идей, и соединяет все вместе не география, а логика. К тому же это динамичный ландшафт: он изменяется с появлением новых идей, с каждым новым открытием, с изобретением каждого нового метода. Важные концепции с множеством приложений подобны горным пикам, универсальные методики — широким рекам, несущим путешественников через плодородные равнины. Чем четче вырисовывается ландшафт, тем проще разглядеть на нем непокоренные еще вершины или неисследованные местности, которые часто воздвигают перед путником неожиданные и нежеланные препятствия. Со временем некоторые из этих пиков и препятствий становятся знаковыми. Это и есть великие проблемы математики.

Что делает математическую задачу великой? Интеллектуальная глубина в сочетании с простотой и элегантностью. Плюс к тому она должна быть сложной. Кто угодно может взобраться на холмик, но Эверест — совсем другое дело. Сформулировать великую задачу обычно нетрудно, хотя условия могут быть как элементарными, так и очень специальными и понятными только профессионалу. Если Великая теорема Ферма и проблема четырех красок без особых пояснений понятны всякому, кто знаком со школьной математикой, то, к примеру, гипотезу Ходжа или теорию Янга–Миллса даже сформулировать невозможно без привлечения глубоких концепций с переднего края науки (в конце концов, последняя имеет непосредственное отношение к квантовой теории поля). Тем не менее для специалиста в соответствующей области формулировки этих проблем звучат просто и естественно. Для их изложения не нужны многие страницы непонятного текста. И, наконец, существуют задачи, для детального понимания которых требуется уровень хотя бы университетского курса математики. Но более общий уровень понимания существа проблемы — откуда она взялась, почему важна, что можно было бы сделать, имея ее решение, — как правило, доступен любому интересующемуся, и именно это я попытаюсь вам объяснить. Правда, гипотеза Ходжа — крепкий орешек в этом отношении, поскольку она очень технична и очень абстрактна. Однако это одна из семи математических задач тысячелетия, за решение которых Институт Клэя предлагает приз в 1 млн долларов. […]

Проблема четырех красок — утверждение о том, что всякую расположенную на сфере карту можно раскрасить четырьмя красками так, чтобы любые две области, имеющие общий участок границы, были раскрашены в разные цвета.

Проблема редко заключается в том, чтобы найти ответ. Математики очень четко представляют себе, какими должны быть ответы буквально всех великих задач, — или представляли, если на сегодняшний день решение уже известно. В самом деле, ожидаемый ответ часто заключен уже в формулировку вопроса. Гипотеза представляет собой правдоподобную догадку, предположение, основанное на совокупности данных. Как правило, хорошо изученные гипотезы со временем находят подтверждение, хотя так происходит не всегда. […]

Доказательство — вот то, чего требуют великие задачи и что делает их такими сложными. Любой человек, обладающий определенными знаниями, способен провести несколько вычислений, заметить явную закономерность и кратко сформулировать ее суть. Но математики требуют большего: они настаивают на полном, логически безупречном доказательстве. Или, если гипотеза не подтверждается, на столь же полном опровержении. Вообще же невозможно оценить всю чарующую привлекательность великой задачи, не понимая до конца жизненно важную роль доказательства в любом математическом предприятии. Обоснованное предположение может сделать кто угодно, трудно лишь доказать его истинность. Или ложность.

Концепция математического доказательства менялась с течением времени, причем требования к логике, как правило, становились все строже. Многочисленные высокоинтеллектуальные философские дискуссии о природе доказательства поднимали важные вопросы. Предлагались и внедрялись точные определения понятия «доказательство». Сегодня мы учим студентов, что доказательство начинается с набора некоторых явных допущений, известных как аксиомы. Аксиомы — это, так сказать, правила игры. В принципе возможны и другие аксиомы, но они относятся к другим играм. Первым такой подход предложил древнегреческий математик Евклид, но и сегодня он вполне применим. Доказательство на основе принятых аксиом представляет собой серию шагов, каждый из которых является логическим следствием либо аксиом, либо уже доказанных утверждений, либо того и другого. По существу, математика исследует логический лабиринт, перекрестками в котором служат утверждения, а проходами — достоверные умозаключения. Доказательство — путь через лабиринт, который начинается с аксиом. Утверждение, на котором он заканчивается, и есть то, что требовалось доказать.

Однако такое правильное и «причесанное» представление о доказательстве — еще не вся история и даже не самая главная ее часть. Это все равно что сказать: симфония — последовательность музыкальных нот, которая подчиняется законам гармонии. Определение верно, но где же творчество? Такое определение ничего не говорит нам не только о том, как искать доказательство, но и о том, как проверить его, когда оно предложено кем-то другим. Это определение ничего не говорит нам о том, какие места в лабиринте важнее других. Не говорит и о том, какие проходы в нем элегантны, а какие безобразны, какие значительны, а какие бесполезны. Это всего лишь формальное, механическое описание процесса, у которого немало и других аспектов, в частности человеческое измерение. Доказательства ищут люди, и математические исследования — отнюдь не воплощение пошаговой логики.

Формальный подход к определению доказательства может породить доказательства почти нечитаемые, поскольку основные усилия придется бросить на копание в мелочах и «расставление точек над логическими i», в то время как решающий вывод будет буквально бросаться в глаза. Поэтому практикующие математики спрямляют путь и оставляют за бортом все рутинные или очевидные шаги. На пропуски обычно указывают фразы вроде «несложно показать, что…» или «из стандартных расчетов следует, что…» Зато ни один математик не пройдет — по крайней мере сознательно — мимо логической трудности и не попытается сделать вид, что ее нет. Более того, компетентный математик постарается обратить особое внимание на слабые с точки зрения логики звенья цепочки рассуждений и потратит большую часть времени и усилий на то, чтобы укрепить их и сделать достаточно надежными. Дело в том, что на практике доказательство — это математическая история с собственным сюжетом. У нее есть завязка, кульминация и развязка. В ней часто можно обнаружить боковые сюжетные ходы, которые вырастают из основного ствола, но ведут каждый к своему результату. Британский математик Кристофер Зиман однажды заметил, что любая теорема — это своего рода интеллектуальная точка покоя, где можно сделать остановку, перевести дыхание и ощутить некоторую определенность. Побочная сюжетная линия помогает свести концы с концами в основном сюжете. Доказательство напоминает литературный сюжет и в других отношениях: в них часто имеются один или несколько главных героев — конечно, это не люди, а идеи, — сложные взаимоотношения которых ведут к развязке и финалу.

Как явствует из формального определения, доказательство начинается с неких четких предположений, движется шаг за шагом от одного логического вывода к другому и заканчивается выводом о том, что вы, собственно, хотели доказать. Но доказательство — не просто список последовательных умозаключений, и логика в нем — не единственный критерий. Доказательство — это рассказ, который выслушивают и разбирают по косточкам люди, посвятившие большую часть жизни искусству прочтения таких историй и поиска в них ошибок и противоречий. Основная цель этих людей — доказать, что автор доказательства не прав. Эти люди обладают поразительной способностью замечать слабые места и без устали долбить в них, пока вся конструкция не рухнет, подняв облако пыли. Вообще, если какой-нибудь математик заявляет, что ему удалось решить крупную проблему (одну из великих, например, или что-нибудь попроще, но тоже достойное), остальные математики не спешат кричать «Ура!» и открывать шампанское. Профессиональный инстинкт велит им прежде всего постараться опровергнуть предложенное доказательство.

Так или иначе, доказательство — это единственный надежный инструмент, при помощи которого математики могут убедиться в собственной правоте. Предвидя реакцию математического сообщества, исследователи тратят огромные усилия на проверку собственных выводов и поиск противоречий в них. Так проще. Если же история успешно выдерживает критический анализ коллег, сообщество вскоре приходит к выводу, что она верна, и в этот момент создатель доказательства получает заслуженные похвалы и награды. Во всяком случае, обычно бывает именно так, хотя непосредственным участникам событий это может видеться иначе. Когда ты вовлечен во что-то, то воспринимаешь все не так, как сторонний наблюдатель.

Как математики решают задачи? Этот вопрос почти не изучался. Современные образовательные исследования на базе когнитивистики в основном ограничиваются изучением образования от начальной до высшей школы. Есть исследования, посвященные преподаванию математики в вузах, но их не так уж много. Кроме того, есть большая разница между освоением и преподаванием математики и новыми исследованиями в этой области. Многие из нас умеют играть на каком-нибудь музыкальном инструменте, но мало кто способен сочинить симфонический концерт или хотя бы написать популярную песенку.

Когда речь заходит о творчестве на высочайшем уровне, почти все, что мы знаем — или думаем, что знаем, — мы получаем путем самоанализа. Мы просим математиков объяснить ход их мыслей и пытаемся выделить в этих описаниях общие принципы. Одной из первых серьезных попыток понять, как думают математики, можно считать книгу Жака Адамара «Исследование психологии процесса изобретения в области математики», вышедшую в 1945 г. Адамар расспросил ведущих математиков и физиков своего времени и попросил описать, как они думают в процессе работы над сложной задачей. И тут выявилась важная и даже необходимая роль того, что за неимением лучшего термина следует назвать интуицией. Их мысли направляло нечто подсознательное. Самые плодотворные их идеи и озарения не приходили постепенно, в результате логической пошаговой проработки, а возникали неожиданно, и весь процесс развивался скачкообразно.

