Круги Эйлера — Википедия
Пример кругов Эйлера. Буквами обозначены, например, свойства: — живое существо, — человек, — неживая вещьКруги́ Э́йлера[1] — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Леонардом Эйлером. Используется в математике, логике, менеджменте и других прикладных направлениях.
Важный частный случай кругов Эйлера — диаграммы Эйлера — Венна, изображающие все комбинаций свойств, то есть конечную булеву алгебру. При диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовались и немецкие математики Алекс ван Сивцео и Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Поэтому такие схемы иногда называют Диаграммы Эйлера — Венна.
- ↑ «Круги…» — это условный термин, вместо кругов могут быть любые многомерные фигуры, иерархически расположенные в пространстве, то есть одни фигуры поглощают либо часть других фигур, либо полностью.
- ↑ Leibniz G. W. Opuscules et fragments inédits de Leibniz. — Paris, 1903. — p. 293—321.
Логика | |
---|---|
Формальная | Логические операции с понятиями Изменение содержания понятия: отрицание • ограничение • обобщение • деление |
Математическая (теоретическая, символическая) | Логические связки (операции) над высказываниями Высказывание — построение над множеством {B, , , , 0, 1} |
См. также | импликация () • Круги Эйлера/Диаграмма Венна • Теория множеств |
Круги Эйлера — Википедия (с комментариями)
Материал из Википедии — свободной энциклопедии
Круги́ Э́йлера[1] — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Леонардом Эйлером. Используется в математике, логике, менеджменте и других прикладных направлениях.
Важный частный случай кругов Эйлера — диаграммы Эйлера — Венна, изображающие все <math>2^n</math> комбинаций <math>n</math> свойств, то есть конечную булеву алгебру. При <math>n=3</math> диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.[2]
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Поэтому такие схемы иногда называют Диаграммы Эйлера — Венна.
См. также
Напишите отзыв о статье «Круги Эйлера»
Примечания
- ↑ «Круги…» — это условный термин, вместо кругов могут быть любые многомерные фигуры, иерархически расположенные в пространстве, то есть одни фигуры поглощают либо часть других фигур, либо полностью.
- ↑ Leibniz G. W. Opuscules et fragments inédits de Leibniz. — Paris, 1903. — p. 293—321.
|
Отрывок, характеризующий Круги Эйлера
В такие минуты в душе княжны Марьи собиралось чувство, похожее на гордость жертвы. И вдруг в такие то минуты, при ней, этот отец, которого она осуждала, или искал очки, ощупывая подле них и не видя, или забывал то, что сейчас было, или делал слабевшими ногами неверный шаг и оглядывался, не видал ли кто его слабости, или, что было хуже всего, он за обедом, когда не было гостей, возбуждавших его, вдруг задремывал, выпуская салфетку, и склонялся над тарелкой, трясущейся головой. «Он стар и слаб, а я смею осуждать его!» думала она с отвращением к самой себе в такие минуты.В 1811 м году в Москве жил быстро вошедший в моду французский доктор, огромный ростом, красавец, любезный, как француз и, как говорили все в Москве, врач необыкновенного искусства – Метивье. Он был принят в домах высшего общества не как доктор, а как равный.
Князь Николай Андреич, смеявшийся над медициной, последнее время, по совету m lle Bourienne, допустил к себе этого доктора и привык к нему. Метивье раза два в неделю бывал у князя.
В Николин день, в именины князя, вся Москва была у подъезда его дома, но он никого не велел принимать; а только немногих, список которых он передал княжне Марье, велел звать к обеду.
Метивье, приехавший утром с поздравлением, в качестве доктора, нашел приличным de forcer la consigne [нарушить запрет], как он сказал княжне Марье, и вошел к князю. Случилось так, что в это именинное утро старый князь был в одном из своих самых дурных расположений духа. Он целое утро ходил по дому, придираясь ко всем и делая вид, что он не понимает того, что ему говорят, и что его не понимают. Княжна Марья твердо знала это состояние духа тихой и озабоченной ворчливости, которая обыкновенно разрешалась взрывом бешенства, и как перед заряженным, с взведенными курками, ружьем, ходила всё это утро, ожидая неизбежного выстрела. Утро до приезда доктора прошло благополучно. Пропустив доктора, княжна Марья села с книгой в гостиной у двери, от которой она могла слышать всё то, что происходило в кабинете.