Анри Пуанкаре

Одно из самых подробных описаний этого на первый взгляд нелогичного подхода к логическим вопросам дал французский математик Анри Пуанкаре — один из ведущих ученых конца XIX — начала XX в. Пуанкаре отметился едва ли не во всех областях математической науки, внес радикальные изменения во многие из них и основал несколько новых ее разделов. […]

Его описание творческого процесса различает три ключевых этапа: подготовка, вынашивание и озарение. Подготовка представляет собой сознательные логические усилия, направленные на то, чтобы увидеть проблему, точно сформулировать ее и попробовать решить традиционными методами. Этот этап, когда подсознание получает задание и материал для работы, Пуанкаре считал очень важным. Вынашивание происходит, когда вы прекращаете думать о задаче, отвлекаетесь от нее и занимаетесь чем-то другим. А подсознание тем временем начинает перебирать и комбинировать идеи, часто довольно дикие, и продолжается это до тех пор, пока вдали не забрезжит свет. Если повезет, результатом станет озарение: подсознание даст вам сигнал, и в вашем мозгу как будто вспыхнет лампочка — возникнет готовый ответ.

Такое творчество подобно хождению по натянутому канату. С одной стороны, вы не можете решить сложную проблему, пока не познакомитесь как следует с областью, к которой она относится, а также с множеством других тем, которые могут пригодиться, а могут и не пригодиться в работе, просто на всякий случай. С другой стороны, если, изучая все нужные области математики, вы обратитесь к стандартному, уже много раз безрезультатно опробованному пути, то, возможно, уже не сумеете выбраться из наезженной колеи и ничего нового не откроете. Фокус в том, чтобы много знать и сознательно собирать свои знания воедино, работать над этим неделю за неделей… а затем отложить проблему в сторону. Тогда за дело возьмется интуитивная часть вашего сознания: она отсмотрит все идеи, повертит их так и эдак, оценит, где «холодно», а где «горячо», и сообщит вам, если что-нибудь найдет. Произойти это может в любой момент: Пуанкаре однажды понял, как нужно решать задачу, мучившую его несколько месяцев, выходя из автобуса. Шриниваса Рамануджан, индийский математик-самоучка, создававший замечательные формулы, часто видел новые идеи во сне. А Архимед, согласно легенде, нашел способ определить содержание золота в сплаве, принимая ванну.

Пуанкаре особо указал, что без первоначального периода подготовки успеха не достичь. Подсознанию, настаивал он, необходимо дать как можно больше пищи для размышления, в противном случае удачные идеи, которые в конечном итоге могут привести к решению, просто не возникнут. Вдохновения без трудового пота не бывает. Кроме того, Пуанкаре наверняка знал — ведь об этом знает любой математик-исследователь, — что одного такого трехэтапного процесса редко бывает достаточно. Решение серьезной задачи, как правило, требует нескольких озарений. Этап вынашивания одной идеи может быть прерван вспомогательным процессом подготовки, вынашивания и озарения какой-то другой задачи, решение которой оказалось необходимым для работы над первой, основной идеей. Решение любой стоящей задачи, великой или не слишком, обычно включает в себя множество таких последовательностей, заключенных одна в другой, как замысловатые фракталы Бенуа Мандельброта. Вы решаете задачу, разбивая ее на подзадачи. Вы убеждаете себя, что если удастся решить эти подзадачи, то затем из полученных результатов можно будет собрать решение задачи в целом. Иногда они решаются, иногда приходится возвращаться к началу пути. Иногда подзадача сама рассыпается на несколько кусочков. Даже уследить за происходящим и удержать в голове общую картину порой очень и очень непросто.

Я назвал работу подсознания «интуицией». «Интуиция» — одно из удобных, но вводящих в заблуждение слов, таких как «инстинкт», которые широко используются, хотя и не имеют четкого значения. Подобными словами называют нечто непонятное, присутствие чего тем не менее отрицать невозможно. Математическая интуиция — это способность разума чувствовать форму и структуру и распознавать закономерности, которые мы не в состоянии уловить на сознательном уровне. Интуиция не обладает кристальной чистотой осознанной логики, зато способна привлечь наше внимание к вещам, которые мы никогда не стали бы рассматривать сознательно. Нейробиологи еще только начинают понимать, как человеческий мозг справляется с гораздо более простыми задачами. Понятно, однако, что интуиция, как бы она ни работала, существует благодаря структуре мозга и его взаимодействию с внешним миром.

Зачастую главное, чем помогает в работе интуиция, — она подсказывает, где у задачи слабые места, где к ней можно подступиться с максимальными шансами на успех. Математическое доказательство подобно сражению или, если вы предпочитаете менее воинственные сравнения, шахматной партии. Как только потенциально слабое место выявлено, исследователь бросает в бой (т. е. на его изучение) все свои возможности исследователя, весь математический аппарат, которым владеет. Как Архимед нуждался в точке опоры, чтобы перевернуть Землю, так и математик-исследователь нуждается в рычагах воздействия на задачу. Одна-единственная ключевая идея может раскрыть ее, сделать доступной для стандартных методов. Ну, а после этого довести решение задачи до конца — дело техники.

theoryandpractice.ru

Великие математики и задачи тысячилетия

Великие математики и задачи тысячелетия

Жюль Анри́ Пуанкаре́ — французский математик, физик, астроном и философ. Глава Парижской академии наук (1906), член Французской академии (1908) и ещё более 30 академий мира, в том числе иностранный член-корреспондент Петербургской академии наук (1895).

Историки причисляют Анри Пуанкаре к величайшим математикам всех времён. Он считается, наряду с Гильбертом, последним математиком-универсалом, учёным, способным охватить все математические результаты своего времени. Его перу принадлежат более 500 статей и книг. «Не будет преувеличением сказать, что не было такой области современной ему математики, „чистой“ или „прикладной“, которую бы он не обогатил замечательными методами и результатами».

Среди его самых крупных достижений:

Анри Пуанкаре родился 29 апреля1854 года в Нанси (Лотарингия, Франция). Его отец, Леон Пуанкаре (1828—1892), был профессором медицины в Университете Нанси. Мать Анри, Эжени Лануа (EugénieLaunois), всё свободное время посвящала воспитанию детей — сына Анри и младшей дочери Алины.

Политехническая школа, старое здание на ул. Декарта (ныне Министерство высшего образования)

Пуанкаре-студент (1873)

С самого детства за Анри закрепилась репутация рассеянного человека, которую он сохранил на всю жизнь. В детстве он перенёс дифтерию, которая осложнилась временным параличом ног и мягкого нёба. Болезнь затянулась на несколько месяцев, в течение которых он не мог ни ходить, ни говорить. За это время у него очень сильно развилось слуховое восприятие и, в частности, появилась необычная способность — цветовое восприятие звуков, которое осталось у него до конца жизни. Хорошая домашняя подготовка позволила Анри в восемь с половиной лет поступить сразу на второй год обучения в лицее. Там его отметили как прилежного и любознательного ученика с широкой эрудицией. В последующие годы математические таланты Пуанкаре проявлялись всё более и более явно. В октябре 1873 года он стал студентом престижной парижской Политехнической школы, где на вступительных экзаменах занял первое место. Его наставником по математике был Шарль Эрмит. В следующем году Пуанкаре опубликовал в «Анналах математики» свою первую научную работу по дифференциальной геометрии.

В 1879 г.

По результатам двухлетнего обучения (1875) Пуанкаре приняли в Горную школу, наиболее авторитетное в то время специальное высшее учебное заведение. Там он через несколько лет (1879), под руководством Эрмита, защитил докторскую диссертацию, о которой Гастон Дарбу, входивший в состав комиссии, сказал: «С первого же взгляда мне стало ясно, что работа выходит за рамки обычного и с избытком заслуживает того, чтобы её приняли. Она содержала вполне достаточно результатов, чтобы обеспечить материалом много хороших диссертаций». Получив учёную степень, Пуанкаре начал преподавательскую деятельность в университете города Кан в Нормандии (декабрь 1879 года). Тогда же он опубликовал свои первые серьёзные статьи — они посвящены введённому им классу автоморфных функций.Там же, в Кане, он познакомился со своей будущей женой Луизой Пуленд’Андеси. 20 апреля 1881 года состоялась их свадьба. У них родились сын и три дочери. Оригинальность, широта и высокий научный уровень работ Пуанкаре сразу поставили его в ряд крупнейших математиков Европы и привлекли внимание других видных математиков. В 1881 году Пуанкаре был приглашён занять должность преподавателя на Факультете наук в Парижском университете и принял это приглашение. Параллельно, с 1883 по 1897, он преподавал математический анализ в Высшей Политехнической школе. В 1881—1882 годах Пуанкаре создал новый раздел математики — качественную теорию дифференциальных уравнений. Он показал, каким образом можно, не решая уравнения (поскольку это не всегда возможно), получить практически важную информацию о поведении семейства решений. Этот подход он с большим успехом применил к решению задач небесной механики и математической физики. Десятилетие после завершения исследования автоморфных функций (1885—1895) Пуанкаре посвятил решению нескольких сложнейших задач астрономии и математической физики. Он исследовал устойчивость фигур планет, сформированных в жидкой (расплавленной) фазе, и обнаружил, кроме эллипсоидальных, несколько других возможных фигур равновесия.

Математическая деятельность Пуанкаре носила междисциплинарный характер, благодаря чему за тридцать с небольшим лет своей напряжённой творческой деятельности он оставил фундаментальные труды практически во всех областях математики. Работы Пуанкаре, опубликованные Парижской Академией наук в 1916—1956, составляют 11 томов. Это труды по созданной им топологии, автоморфным функциям, теории дифференциальных уравнений, интегральным уравнениям, неевклидовой геометрии, теории вероятностей, теории чисел, небесной механике, физике, философии математики и философии науки.

Одна из последних фотографий. Пуанкаре и Мария Склодовская-Кюри на Сольвеевском конгрессе 1911

Во всех разнообразных областях своего творчества Пуанкаре получил важные и глубокие результаты. Хотя в его научном наследии немало крупных работ по «чистой математике» (абстрактная алгебра, алгебраическая геометрия, теория чисел и др.), всё же существенно преобладают труды, результаты которых имеют непосредственное прикладное применение. Особенно это заметно в его работах последних 15—20 лет. Тем не менее открытия Пуанкаре, как правило, имели общий характер и позднее с успехом применялись в других областях науки.

Творческий метод Пуанкаре опирался на создание интуитивной модели поставленной проблемы: он всегда сначала полностью решал задачи в голове, а затем записывал решение. Пуанкаре обладал феноменальной памятью и мог слово в слово цитировать прочитанные книги и проведённые беседы (память, интуиция и воображение Анри Пуанкаре даже стали предметом настоящего психологического исследования). Кроме того, он никогда не работал над одной задачей долгое время, считая, что подсознание уже получило задачу и продолжает работу, даже когда он размышляет о других вещах. Свой творческий метод Пуанкаре подробно описал в докладе «Математическое творчество» (парижское Психологическое общество, 1908).

Особые точки интегральных кривых

После защиты докторской диссертации, посвящённой изучению особых точек системы дифференциальных уравнений, Пуанкаре написал ряд мемуаров под общим названием «О кривых, определяемых дифференциальными уравнениями» . В этих статьях он построил новый раздел математики, который получил название «качественная теория дифференциальных уравнений». Пуанкаре показал, что даже если дифференциальное уравнение не решается через известные функции, тем не менее из самого вида уравнения можно получить обширную информацию о свойствах и особенностях поведении семейства его решений. В частности, Пуанкаре исследовал характер хода интегральных кривых на плоскости, дал классификацию особых точек (седло, фокус, центр, узел), ввёл понятия предельного цикла и индекса цикла, доказал, что число предельных циклов всегда конечно, за исключением нескольких специальных случаев.

Узел

Центр

Фокус

седло

Отзывы о Пуанкаре как о человеке чаще всего восторженные. В любой ситуации он неизменно выбирал благородную позицию. В научных спорах был твёрд, но неукоснительно корректен. Никогда не был замешан в скандалах, приоритетных спорах, оскорблениях. Равнодушен к славе: он неоднократно добровольно уступал научный приоритет, даже если имел серьёзные права на него; например, он ввёл термины «фуксовы функции», «группа Клейна», «устойчивость по Пуассону», «числа Бетти» — хотя имел все основания назвать эти объекты своим именем. Друзья Пуанкаре отмечают его скромность, остроумие, терпимость, чистосердечность и доброжелательность. Внешне он мог производить впечатление человека замкнутого и малообщительного, но в действительности такое поведение было следствием его застенчивости и постоянной сосредоточенности.

В 1906 году Пуанкаре избран президентом Парижской академии наук. В 1908 году он тяжело заболел и не смог сам прочитать свой доклад «Будущее математики» на Четвёртом математическом конгрессе. Первая операция закончилась успешно, но спустя 4 года состояние Пуанкаре вновь ухудшилось. Скончался в Париже после операции от эмболии17 июля1912 года в возрасте 58 лет. Похоронен в семейном склепе на кладбище Монпарнас.

Вероятно, Пуанкаре предчувствовал свою неожиданную смерть, так как в последней статье описал нерешённую им задачу («последнюю теорему Пуанкаре»), чего никогда раньше не делал. Спустя несколько месяцев эта теорема была доказана Джорджем Биркгофом. Позже при содействии Биркгофа во Франции был создан Институт теоретической физики имени Пуанкаре.

Гипотеза Пуанкаре́ является одной из наиболее известных задач топологии. Она даёт достаточное условие того, что пространство является трёхмерной сферой с точностью до деформации.

Всякое односвязное компактное трёхмерное

многообразие без края гомеоморфно трёхмерной сфере.

В исходной форме гипотеза

Пуанкаре утверждает:

Обобщённая гипотеза Пуанкаре утверждает:

Для любого натурального числа n всякое многообразие размерности nгомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.

Исходная гипотеза Пуанкаре является частным случаем обобщённой гипотезы при n = 3.

В 1900 году Пуанкаре сделал предположение, что трёхмерное многообразие со всеми группами гомологий как у сферы гомеоморфно сфере. В 1904 году он же нашёл контр-пример, называемый теперь сферой Пуанкаре, и сформулировал окончательный вариант своей гипотезы. Попытки доказать гипотезу Пуанкаре привели к многочисленным продвижениям в топологии многообразий.

Соль премии

Мораль в том, что если смотреть сильно вблизи, поверхность шарика (сфера) неотличима от плоскости. Двинемся дальше. Возьмем обычный круг на плоскости. У него есть граница — окружность. Ясно, что если вырезать этот круг ножницами, а потом стянуть границу в одну точку и надуть что получится воздухом, то круг расправится в двумерную сферу (тут надо думать о воздушных шарах и все такое).

Мораль — двумерная сфера получается из круга склеиванием всех точек границы в одну. И наоборот, если вырезать в двумерной сфере маленькую дырку и растянуть ее, то двумерная сфера расправится в плоский круг.

Аналогично, если взять обычный шарик и склеить все точки его границы в одну, то получится трехмерная сфера.

Аналогично, наше трехмерное пространство — это просто трехмерная сфера с вырезанной дыркой. Если смотреть на трехмерную сферу вблизи, то ее нельзя отличить от трехмерного пространства — дырка сильно далеко, и мы ее не замечаем.

Так вот. Трехмерная сфера — пример трехмерного многообразия (это значит, что, глядя вблизи, она неотличима от трехмерного пространства). На самом деле, разных трехмерных многообразий столько же, сколько натуральных чисел. Взглянуть на них издалека мы не можем — воображения не хватает. А вблизи они все устроены одинаково. Как быть?

Французский математик Пуанкаре высказал гипотезу, что если трехмерное многообразие удовлетворяет некоторым свойствам, то ничем иным, кроме трехмерной сферы, оно быть не может. Потом институт Клея решил, что если кто это докажет — то тот сильно умный и заслуживает миллиона денег.

Лет тридцать назад Терстон придумал, что хоть трехмерных многообразий и сильно много, но они все должны быть устроены вроде конструктора Лего. То есть, достаточно задаться восемью типами деталек и по-разному клеить их друг к другу, чтобы можно было получить вообще все возможные трехмерные многообразия. Идея была шибко красивая, но опять же, доказать ее Терстон не мог. Позже она получила название «гипотеза геометризации». Среди деталек Терстона только одна удовлетворяла условиям Пуанкаре — трехмерная сфера. То есть, доказательство гипотезы геометризации влекло бы за собой доказательство гипотезы Пуанкаре.

Заслуга Григория Перельмана — доказательство гипотезы геометризации. За это ему сразу, как только поняли, что доказательство правильное, дали Филдса и 15k, от коих он отказался. И немедленно стали говорить о том, что ему дадут миллион. Но по правилам института Клея для того, чтобы претендовать на миллион, нужно, чтобы доказательство было опубликовано в уважаемом журнале.

Доказательство исходной гипотезы Пуанкаре было найдено только в 2002 году Григорием Перельманом. Впоследствии доказательство Перельмана было проверено и представлено в развёрнутом виде как минимум тремя группами учёных.

Григо́рий Я́ковлевич Перельма́н (р. 13 июня1966, Ленинград, СССР) — выдающийся российский математик, первым доказавший гипотезу Пуанкаре.

Григорий Перельман родился 13 июня1966 года в Ленинграде в еврейской семье. Его отец Яков был инженером-электриком, в 1993 году эмигрировал в Израиль. Мать, Любовь Лейбовна, осталась в Санкт-Петербурге, работала учителем математики в ПТУ. Именно мать, игравшая на скрипке, привила будущему математику любовь к классической музыке.

До 9 класса Перельман учился в средней школе на окраине города, однако, в 5 классе начал заниматься в математическом центре при Дворце пионеров под руководством доцента РГПУ Сергея Рукшина, чьи ученики завоевали множество наград на математических олимпиадах. В 1982 году в составе команды советских школьников завоевал золотую медаль на Международной математической олимпиаде в Будапеште, получив полный балл за безукоризненное решение всех задач. Перельман окончил 239-ю физико-математическую школу города Ленинграда. Хорошо играл в настольный теннис, посещал музыкальную школу. Золотую медаль не получил только из-за физкультуры, не сдав нормы ГТО.