Сначала она слышала один голос Метивье, потом голос отца, потом оба голоса заговорили вместе, дверь распахнулась и на пороге показалась испуганная, красивая фигура Метивье с его черным хохлом, и фигура князя в колпаке и халате с изуродованным бешенством лицом и опущенными зрачками глаз.
wiki-org.ru
Диаграмма Эйлера — Википедия. Что такое Диаграмма Эйлера
Пример кругов Эйлера. Буквами обозначены, например, свойства: B{\displaystyle B} — живое существо, A{\displaystyle A} — человек, C{\displaystyle C} — неживая вещьДиагра́ммы Э́йлера (круги́ Э́йлера) — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Первое их использование приписывают Леонарду Эйлеру (подробней см. ниже). Используется в математике, логике, менеджменте и других прикладных направлениях. Не следует их путать с диаграммами Эйлера — Венна (о различии между ними см. ниже).
Диаграммы Эйлера также называют кругами Эйлера. При этом «круги» — это условный термин, вместо кругов могут быть любые фигуры.
На диаграммах Эйлера множества изображаются кругами (или другими фигурами). Причём непересекающиеся множества изображены непересекающимися кругами, а подмножества изображены вложенными кругами. Например, диаграмма на рисунке показывает, что множество A является подмножеством B, а B не пересекается с C.
История
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.[1]
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Венн предложил свою схему изображения отношения между множествами, которая теперь называется диаграммами Эйлера — Венна. Первоначально круги Эйлера возникли на основе идей силлогистики Аристотеля. Диаграммы Венна были созданы для решения задач математической логики. Их основная идея разложения на конституенты возникла на основе алгебры логики [2].
Связь диаграмм Эйлера и Венна
Пример получения произвольных кругов Эйлера из диаграмм Венна с пустыми (чёрными) множествами
Диаграммы Эйлера — Венна в отличие от диаграмм Эйлера изображают все 2n{\displaystyle 2^{n}} комбинаций n{\displaystyle n} свойств, то есть конечную булеву алгебру. При n=3{\displaystyle n=3} диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
На рис. ниже даны диаграммы Венна и Эйлера для 3 множеств однозначных натуральных чисел:
- A={1,2,5}{\displaystyle A=\{1,\,2,\,5\}}
- B={1,6}{\displaystyle B=\{1,\,6\}}
- C={4,7}{\displaystyle C=\{4,\,7\}}
диаграмма Эйлера
диаграмма Венна
Иногда, если какая-то комбинация свойств соответствует пустому множеству, то эту комбинацию закрашивают. На рисунке справа даны 22 существенно различных диаграмм Венна с 3 кругами (сверху) и соответствующие им диаграммы Эйлера (снизу). Некоторые из диаграмм Эйлера не типичны, а некоторые даже эквивалентны диаграммам Венна. Черные области указывают на то, что в них нет элементов (пустые множества).
Примеры
На рисунке внизу дана Диаграмма Эйлера, иллюстрирующая тот факт, что множество существ с 4 конечностями является подмножеством животных, которое не пересекается с множеством минералов.
Диаграмма ЭйлераСм. также
Примечания
- ↑ Leibniz G. W. Opuscules et fragments inédits de Leibniz. — Paris, 1903. — p. 293—321.
- ↑ Кузичев, 1968, с. 25.
Литература
- Кузичев А. С. Диаграммы Венна. История и применения. — М.: Наука, 1968. — 249 с.
wiki.sc
Круги Эйлера Википедия
Пример кругов Эйлера. Буквами обозначены, например, свойства: B{\displaystyle B} — живое существо, A{\displaystyle A} — человек, C{\displaystyle C} — неживая вещьДиагра́ммы Э́йлера (круги́ Э́йлера) — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Первое их использование приписывают Леонарду Эйлеру (подробней см. ниже). Используется в математике, логике, менеджменте и других прикладных направлениях. Не следует их путать с диаграммами Эйлера — Венна (о различии между ними см. ниже).
Диаграммы Эйлера также называют кругами Эйлера. При этом «круги» — это условный термин, вместо кругов могут быть любые фигуры.
На диаграммах Эйлера множества изображаются кругами (или другими фигурами). Причём непересекающиеся множества изображены непересекающимися кругами, а подмножества изображены вложенными кругами. Например, диаграмма на рисунке показывает, что множество A является подмножеством B, а B не пересекается с C.
История[ | ]
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.[1]
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Венн предложил свою схему изображения отношения между множествами, которая теперь называется диаграммами Эйлера — Венна. Первоначально круги Эйлера возникли на основе идей силлогистики Аристотеля. Диаграммы Венна были созданы для решения задач математической логики. Их основная идея разложения на конституенты возникла на основе алгебры логики[2].
Связь диаграмм Эйлера и Венна[ | ]
Пример получения произвольных кругов Эйлера из диаграмм Венна с пустыми (чёрными) множествами
ru-wiki.ru
Круги Эйлера Википедия
Пример кругов Эйлера. Буквами обозначены, например, свойства: B{\displaystyle B} — живое существо, A{\displaystyle A} — человек, C{\displaystyle C} — неживая вещьДиагра́ммы Э́йлера (круги́ Э́йлера) — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Первое их использование приписывают Леонарду Эйлеру (подробней см. ниже). Используется в математике, логике, менеджменте и других прикладных направлениях. Не следует их путать с диаграммами Эйлера — Венна (о различии между ними см. ниже).
Диаграммы Эйлера также называют кругами Эйлера. При этом «круги» — это условный термин, вместо кругов могут быть любые фигуры.
На диаграммах Эйлера множества изображаются кругами (или другими фигурами). Причём непересекающиеся множества изображены непересекающимися кругами, а подмножества изображены вложенными кругами. Например, диаграмма на рисунке показывает, что множество A является подмножеством B, а B не пересекается с C.
История
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.[1]
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Венн предложил свою схему изображения отношения между множествами, которая теперь называется диаграммами Эйлера — Венна. Первоначально круги Эйлера возникли на основе идей силлогистики Аристотеля. Диаграммы Венна были созданы для решения задач математической логики. Их основная идея разложения на конституенты возникла на основе алгебры логики[2].
Связь диаграмм Эйлера и Венна
Пример получения произвольных кругов Эйлера из диаграмм Венна с пустыми (чёрными) множествами
Диаграммы Эйлера — Венна в отличие от диаграмм Эйлера изображают все 2n{\displaystyle 2^{n}} комбинаций n{\displaystyle n} свойств, то есть конечную булеву алгебру. При n=3{\displaystyle n=3} диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
На рис. ниже даны диаграммы Венна и Эйлера для 3 множеств однозначных натуральных чисел:
- A={1,2,5}{\displaystyle A=\{1,\,2,\,5\}}
- B={1,6}{\displaystyle B=\{1,\,6\}}
- C={4,7}{\displaystyle C=\{4,\,7\}}
диаграмма Эйлера
диаграмма Венна
Иногда, если какая-то комбинация свойств соответствует пустому множеству, то эту комбинацию закрашивают. На рисунке справа даны 22 существенно различных диаграмм Венна с 3 кругами (сверху) и соответствующие им диаграммы Эйлера (снизу). Некоторые из диаграмм Эйлера не типичны, а некоторые даже эквивалентны диаграммам Венна. Черные области указывают на то, что в них нет элементов (пустые множества).
Примеры
На рисунке внизу дана Диаграмма Эйлера, иллюстрирующая тот факт, что множество существ с 4 конечностями является подмножеством животных, которое не пересекается с множеством минералов.
Диаграмма ЭйлераСм. также
Примечания
- ↑ Leibniz G. W. Opuscules et fragments inédits de Leibniz. — Paris, 1903. — p. 293—321.
- ↑ Кузичев, 1968, с. 25.
Литература
- Кузичев А. С. Диаграммы Венна. История и применения. — М.: Наука, 1968. — 249 с.
wikiredia.ru
Диаграмма Эйлера — Википедия
Материал из Википедии — свободной энциклопедии
Пример кругов Эйлера. Буквами обозначены, например, свойства: B{\displaystyle B} — живое существо, A{\displaystyle A} — человек, C{\displaystyle C} — неживая вещьДиагра́ммы Э́йлера (круги́ Э́йлера) — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Первое их использование приписывают Леонарду Эйлеру (подробней см. ниже). Используется в математике, логике, менеджменте и других прикладных направлениях. Не следует их путать с диаграммами Эйлера — Венна (о различии между ними см. ниже).