Был без экзаменов зачислен на математико-механический факультет Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Все годы учился только на «отлично». За успехи в учёбе получал Ленинскую стипендию. Окончив с отличием университет, поступил в аспирантуру (руководитель — академик А. Д. Александров) при Ленинградском отделении Математического института им. В. А. Стеклова (ЛОМИ — до 1992 г.; затем — ПОМИ). Защитив в 1990 году кандидатскую диссертацию, остался работать в институте старшим научным сотрудником.

В начале 1990-х годов Перельман приехал в США, где работал научным сотрудником в разных университетах. Удивлял коллег аскетичностью быта, любимой едой были молоко, хлеб и сыр. В 1996 году вернулся в Санкт-Петербург, где продолжил работу в ПОМИ. В декабре 2005 года он ушёл с поста ведущего научного сотрудника лаборатории математической физики, уволился из ПОМИ и практически полностью прервал контакты с коллегами. К дальнейшей научной карьере интереса не проявлял. В настоящее время живёт в Купчино в одной квартире с матерью, ведёт замкнутый образ жизни, игнорирует прессу. Будучи представителем ленинградской геометрической школы, развил и применил сугубо ленинградскую теорию пространств Александрова для анализа потоков Риччи. В 2002 году Перельман впервые опубликовал свою новаторскую работу, посвящённую решению одного из частных случаев гипотезы геометризации Уильяма Тёрстона, из которой следует справедливость знаменитой гипотезы Пуанкаре, сформулированной французским математиком, физиком и философом Анри Пуанкаре в 1904 году. Описанный учёным метод изучения потока Риччи получил название теории Гамильтона — Перельмана. В 1996 году был удостоен премии Европейского математического общества для молодых математиков, но отказался её получать.

В 2006 году Григорию Перельману за решение гипотезы Пуанкаре присуждена международная премия «Медаль Филдса», однако он отказался и от неё.

В 2006 году журнал Science назвал доказательство теоремы Пуанкаре научным «прорывом года» («BreakthroughoftheYear»). Это первая работа по математике, заслужившая такое звание. В 2006 году Сильвия Назар и Дэвид Грубер опубликовали статью «ManifoldDestiny», которая рассказывает о Григории Перельмане и математическом сообществе и содержит редкое интервью с ним самим. В 2007 году британская газета TheDailyTelegraph опубликовала список «Сто ныне живущих гениев», в котором Григорий Перельман занимает 9-е место. Кроме Перельмана в этот список попали всего лишь 2 россиянина — Гарри Каспаров (25-е место) и Михаил Калашников (83-е место). В марте 2010 года Математический институт Клэя присудил Григорию Перельману премию в размере одного миллиона долларов США за доказательство гипотезы Пуанкаре, что стало первым в истории присуждением премии за решение одной из Проблем тысячелетия. В июне 2010 года Перельман проигнорировал математическую конференцию в Париже, на которой предполагалось вручение «Премии тысячелетия», а 1 июля2010 года публично заявил о своём отказе от премии:

Я отказался. Вы знаете, у меня было очень много причин и в ту, и в другую сторону. Поэтому я так долго решал. Если говорить совсем коротко, то главная причина — это несогласие с организованным математическим сообществом. Мне не нравятся их решения, я считаю их несправедливыми. Я считаю, что вклад в решение этой задачи американского математика Гамильтона ничуть не меньше, чем мой.

Г. Я. Перельман

Задачи математики, которые ещё не решены учёными их называют «Задачи тысячелетия»

Задачи тысячелетия

Равенство классов P и NP

Гипотеза Ходжа

Гипотеза Пуанкаре

Гипотеза Римана

Квантовая теория
Янга — Миллса

Существование и гладкость 
решений уравнений
Навье — Стокса

Гипотеза
Бёрча — Свиннертон-Дайера

Ресурсы:

http://ru.wikipedia.org/w/index.php?title=Гипотеза_Пуанкаре&oldid=48363787

http://ru.wikipedia.org/wiki

infourok.ru

Семь великих математических задач

  • Проблема Кука (сформулирована в 1971 году)
  • Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.

    Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема также является одной из нерешенных задач из области логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

  • Гипотеза Римана (сформулирована в 1859 году)
  • Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и так далее. Такие числа называются простыми и играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди ряда всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

  • Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)
  • Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x2 + y2 = z2. Эвклид дал полное описание решений этого уравнения, но для более сложных уравнений поиск решений становится чрезвычайно трудным.

  • Гипотеза Ходжа (сформулирована в 1941 году)
  • В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые «кирпичики», которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких «кирпичиков» и объектов.

  • Уравнения Навье — Стокса (сформулированы в 1822 году)
  • Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете, в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье — Стокса. Решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

  • Проблема Пуанкаре (сформулирована в 1904 году)
  • Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязна, а поверхность бублика — нет. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики ищут правильный ответ до сих пор.

  • Уравнения Янга — Миллса (сформулированы в 1954 году)
  • Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга — Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга — Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.

    www.kabanik.ru

    презентация «Задачи великих математиков»

    Задачи великих математиков

    МБОУ «СОШ № 4», г. Исилькуль

    Разработала: учитель математики Федина Любовь Ивановна

    Задача 1 – задача Аль-Хорезми

    • Разложить число 10 на 2 слагаемых, сумма квадратов которых равна 58.

    Решение

    • Пусть х – один из слагаемых числа 10. Следовательно, второе слагаемое будет равно (10-х). Тогда x²+(10-х)²=58, откуда x 1 =7, x 2 =3. Следовательно, слагаемые, о которых идет речь в задаче Аль-Хорезми, равны 7 и 3. Ответ: 10=3+7

    Задача 2. Задача Исаака Ньютона.

    • Два почтальона A и B, которых разделяет расстояние в 59 миль, выезжают утром навстречу друг другу. A проезжает за 3 часа 7 миль, а B — за 3 часа 8 миль, при этом B отправляется в путь часом позже A. Найти, сколько миль проедет B до встречи с A?

    Решение

    7:3= 7/3 (миль/ч) скорость А. 8: 3= (8 )/3(миль/ч) скорость А. Так как А выйдет раньше на 1 час, то он пройдет 7/3 миль. Следовательно А и В вместе останется пройти 59 — 7/3 = 56 2/3 (мили). А так как, А и В идут навстречу друг другу, то скорость сближения равна 7/3 + 8/3= 15/3 = 5 (миль/ч). 56 2/3 :5= 11 1/3 (ч) время встречи. Тогда В проедет до встречи 11 1/3 ∙ 8/3 = 30 2/9 ( мили) Ответ: 30 2/9 миль проедет B до встречи с A

    Задача 3- задача Л.Ф.Магницкого

    Спросил некто учителя: «Скажи, сколько у тебя в классе учеников, так как хочу отдать к тебе в учение своего сына». Учитель ответил: «Если придет еще учеников столько же, сколько имею, и полстолько, и четвертая часть, и твой сын, тогда будет у меня учеников 100». Спрашивается, сколько было у учителя учеников?

    Решение

    • 1 сп. Обозначая количество учеников в классе при помощи отрезка, и моделируя связи и отношения между данными, получим схему (рис. 1).

     

     

     

    рис. 1.

    Из схемы легко найти решение

    1) (100- I ): 11 =9 (уч.) — самая малая ¼ часть

    2) 9-4 = 36 (уч.)

    Ответ: 36 учеников было в классе.

    Решение- алгебраический путь

    2 сп. Возьмем за неизвестное число – х – самую малую ¼ часть и составим и решим следующее уравнение:

    4х + 4х + 2х +1х + 1 = 100

    11х = 100 – 1

    х = 99 : 11

    х = 9

    9 учеников — самая малая ¼ часть, значит,

    9 * 4 = 36 учеников в классе.

    Ответ: 36 учеников в классе

    Задача 4. – задача Л.Н.Толстого .

    • Артели косцов надо было скосить два луга, один вдвое больше другого. Половину дня артель косила большой луг. После этого артель разделилась пополам первая половина осталась на большом лугу и докосила его к вечеру до конца; вторая же половина косила малый луг, на котором к вечеру еще остался участок, скошенный на другой день одним косцом за один день работы. Сколько косцов было в артели?

    А рифметический способ решения

    • Изобразим оба луга в виде двух прямоугольников, один из которых в два раза больше другого. Больший прямоугольник изображает большой луг, а меньший — малый луг. Чтобы скосить большой луг, вся артель работала первую половину дня, а вторую половину дня работала половина артели. Иначе говоря, половине артели нужно было бы работать трижды по Ѕ дня, чтобы скосить больший луг (все косцы считаются одинаково сильными). Таким образом, половина артели в половину дня скосила 1/3 большого луга.
    • Так как меньший луг, представляющий половину большего, составляет 1/3+1/6 большего луга (принимая больший луг за 1=1/3+1/3+1/3, имеем для величины меньшего луга 1/2=1/3+1/6) и во вторую половину дня половина артели на нем скосила одну треть большего луга, то остался нескошенным в конце дня участок, равный одной шестой части большего луга. По условию задачи этот остаток может скосить один косец за день.
    • Вся артель за день скосила весь большой луг и часть меньшего, равную 1/3 или 2/6 частям большого луга; следовательно, артель за день скосила всего 1+2/6=6/6+2/6=8/6 частей большого луга. Так как один косец за день может скосить 1/6 часть большого луга, то для того, чтобы скосить за день 8/6 частей большого луга, артель должна состоять из 8 человек.

    Алгебраические способы

    • I. Пусть х — число косцов артели, у — размер участка, скашиваемого одним косцом за один день. Заметим, что у — вспомогательная переменная, которая введена для облегчения решения задачи (от нее потом освобождаются).
    • Выразим через х и у площади большого и малого луга. Площадь большого луга равна (xy)/2 + (xy)/4 = (3xy)/4, площадь малого луга (xy)/4 +y = (xy+4y)/4. Больший луг по условию в два раза больше малого поэтому (3xy)/4 : (xy+4y)/4=2 или (3xy) / (xy+4y)=2, сократив на y, получим 3х/(х+4)=2, (3х-2х-8)/(х+4)=0, х-8=0, х=8.
    • II. Пусть число косцов будет х. Оба луга были скошены при работе всей артели в течение дня и еще одного косца в течение второго дня. Чтобы скосить оба луга потребовалось одному косцу (х+1) день. Чтобы скосить малый луг, составляющий 1/3 обоих лугов, требуется (х+1)/3 рабочих дней. С другой стороны, для того, чтобы скосить малый луг, половина артели работала половину дня (т.е. х/2 косцов, 1/2 дня) иными словами, требовалась работа за х/4 рабочих дня и одного косца за целый день, так что всего косьба малого луга потребовала (х/4 + 1) рабочих дней. Значит, (х+1)/3 = х/4 + 1, х+4=12, х=8.
    • III . Установив, что косьба обоих лугов потребовала (х+1) рабочих дней, мы можем найти два выражения для числа дней работы на большем лугу и, приравняв эти выражения, получить уравнение для определения х.
    • Так как большой луг составляет 2/3 обоих лугов, то его можно было скосить в 2(х+1)/3 дней. Косила же его вся артель 1/2 дня, что дает х/2 рабочих дней; и половина артели 1/2 дня, что дает еще х/4 рабочих дней; всего для того, чтобы скосить большой луг, потребовалось (х/2 + х/4) рабочих дней. Имеем уравнение: 2/3*(х + I) = х/2 + х/4, 2/3*х+2/3=3х/4, 3х/4-2/3*х=2/3, х/12=2/3, х=8
    • І V . Пусть, V — скорость всей бригады, v — скор. одного косаря t — полдня, T — целый день (T = 2*t) , S1 — площадь малого участка, S2 — большого (S2 = 2*S1) . Тогда, V*t + (V/2)*t = S2 , («большой луг докосили к вечеру») , отсюда S1 = (3/8)*V*T (1) Известно, что S1 = (V/2)*t + v*T, (полбригады косило полдня + один человек целый день)

    S1 = v*T + (V*T)/4 (2) Из (1) и (2), (3/8)*V*T = (V*T)/4 + v*T 3*V = 2*V + 8*v V = 8*v

    Производительность всей бригады равна производительности восьми косарей.

    Ответ: 8 косцов.

    Задача 5 . Задача Герона Александрийского (I в. н. э.),

    Бассейн емкостью 12 кубических единиц получает воду через две трубы, из которых одна дает в каждый час кубическую единицу, а другая в каждый час — четыре кубические единицы. В какое время наполнится бассейн при совместном действии обеих труб?

    Решение

    Так объем бассейна равен 12 кубических единиц, то 12:1=12(ч) время наполнения бассейна первой трубой.

    12:4= 3 (ч) время наполнения бассейна второй трубой. Тогда,

    Объем работы, т.е. наполнение бассейна примем за 1. Следовательно,

    1: 12=1/12 ( часть бассейна за 1 час) наполнит первая труба.

    1: 3=1/3 ( часть бассейна за 1 час) наполнит вторая труба.

    1/12 + 1/3 = 5/12 ( часть бассейна за 1 час) наполнят обе трубы.

    1: 5/12 = 12/5 =2,4 (ч) =2ч24 мин.

    Ответ: за 2 часа 24 минуты наполнится весь бассейн.

    multiurok.ru

    «Величайшие математические задачи». Глава из книги

    Глава 1. Великие задачи

    Телепередачи о математике попадаются редко, а хорошие и того реже. Одной из наиболее удачных среди них, причем не только по содержанию, но и по степени увлекательности и вовлеченности зрителей, стала программа о Великой теореме Ферма, которую в 1996 г. снял для научно-популярной серии Horizon британской корпорации BBC Джон Линч. Саймон Сингх, который также участвовал в создании этой программы, превратил рассказанную в ней историю в захватывающую книгу-бестселлер. На своем сайте он рассказал, что поразительный успех передачи стал для всех сюрпризом.

    «В нашей программе целых 50 минут математики рассказывают о математике. Не сказать, чтобы это был надежный рецепт создания телевизионного блокбастера, но наша передача взбудоражила зрителей и привлекла внимание критиков. Она получила премию BAFTA как лучшая документальная программа, Приз Италии, другие международные награды и была номинирована на Emmy. Это доказывает, что математика может быть не менее захватывающей темой, чем любая другая».

    Я думаю, что успех телепрограммы и книги был обусловлен несколькими причинами, которые имеют немаловажное значение и для моего рассказа. Но чтобы не слишком разбрасываться, я буду говорить только о документальном фильме.

    Последняя теорема Ферма — одна из величайших математических проблем, но возникла она из невинного на первый взгляд замечания, сделанного одним из ведущих математиков XVII в. на полях классического учебника. Постепенно проблема приобрела известность, поскольку никто не мог ни доказать, ни опровергнуть утверждение, содержавшееся в оставленной Пьером Ферма заметке на полях. Несмотря на усилия, предпринимавшиеся множеством необычайно умных людей, такое положение вещей сохранялось более 300 лет, поэтому когда в 1995 г. британскому математику Эндрю Уайлсу удалось наконец справиться с этой проблемой, масштаб его достижения был очевиден каждому. Не нужно было даже знать, в чем заключается проблема, не говоря уже о ее решении. В какой-то мере достижение Уайлса — то же самое, что покорение Эвереста.

    Помимо научного значения, успешное доказательство теоремы Ферма связано с интереснейшей жизненной историей. В 10 лет Эндрю Уайлс так заинтересовался этой проблемой, что решил стать математиком и обязательно решить ее. Он выполнил первую часть плана и даже выбрал своей специализацией теорию чисел — обширную область математики, к которой относится и Великая теорема Ферма. Однако чем больше он узнавал о математике, тем труднее казалось выполнить задуманное. Теорема Ферма — загадочная диковинка, обособленный вопрос из разряда тех, которые умеет задавать любой специалист по теории чисел (ведь для этого не нужно никаких доказательств). Она не укладывается ни в одну систему мощных доказательных средств. Великий Гаусс в письме к Генриху Ольберсу попросту отмахнулся от нее, заметив, что эта проблема «мне не особенно интересна, поскольку легко можно сформулировать множество подобных утверждений, которые никто не может ни доказать, ни опровергнуть». Уайлс решил, что его детская мечта неосуществима, и отложил теорему Ферма в долгий ящик. Однако затем, будто по волшебству, другие математики совершили прорывное открытие, неожиданно связавшее теорему со стержневой темой теории чисел, причем именно той, которой и занимался Уайлс. Гаусс, как оказалось, в свое время недооценил значение этой проблемы, что для него вообще-то было нехарактерно; он не подозревал, что она может быть связана с глубокой, но на первый взгляд достаточно далекой областью математики.

    Теперь, когда связь была установлена, Уайлс мог работать над загадкой Ферма и одновременно проводить значимые исследования в рамках современной теории чисел. Даже если с доказательством Великой теоремы ничего бы не получилось, все, что удалось открыть в ходе исследований, было бы достойно публикации. Так что старые наработки были извлечены на свет божий, и Уайлс начал всерьез обдумывать проблему. Через семь лет усердных трудов (а работал он втайне от ученого сообщества, что для математиков совсем не характерно) Уайлс пришел к выводу, что решение найдено. На престижной конференции по теории чисел он прочел серию лекций под невнятным названием, которое никого не обмануло. Новость разлетелась и произвела сенсацию, причем не только в академических кругах, но и в средствах массовой информации. Теорема Ферма доказана!

    Полученное Уайлсом доказательство, полное оригинальных идей, оказалось красивым и элегантным. К несчастью, специалисты вскоре обнаружили в его логике серьезный пробел. Как это ни печально, при решении великих (и обычно очень известных) математических задач такое происходит сплошь и рядом, и, как правило, для очередного доказательства такой поворот событий оказывается роковым. Однако на этот раз судьба была благосклонна: при помощи бывшего своего ученика Ричарда Тейлора Уайлсу удалось ликвидировать пробел, исправить доказательство и завершить работу. Эмоциональное напряжение этого момента очень хорошо видно на экране: пожалуй, это единственный случай, когда ученый-математик расплакался перед камерой при одном только воспоминании о тех драматических событиях и последовавшем за ними триумфе.