Диаграммы Эйлера также называют кругами Эйлера. При этом «круги» — это условный термин, вместо кругов могут быть любые фигуры.
На диаграммах Эйлера множества изображаются кругами (или другими фигурами). Причём непересекающиеся множества изображены непересекающимися кругами, а подмножества изображены вложенными кругами. Например, диаграмма на рисунке показывает, что множество A является подмножеством B, а B не пересекается с C.
История
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.[1]
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Венн предложил свою схему изображения отношения между множествами, которая теперь называется диаграммами Эйлера — Венна. Первоначально круги Эйлера возникли на основе идей силлогистики Аристотеля. Диаграммы Венна были созданы для решения задач математической логики. Их основная идея разложения на конституенты возникла на основе алгебры логики[2].
Видео по теме
Связь диаграмм Эйлера и Венна
Пример получения произвольных кругов Эйлера из диаграмм Венна с пустыми (чёрными) множествами
Диаграммы Эйлера — Венна в отличие от диаграмм Эйлера изображают все 2n{\displaystyle 2^{n}} комбинаций n{\displaystyle n} свойств, то есть конечную булеву алгебру. При n=3{\displaystyle n=3} диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
На рис. ниже даны диаграммы Венна и Эйлера для 3 множеств однозначных натуральных чисел:
- A={1,2,5}{\displaystyle A=\{1,\,2,\,5\}}
- B={1,6}{\displaystyle B=\{1,\,6\}}
- C={4,7}{\displaystyle C=\{4,\,7\}}
диаграмма Эйлера
диаграмма Венна
Иногда, если какая-то комбинация свойств соответствует пустому множеству, то эту комбинацию закрашивают. На рисунке справа даны 22 существенно различных диаграмм Венна с 3 кругами (сверху) и соответствующие им диаграммы Эйлера (снизу). Некоторые из диаграмм Эйлера не типичны, а некоторые даже эквивалентны диаграммам Венна. Черные области указывают на то, что в них нет элементов (пустые множества).
Примеры
На рисунке внизу дана Диаграмма Эйлера, иллюстрирующая тот факт, что множество существ с 4 конечностями является подмножеством животных, которое не пересекается с множеством минералов.
Диаграмма ЭйлераСм. также
Примечания
- ↑ Leibniz G. W. Opuscules et fragments inédits de Leibniz. — Paris, 1903. — p. 293—321.
- ↑ Кузичев, 1968, с. 25.
Литература
- Кузичев А. С. Диаграммы Венна. История и применения. — М.: Наука, 1968. — 249 с.
wiki2.red
Диаграмма Эйлера Википедия
Пример кругов Эйлера. Буквами обозначены, например, свойства: B{\displaystyle B} — живое существо, A{\displaystyle A} — человек, C{\displaystyle C} — неживая вещьДиагра́ммы Э́йлера (круги́ Э́йлера) — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Первое их использование приписывают Леонарду Эйлеру (подробней см. ниже). Используется в математике, логике, менеджменте и других прикладных направлениях. Не следует их путать с диаграммами Эйлера — Венна (о различии между ними см. ниже).
Диаграммы Эйлера также называют кругами Эйлера. При этом «круги» — это условный термин, вместо кругов могут быть любые фигуры.
На диаграммах Эйлера множества изображаются кругами (или другими фигурами). Причём непересекающиеся множества изображены непересекающимися кругами, а подмножества изображены вложенными кругами. Например, диаграмма на рисунке показывает, что множество A является подмножеством B, а B не пересекается с C.
История[ | ]
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.[1]
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Венн предложил свою схему изображения отношения между множествами, которая теперь называется диаграммами Эйлера — Венна. Первоначально круги Эйлера возникли на основе идей силлогистики Аристотеля. Диаграммы Венна были созданы для решения задач математической логики. Их основная идея разложения на конституенты возникла на основе алгебры логики[2].
Связь диаграмм Эйлера и Венна[ | ]
ru-wiki.ru