    Вы, наверное, заметили, что я так и не рассказал вам, в чем, собственно, заключается Великая теорема Ферма. Я сделал (или, вернее, не сделал) это намеренно: о самой теореме речь пойдет в свое время. Ведь успех телепередачи с сутью теоремы почти не связан. Мало того, математики никогда не придавали особого значения тому, верна ли теорема, которую Ферма небрежно набросал на полях книги, или нет. От ответа на этот вопрос ничего особенно важного не зависит. Откуда же такой интерес к нему? Все очень просто. Огромное значение может иметь именно то, что все математическое сообщество было не в состоянии найти этот ответ. И дело вовсе не в самоуважении: это означало, что в существующих математических теориях не хватает чего-то принципиально важного. К тому же теорема очень просто формулируется, и это добавляет загадочности всей ситуации. Как может что-то настолько на первый взгляд простое оказаться таким сложным?

    Математиков не слишком заботил ответ на вопрос, поставленный Ферма, зато глубоко заботил тот факт, что они ответа не знают. К тому же им хотелось найти метод решения этой проблемы, поскольку он, по идее, должен был пролить свет не только на вопрос Ферма, но и на множество других вопросов. Опять же так нередко случается с математическими загадками: методы, использованные для их решения, часто важнее результатов. Разумеется, иногда результат тоже важен — все зависит от его следствий.

    Доказательство Уайлса слишком сложно для телепередачи, разобраться в нем могут только специалисты. В нем есть математическая красота и интрига, как мы убедимся в свое время, но любая попытка объяснить что-то подобное по телевизору привела бы к немедленной потере интереса у большей части аудитории. Поэтому программа разумно сосредоточилась на более личном вопросе: каково это — решить математическую проблему, известную своей сложностью и влекущую за собой целый шлейф исторических ассоциаций? Телезрителям показали, что существует небольшая, но увлеченная группа математиков, разбросанных по всему миру, что все они глубоко погружены в предмет своих исследований, общаются другс другом, следят за последними разработками и вообще посвящают значительную часть жизни продвижению математических знаний. Создатели фильма очень живо показали эмоциональную вовлеченность и социальное единство этих людей. Это не разумные автоматы, а реальные люди, любящие свое дело. В этом и заключается главный посыл фильма.

    Мы можем сформулировать три основные причины успеха этой программы: серьезная и известная проблема, герой с увлекательной, по-человечески интересной историей и группа поддержки — целая каста эмоционально вовлеченных в процесс людей. Но я подозреваю, что существует и четвертая причина, не столь явная. Люди, не связанные с математикой, по многим объективным причинам редко слышат о новых достижениях в этой области, да и не так уж сильно интересуются этим. В газетах лишь изредка упоминается что-нибудь связанное с математикой, а если и упоминается, то лишь приводятся какие-то отрывочные или тривиальные факты. Наконец, действия и достижения математиков где-то там за кулисами не оказывают, на первый взгляд, никакого влияния на повседневную жизнь. А школьная математика зачастую предстает перед учащимися как уже закрытая книга, где на каждый вопрос есть готовый ответ. Школьникам обычно кажется, что ничего нового в математике днем с огнем не сыщешь.

    Если смотреть под таким углом зрения, то главное в достижении Уайлса — не то, что Великая теорема Ферма была доказана, а то, что наконец-то в математике свершилось хоть что-то новое. Поскольку на поиск доказательства теоремы у ученых ушло больше 300 лет, многие зрители восприняли открытие Уайлса как первое существенное достижение в математике за весь этот период. Я не говорю, что все действительно именно так и решили. Понятно, что подобная позиция рассыпалась бы в прах при первом же очевидном вопросе вроде: «Почему правительство тратит немалые деньги на финанси-рование университетских математических исследований?» Но на подсознательном уровне все сочли, что это именно так, не задаваясь вопросами и не размышляя. Поэтому достижение Уайлса приобрело в глазах нематематиков еще большие масштабы.

    Одна из целей этой книги — наглядно продемонстрировать всем, в том числе и неспециалистам, что математика сейчас на подъеме, а новые открытия в ней — совсем не редкость. Вы почти ничего об этом не слышите просто потому, что большая часть математических работ слишком сложна для неспециалистов, а средства массовой информации с опаской относятся к интеллектуалам и боятся публиковать что-либо сложнее «X-фактора». Кроме того, практическое приложение математики обычно скрыто от глаз потребителя, причем зачастую намеренно, чтобы не волновать его. «Что? Работа моего айфона построена на математических формулах? Но у меня же по математике всегда была пара! Как я буду входить в «Фейсбук»?»

    Исторически новые достижения в математике часто следуют за открытиями в других областях знания. Исаак Ньютон, разработав законы механики и всемирного тяготения, которые описывают движение планет, не избавился разом от всех проблем в понимании устройства Солнечной системы. Наоборот, после этого перед математиками встал ряд новых вопросов: да, конечно, мы знаем законы, но что они подразумевают? В поисках ответов Ньютон придумал дифференциальное (интегральное) исчисление, но и у нового метода обнаружились ограничения. Зачастую он вместо ответа на вопрос просто дает иную его формулировку. Так, с его помощью некоторые задачи можно легко записать в виде специальной формулы, известной как дифференциальное уравнение. Решение этого уравнения и есть искомый ответ. Но это решение еще надо найти. Тем не менее дифференциальное исчисление послужило мощным стартом. Оно показало, что ответ в принципе возможен, и снабдило ученых эффективным методом его поиска. До сих пор, хотя прошло уже больше 300 лет, этот метод помогает математикам совершать крупные открытия.

    По мере того как росла сумма математических знаний человечества, все большую роль в мотивации новых исследований стал играть еще один фактор: внутренние запросы самой математики. Если, к примеру, вы умеете решать алгебраические уравнения первой, второй, третьей и четвертой степеней, вам не нужно обладать очень уж богатым воображением, чтобы задаться вопросом об уравнениях пятой степени. (По существу, степень уравнения есть мера его сложности, но чтобы задать очевидный вопрос, не обязательно даже знать, что это такое.) Если решение не дается — как, собственно, и было, — то этот факт сам по себе заставляет математиков еще более усердно искать его, и при этом неважно, будет ли вожделенный результат иметь какую-либо практическую пользу.

    Я не утверждаю, что практическое приложение не имеет значения. Но если какая-то конкретная математическая составляющая раз за разом возникает в вопросах, скажем, физики волн — океанских волн, вибраций, звука, света, — то понятно, что исследовать ее закономерности было бы полезно. Не обязательно знать заранее, какое приложение найдет новая идея: тема волн фигурирует во многих важных областях, так что серьезные результаты непременно где-нибудь пригодятся. В данном случае этим «где-нибудь» стали радио, телевидение и радары. Если кто-то придумает новый подход к тепловым потокам и без всякого математического обоснования предложит новый блестящий метод, то, безусловно, будет очень полезно разобраться во всем этом как в чисто математической задаче. И даже если вам нет никакого дела до тепловых потоков, результат обязательно пригодится где-то еще. Фурье-анализ, разработанный в ходе исследования именно этой области, оказался, возможно, самой полезной математической идеей всех времен. Это, по существу, основа современных телекоммуникаций: он обеспечивает работу цифровых камер, помогает реставрировать старые кинофильмы и звукозаписи, а его современное расширение использует ФБР для хранения отпечатков пальцев.

    За несколько тысячелетий подобная взаимосвязь между практическим применением математики и ее внутренней структурой привела к тому, что они тесно переплелись и стали почти неотделимы друг от друга. Тем не менее математика делится на две области: чистую и прикладную. Это деление помогает оценить место математических открытий в структуре человеческого знания, однако оно довольно условно. В лучшем случае так можно различить два конца одного непрерывного спектра математических стилей и методов. В худшем — такая классификация вводит нас в заблуждение относительно того, что именно приносит пользу и что служит источником идей. Как и в других областях науки, силу математике придает сочетание абстрактных рассуждений и вдохновения, почерпнутого из внешнего мира. Говоря попросту, они питают друг друга. Разделить математику на две составляющие не просто невозможно — это бессмысленно.

    Большинство по-настоящему важных математических задач — великих задач, которым посвящена эта книга, — возникли внутри математического поля в процессе своеобразной интеллектуальной медитации. Причина проста: это сугубо математические задачи. Математика часто представляется набором изолированных областей, в каждой из которых господствуют собственные методы: это алгебра, геометрия, тригонометрия , математический анализ, комбинаторика, теория вероятностей. Ее обычно так и преподают, и не без причины: четкое разделение тем помогает учащимся разложить по полочкам учебный материал в своей голове. И действительно, такое деление — вполне разумный способ понять в первом приближении структуру математической науки, особенно классической, давно устоявшейся. Однако на переднем крае исследований это четкое деление часто рушится. И дело не только в том, что границы между основными областями математики размыты, — в реальности их просто нет.

    Каждый математик-исследователь знает, что в любой момент внезапно и непредсказуемо может оказаться, что проблема, над которой он работает, требует свежих идей из какой-то совершенно посторонней, на первый взгляд, области. Более того, новые исследования часто захватывают сразу несколько областей. К примеру, мои исследования сосредоточены по большей части на формировании структур в динамических системах — системах, которые изменяются во времени по определенным правилам. Типичный пример — движение животных. Лошадь при движении рысью раз за разом повторяет одну и ту же последовательность движений ног, и в этих движениях есть четкая закономерность: копыта ударяют по земле попеременно, диагональными парами. Иными словами, лошадь ставит сначала левую переднюю и правую заднюю ноги, затем правую переднюю и левую заднюю. О чем же эта задача? О паттернах, и тогда решать ее надо методами теории групп — алгебры симметрий? Или это задача из динамики — и тогда к решению нужно привлекать ньютоновские дифференциальные уравнения ?

    Ответ таков: эта задача по определению относится к обеим названным областям. Причем это не пересечение областей, где мог бы находиться материал, общий для обеих, — они почти не пересекаются. Нет, это новая «область», охватывающая два традиционных раздела математики. Она как мост через реку, разделяющую две страны, связывает их, но не принадлежит ни одной. Но этот мост —не узкая полоса дороги: по размерам его можно сравнить с каждой из соединяемых стран. И, что еще важнее, используемые здесь методы не ограничиваются теми, что используются на прилежащих территориях. Фактически в моих исследованиях пригодились знания во всех областях математики, которые я когда-либо изучал. Так, курс по теории Галуа, который я слушал в Кембридже студентом, был посвящен решению (или, точнее, анализу причин, по которым мы не можем их решить) алгебраических уравнений пятой степени. В курсе по теории графов говорилось о сетях, т. е. о точках, соединенных линиями. Я не занимался динамическими системами, поскольку защищал докторскую по алгебре, но с годами познакомился с основными понятиями по этой теме — от статических состояний до хаоса. Итак, теория Галуа, теория графов, динамические системы: три отдельные области. По крайней мере я считал их таковыми до 2011 г., когда меня вдруг заинтересовал вопрос распознавания хаотической динамики в сети динамических систем, и тогда необходимым для исследования оказалось все то, что я узнал 45 лет назад на курсе по теории Галуа.

    Итак, математика не похожа на политическую карту мира, где страны разделяются четкими границами и аккуратно окрашиваются каждая в свой цвет: розовый, зеленый или голубой. Она скорее напоминает естественный ландшафт, где никогда нельзя сказать наверняка, где заканчивается долина и начинаются предгорья, где лес переходит в лесостепь, кустарниковые заросли и настоящие степи, где озера вплавляют в окружающий ландшафт свои водяные зеркала, а реки связывают заснеженные горные склоны с далеким океаном. Но этот вечно меняющийся математический ландшафт состоит не из скал, воды и растений, а из идей, и соединяет все вместе не география, а логика. К тому же это динамичный ландшафт: он изменяется с появлением новых идей, с каждым новым открытием, с изобретением каждого нового метода. Важные концепции с множеством приложений подобны горным пикам, универсальные методики — широким рекам, несущим путешественников через плодородные равнины. Чем четче вырисовывается ландшафт, тем проще разглядеть на нем непокоренные еще вершины или неисследованные местности, которые часто воздвигают перед путником неожиданные и нежеланные препятствия. Со временем некоторые из этих пиков и препятствий становятся знаковыми. Это и есть великие проблемы математики.

    Что делает математическую задачу великой? Интеллектуальная глубина в сочетании с простотой и элегантностью. Плюс к тому она должна быть сложной. Кто угодно может взобраться на холмик, но Эверест — совсем другое дело. Сформулировать великую задачу обычно нетрудно, хотя условия могут быть как элементарными, так и очень специальными и понятными только профессионалу. Если Великая теорема Ферма и проблема четырех красок без особых пояснений понятны всякому, кто знаком со школьной математикой, то, к примеру, гипотезу Ходжа или теорию Янга–Миллса даже сформулировать невозможно без привлечения глубоких концепций с переднего края науки (в конце концов, последняя имеет непосредственное отношение к квантовой теории поля ). Тем не менее для специалиста в соответствующей области формулировки этих проблем звучат просто и естественно. Для их изложения не нужны многие страницы непонятного текста. И, наконец, существуют задачи, для детального понимания которых требуется уровень хотя бы университетского курса математики. Но более общий уровень понимания существа проблемы — откуда она взялась, почему важна, что можно было бы сделать, имея ее решение, — как правило, доступен любому интересующемуся, и именно это я попытаюсь вам объяснить. Правда, гипотеза Ходжа — крепкий орешек в этом отношении, поскольку она очень технична и очень абстрактна. Однако это одна из семи математических задач тысячелетия, за решение которых Институт Клэя предлагает приз в 1 млн долларов, и потому о ней непременно стоит рассказать.

    Великие задачи несут в себе громадный творческий потенциал: они помогают создавать новую математику. В 1900 г. на Международном конгрессе математиков в Париже Давид Гильберт прочел лекцию, в которой перечислил 23 важнейшие математические проблемы. Он не включил в свой список Великую теорему Ферма, но упомянул ее во вступительном слове. Надо отметить, что, когда выдающийся математик перечисляет великие, по его мнению, проблемы, остальные математики относятся к этому очень серьезно. Понятно, что ни одна задача не оказалась бы в этом списке, не будь она важной и сложной. Для человека естественно отвечать на вызов и преодолевать препятствия. С тех самых пор решение одной из гильбертовых проблем стало отличным способом завоевать себе математические «золотые шпоры». Многие из этих задач слишком специальны, чтобы включать их в эту книгу, другие представляют собой скорее программу, направление исследований, чем конкретные задачи, а некоторые мы рассмотрим позже по отдельности. Но сам список тоже заслуживает упоминания, и я включил его с кратким комментарием в примечания.

    Именно это делает великие математические задачи великими. Проблема редко заключается в том, чтобы найти ответ. Математики очень четко представляют себе, какими должны быть ответы буквально всех великих задач, — или представляли, если на сегодняшний день решение уже известно. В самом деле, ожидаемый ответ часто заключен уже в формулировку вопроса. Гипотеза представляет собой правдоподобную догадку, предположение, основанное на совокупности данных. Как правило, хорошо изученные гипотезы со временем находят подтверждение, хотя так происходит не всегда. А в случае теоремы Ферма слово «теорема» употребляется (или, точнее, употреблялось) неверно — у теоремы обязательно должно быть доказательство, а его-то, пока не появился Уайлс, и не хватало.

    Доказательство — вот то, чего требуют великие задачи и что делает их такими сложными. Любой человек, обладающий определенными знаниями, способен провести несколько вычислений, заметить явную закономерность и кратко сформулировать ее суть. Но математики требуют большего: они настаивают на полном, логически безупречном доказательстве. Или, если гипотеза не подтверждается, на столь же полном опровержении. Вообще же невозможно оценить всю чарующую привлекательность великой задачи, не понимая до конца жизненно важную роль доказательства в любом математическом предприятии. Обоснованное предположение может сделать кто угодно, трудно лишь доказать его истинность. Или ложность.

    Концепция математического доказательства менялась с течением времени, причем требования к логике, как правило, становились все строже. Многочисленные высокоинтеллектуальные философские дискуссии о природе доказательства поднимали важные вопросы. Предлагались и внедрялись точные определения понятия «доказательство». Сегодня мы учим студентов, что доказательство начинается с набора некоторых явных допущений, известных как аксиомы. Аксиомы — это, так сказать, правила игры. В принципе возможны и другие аксиомы, но они относятся к другим играм. Первым такой подход предложил древнегреческий математик Евклид, но и сегодня он вполне применим. Доказательство на основе принятых аксиом представляет собой серию шагов, каждый из которых является логическим следствием либо аксиом, либо уже доказанных утверждений, либо того и другого. По существу, математика исследует логический лабиринт, перекрестками в котором служат утверждения, а проходами — достоверные умозаключения. Доказательство — путь через лабиринт, который начинается с аксиом. Утверждение, на котором он заканчивается, и есть то, что требовалось доказать.

    Однако такое правильное и «причесанное» представление о доказательстве — еще не вся история и даже не самая главная ее часть. Это все равно что сказать: симфония — последовательность музыкальных нот, которая подчиняется законам гармонии. Определение верно, но где же творчество? Такое определение ничего не говорит нам не только о том, как искать доказательство, но и о том, как проверить его, когда оно предложено кем-то другим. Это определение ничего не говорит нам о том, какие места в лабиринте важнее других. Не говорит и о том, какие проходы в нем элегантны, а какие безобразны, какие значительны, а какие бесполезны. Это всего лишь формальное, механическое описание процесса, у которого немало и других аспектов, в частности человеческое измерение. Доказательства ищут люди, и математические исследования — отнюдь не воплощение пошаговой логики.

    Формальный подход к определению доказательства может породить доказательства почти нечитаемые, поскольку основные усилия придется бросить на копание в мелочах и «расставление точек над логическими i», в то время как решающий вывод будет буквально бросаться в глаза. Поэтому практикующие математики спрямляют путь и оставляют за бортом все рутинные или очевидные шаги. На пропуски обычно указывают фразы вроде «несложно показать, что…» или «из стандартных расчетов следует, что…» Зато ни один математик не пройдет — по крайней мере сознательно — мимо логической трудности и не попытается сделать вид, что ее нет. Более того, компетентный математик постарается обратить особое внимание на слабые с точки зрения логики звенья цепочки рассуждений и потратит бо льшую часть времени и усилий на то, чтобы укрепить их и сделать достаточно надежными. Дело в том, что на практике доказательство — это математическая история с собственным сюжетом. У нее есть завязка, кульминация и развязка. В ней часто можно обнаружить боковые сюжетные ходы, которые вырастают из основного ствола, но ведут каждый к своему результату. Британский математик Кристофер Зиман однажды заметил, что любая теорема — это своего рода интеллектуальная точка покоя, где можно сделать остановку, перевести дыхание и ощутить некоторую определенность. Побочная сюжетная линия помогает свести концы с концами в основном сюжете. Доказательство напоминает литературный сюжет и в других отношениях: в них часто имеются один или несколько главных героев — конечно, это не люди, а идеи, — сложные взаимоотношения которых ведут к развязке и финалу.

    Как явствует из формального определения, доказательство начинается с неких четких предположений, движется шаг за шагом от одного логического вывода к другому и заканчивается выводом о том, что вы, собственно, хотели доказать. Но доказательство — не просто список последовательных умозаключений, и логика в нем — не единственный критерий.

    Доказательство — это рассказ, который выслушивают и разбирают по косточкам люди, посвятившие большую часть жизни искусству прочтения таких историй и поиска в них ошибок и противоречий. Основная цель этих людей — доказать, что автор доказательства не прав. Эти люди обладают поразительной способностью замечать слабые места и без устали долбить в них, пока вся конструкция не рухнет, подняв облако пыли. Вообще, если какой-нибудь математик заявляет, что ему удалось решить крупную проблему (одну из великих, например, или что-нибудь попроще, но тоже достойное), остальные математики не спешат кричать «Ура!» и открывать шампанское. Профессиональный инстинкт велит им прежде всего постараться опровергнуть предложенное доказательство.

    Так или иначе, доказательство — это единственный надежный инструмент, при помощи которого математики могут убедиться в собственной правоте. Предвидя реакцию математического сообщества, исследователи тратят огромные усилия на проверку собственных выводов и поиск противоречий в них. Так проще. Если же история успешно выдерживает критический анализ коллег, сообщество вскоре приходит к выводу, что она верна, и в этот момент создатель доказательства получает заслуженные похвалы и награды. Во всяком случае, обычно бывает именно так, хотя непосредственным участникам событий это может видеться иначе. Когда ты вовлечен во что-то, то воспринимаешь все не так, как сторонний наблюдатель.

    Как математики решают задачи? Этот вопрос почти не изучался. Современные образовательные исследования на базе когнитивистики в основном ограничиваются изучением образования от начальной до высшей школы. Есть исследования, посвященные преподаванию математики в вузах, но их не так уж много. Кроме того, есть большая разница между освоением и преподаванием математики и новыми исследованиями в этой области. Многие из нас умеют играть на каком-нибудь музыкальном инструменте, но мало кто способен сочинить симфонический концерт или хотя бы написать популярную песенку.

    Когда речь заходит о творчестве на высочайшем уровне, почти все, что мы знаем — или думаем, что знаем, — мы получаем путем самоанализа. Мы просим математиков объяснить ход их мыслей и пытаемся выделить в этих описаниях общие принципы. Одной из первых серьезных попыток понять, как думают математики, можно считать книгу Жака Адамара «Исследование психологии процесса изобретения в области математики»1, вышедшую в 1945 г. Адамар расспросил ведущих математиков и физиков своего времени и попросил описать, как они думают в процессе работы над сложной задачей. И тут выявилась важная и даже необходимая роль того, что за неимением лучшего термина следует назвать интуицией. Их мысли направляло нечто подсознательное. Самые плодотворные их идеи и озарения не приходили постепенно, в результате логической пошаговой проработки, а возникали неожиданно, и весь процесс развивался скачкообразно.

    Одно из самых подробных описаний этого на первый взгляд нелогичного подхода к логическим вопросам дал французский математик Анри Пуанкаре — один из ведущих ученых конца XIX — начала XX в. Пуанкаре отметился едва ли не во всех областях математической науки, внес радикальные изменения во многие из них и основал несколько новых ее разделов. В последующих главах мы не раз будем возвращаться к его работам. Кроме того, Пуанкаре писал научно-популярные книги, и, возможно, именно огромный опыт и широта кругозора помогли ему глубже понять процесс собственного мышления. Во всяком случае, он был твердо убежден, что осознанная логика — лишь часть творческого процесса. Да, бывают моменты, когда без нее не обойтись: к примеру, без логики невозможно понять, в чем именно состоит проблема, как невозможно и проверить полученный ответ. Но в промежутке, считал Пуанкаре, его мозг нередко работал над задачей самостоятельно, ничего не сообщая хозяину, причем работал так, что хозяин был просто не в состоянии постичь его методы.

    Его описание творческого процесса различает три ключевых этапа: подготовка, вынашивание и озарение. Подготовка представляет собой сознательные логические усилия, направленные на то, чтобы увидеть проблему, точно сформулировать ее и попробовать решить традиционными методами. Этот этап, когда подсознание получает задание и материал для работы, Пуанкаре считал очень важным. Вынашивание происходит, когда вы прекращаете думать о задаче, отвлекаетесь от нее и занимаетесь чем-то другим. А подсознание тем временем начинает перебирать и комбинировать идеи, часто довольно дикие, и продолжается это до тех пор, пока вдали не забрезжит свет. Если повезет, результатом станет озарение: подсознание даст вам сигнал, и в вашем мозгу как будто вспыхнет лампочка — возникнет готовый ответ.

    Такое творчество подобно хождению по натянутому канату. С одной стороны, вы не можете решить сложную проблему, пока не познакомитесь как следует с областью, к которой она относится, а также с множеством других тем, которые могут пригодиться, а могут и не пригодиться в работе, просто на всякий случай. С другой стороны, если, изучая все нужные области математики, вы обратитесь к стандартному, уже много раз безрезультатно опробованному пути, то, возможно, уже не сумеете выбраться из наезженной колеи и ничего нового не откроете. Фокус в том, чтобы много знать и сознательно собирать свои знания воедино, работать над этим неделю за неделей… а затем отложить проблему в сторону. Тогда за дело возьмется интуитивная часть вашего сознания: она отсмотрит все идеи, повертит их так и эдак, оценит, где «холодно», а где «горячо», и сообщит вам, если что-нибудь найдет. Произойти это может в любой момент: Пуанкаре однажды понял, как нужно решать задачу, мучившую его несколько месяцев, выходя из автобуса. Шриниваса Рамануджан, индийский математик-самоучка, создававший замечательные формулы, часто видел новые идеи во сне. А Архимед, согласно легенде, нашел способ определить содержание золота в сплаве, принимая ванну.

    Пуанкаре особо указал, что без первоначального периода подготовки успеха не достичь. Подсознанию, настаивал он, необходимо дать как можно больше пищи для размышления, в противном случае удачные идеи, которые в конечном итоге могут привести к решению, просто не возникнут. Вдохновения без трудового пота не бывает. Кроме того, Пуанкаре наверняка знал — ведь об этом знает любой математик-исследователь, — что одного такого трехэтапного процесса редко бывает достаточно. Решение серьезной задачи, как правило, требует нескольких озарений. Этап вынашивания одной идеи может быть прерван вспомогательным процессом подготовки, вынашивания и озарения какой-то другой задачи, решение которой оказалось необходимым для работы над первой, основной идеей. Решение любой стоящей задачи, великой или не слишком, обычно включает в себя множество таких последовательностей, заключенных одна в другой, как замысловатые фракталы Бенуа Мандельброта. Вы решаете задачу, разбивая ее на подзадачи. Вы убеждаете себя, что если удастся решить эти подзадачи, то затем из полученных результатов можно будет собрать решение задачи в целом. Иногда они решаются, иногда приходится возвращаться к началу пути. Иногда подзадача сама рассыпается на несколько кусочков. Даже уследить за происходящим и удержать в голове общую картину порой очень и очень непросто.

    Я назвал работу подсознания «интуицией». «Интуиция» — одно из удобных, но вводящих в заблуждение слов, таких как «инстинкт», которые широко используются, хотя и не имеют четкого значения. Подобными словами называют нечто непонятное, присутствие чего тем не менее отрицать невозможно. Математическая интуиция —это способность разума чувствовать форму и структуру и распознавать закономерности, которые мы не в состоянии уловить на сознательном уровне. Интуиция не обладает кристальной чистотой осознанной логики, зато способна привлечь наше внимание к вещам, которые мы никогда не стали бы рассматривать сознательно. Нейробиологи еще только начинают понимать, как человеческий мозг справляется с гораздо более простыми задачами. Понятно, однако, что интуиция, как бы она ни работала, существует благодаря структуре мозга и его взаимодействию с внешним миром.

    Зачастую главное, чем помогает в работе интуиция, — она подсказывает, где у задачи слабые места, где к ней можно подступиться с максимальными шансами на успех. Математическое доказательство подобно сражению или, если вы предпочитаете менее воинственные сравнения, шахматной партии. Как только потенциально слабое место выявлено, исследователь бросает в бой (т. е. на его изучение) все свои возможности исследователя, весь математический аппарат, которым владеет. Как Архимед нуждался в точке опоры, чтобы перевернуть Землю, так и математик-исследователь нуждается в рычагах воздействия на задачу. Одна-единственная ключевая идея может раскрыть ее, сделать доступной для стандартных методов. Ну а после этого довести решение задачи до конца — дело техники.

    elementy.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *