Знак иррационального числа – Обозначение иррациональных чисел. Иррациональное число буква.

Иррациональные числа — ALL

Иррациональными называются числа, которые представимы в виде бесконечной непериодической десятичной дроби.

Введём обозначения:

N — множество натуральных чисел;

Z — множество целых чисел;

Q — множество рациональных чисел;

I — множество иррациональных чисел;

R — множество действительных (вещественных) чисел;

a0 — целая часть числа;

aj — цифра дробной части (мантиссы) числа, j>0;

a0,a1…an — бесконечная непериодическая десятичная дробь.

,

где

Введём обозначения:

r, r1, r2 — рациональные числа;

Q1 — подмножество рациональных чисел — нижний класс сечения;

Q2 — подмножество рациональных чисел — верхний класс сечения;

supQ1 — верхняя граница множества

Q1;

infQ2 — нижняя граница множества Q2;

Q1|Q2 — сечение множества рациональных чисел Q.

g=supQ1=infQ2 — действительное число — граница сечения;

Разбиением будем считать разделение множества всех рациональных чисел на два непустых подмножества. ,

Сечением будем считать разбиение, имеющее следующие свойства: ,

Иррациональные числа можно определить как подмножество не рациональных границ множества всех сечений множества рациональных чисел.

  • Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления. Т.1, М.: Физматлит, 207, стр.20.
  • Участник:Logic-samara

allll.net

Объясните на пальцах, какие числа называются иррациональными?

Иррациональные числа в отличие от рациональных (см. “Рациональные числа”) не могут быть представлены в виде обыкновенной несократимой дроби вида: m / n, где m и n – целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например: — отношение длины диагонали квадрата к длине его стороны равно, V2 — отношение длины окружности к длине её диаметра равно иррациональному числу =3,14…. <a rel=»nofollow» href=»http://www.bymath.net/studyguide/alg/sec/alg18.html» target=»_blank»>http://www.bymath.net/studyguide/alg/sec/alg18.html</a> читай — там хорошо написано. или слазь в ВИКИПЕДИЮ

Те в которых есть корни. Например корень из 5 или корень из 10 Ну нам так наш препод по математике объяснял.

ЧИСЛО, ИРРАЦИОНАЛЬНОЕ, число, которое не может быть выражено в виде дроби. Следовательно, иррациональные числа — это числа с бесконечным числом (непериодических) знаков после запятой

ИРРАЦИОН? АЛЬНОЕ ЧИСЛ? О — действительное число, не являющееся рациональным, то есть которое не может быть точно выражено дробью m/n, где m и n — целые числа. Действительные иррациональные числа могут быть представлены бесконечными непериодическими десятичными дробями. Иррациональные числа подразделяются на нерациональные алгебраические числа и трансцендентные числа

touch.otvet.mail.ru

Иррациональное число — Википедия. Что такое Иррациональное число

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде дроби mn{\displaystyle {\frac {m}{n}}}, где m{\displaystyle m} — целое число, n{\displaystyle n} — натуральное число. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Таким образом множество иррациональных чисел есть разность R∖Q{\displaystyle \mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков, несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа 2{\displaystyle {\sqrt {2}}}.[1]

Свойства

  • Сумма двух положительных иррациональных чисел может быть рациональным числом.
  • Иррациональные числа определяют дедекиндовы сечения во множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя различными числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.[источник не указан 155 дней]

Алгебраические и трансцендентные числа

Каждое иррациональное число является либо алгебраическим, либо трансцендентным. Множество алгебраических чисел является счётным множеством. Так как множество вещественных чисел несчётно, то множество иррациональных чисел несчётно.

Множество иррациональных чисел является множеством второй категории.[2]

Каждое вещественное трансцендентное число является иррациональным.

Иррациональные числа и непрерывные дроби

Иррациональное число представляются бесконечной непрерывной дробью. Пример, число e:

e=[2;1,2,1,1,4,1,1,6,1,…,1,2n,1,…].{\displaystyle e=[2;1,2,1,1,4,1,1,6,1,\ldots ,1,2n,1,\ldots ].}

Квадратичным иррациональностям соответствуют периодические непрерывные дроби.

ϕ=1+52=[1;1,1,1,1,…].{\displaystyle \phi ={\frac {1+{\sqrt {5}}}{2}}=[1;1,1,1,1,\dots ].}

Примеры

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: 2{\displaystyle {\sqrt {2}}} рационален, то есть представляется в виде дроби mn{\displaystyle {\frac {m}{n}}}, где m{\displaystyle m} — целое число, а n{\displaystyle n} — натуральное число.

Возведём предполагаемое равенство в квадрат:

2=mn⇒2=m2n2⇒m2=2n2{\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}}.

В каноническое разложение левой части равенства число 2{\displaystyle 2} входит в чётной степени, а в разложение 2n2{\displaystyle 2n^{2}} — в нечётной. Поэтому равенство m2=2n2{\displaystyle m^{2}=2n^{2}} невозможно. Значит, исходное предположение было неверным, и 2{\displaystyle {\sqrt {2}}} — иррациональное число.

Двоичный логарифм числа 3

Допустим противное: log2⁡3{\displaystyle \log _{2}3} рационален, то есть представляется в виде дроби mn{\displaystyle {\frac {m}{n}}}, где m{\displaystyle m} и n{\displaystyle n} — целые числа. Поскольку log2⁡3>0{\displaystyle \log _{2}3>0}, m{\displaystyle m} и n{\displaystyle n} могут быть выбраны положительными. Тогда

log2⁡3=mn⇒m=nlog2⁡3⇒2m=2nlog2⁡3⇒2m=3n{\displaystyle \log _{2}3={\frac {m}{n}}\Rightarrow m=n\log _{2}3\Rightarrow 2^{m}=2^{n\log _{2}3}\Rightarrow 2^{m}=3^{n}}

Но 2m{\displaystyle 2^{m}} чётно, а правая часть получившегося равенства нечётна. Получаем противоречие.

e

См. раздел «Доказательство иррациональности» в статье «e».

История

Античность

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (приблизительно 750—690 года до нашей эры) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены[источник не указан 1083 дня].

Первое доказательство существования иррациональных чисел, а точнее существование несоизмеримых отрезков, обычно приписывается пифагорейцу Гиппасу из Метапонта (приблизительно 470 год до нашей эры). Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок[источник не указан 1083 дня].

Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его, изучая длины сторон пентаграммы.[3] Поэтому разумно предположить, что это было золотое сечение так как это и есть отношение диагонали к стороне в правильном пятиугольнике.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Феодор Киренский доказал[4] иррациональность корней натуральных чисел до 17 (исключая, естественно, точные квадраты — 1, 4, 9 и 16), но остановился на этом, так как имевшаяся в его инструментарии алгебра не позволяла доказать иррациональность квадратного корня из 17. По поводу того, каким могло быть это доказательство, историками математики было высказано несколько различных предположений. Согласно наиболее правдоподобному[5] предположению Жана Итара[fr], оно было основано на теореме о том, что нечётное квадратное число делится на восемь с остатком один[6].

Позже Евдокс Книдский (410 или 408 г. до н. э. — 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени — сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. Десятая книга «Начал» Евклида посвящена классификации иррациональных величин.

Средние века

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

Рациональной [величиной] является, например, 10, 12, 3%, 6% и так далее, поскольку эти величины произнесены и выражены количественно. Что не рационально, то иррационально, и невозможно произнести или представить соответствующую величину количественно. Например, квадратные корни чисел таких так 10, 15, 20 — не являющихся квадратами.

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни — иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

результат сложения иррациональной величины и рациональной, результат вычитания рациональной величины из иррациональной, результат вычитания иррациональной величины из рациональной.

Египетский математик Абу Камил (ок. 850 г. н. э. — ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях — в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. — 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от неё, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней.

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV—XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге «Йуктибхаза».

Новое время

В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр (1667—1754) и Леонард Эйлер (1707—1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические и трансцендентные (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса, Гейне, Кантора и Дедекинда. Хотя ещё в 1869 году Мерэ начал рассмотрения, схожие с работами Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемыми) дедекиндовыми сечениями множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами.

Цепные дроби, тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века — в работах Лагранжа. Дирихле также внёс значительный вклад в развитие теории цепных дробей. В 1761 году Ламберт с помощю цепных дробей показал, что π{\displaystyle \pi } не является рациональным числом, а также что ex{\displaystyle e^{x}} и tg⁡x{\displaystyle \operatorname {tg} x} иррациональны при любом ненулевом рациональном x{\displaystyle x}. Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя — Клиффорда, показал, что π2{\displaystyle \pi ^{2}} иррационально, откуда иррациональность π{\displaystyle \pi } следует тривиально (рациональное число в квадрате дало бы рациональное).

Существование трансцендентных чисел было доказано Лиувиллем в 1844—1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд Линдеман в 1882 году, основываясь на этом результате, показал трансцендентность π{\displaystyle \pi }. Доказательство Линдеманна было затем упрощено Вейерштрассом в 1885 году, ещё более упрощено Давидом Гильбертом в 1893 году и, наконец, доведено до почти элементарного Адольфом Гурвицем и Паулем Горданом.

См. также

Примечания

Литература

Счётные
множества
Вещественные числа
и их расширения
Инструменты расширения
числовых систем
Иерархия чисел
−1,1,12,0,12,23,…{\displaystyle -1,\;1,\;{\frac {1}{2}},\;\;0{,}12,{\frac {2}{3}},\;\ldots }Рациональные числа
−1,1,0,12,12,π,2,…{\displaystyle -1,\;1,\;\;0{,}12,{\frac {1}{2}},\;\pi ,\;{\sqrt {2}},\;\ldots }Вещественные числа
−1,12,0,12,π,3i+2,eiπ/3,…{\displaystyle -1,\;{\frac {1}{2}},\;0{,}12,\;\pi ,\;3i+2,\;e^{i\pi /3},\;\ldots }Комплексные числа
1,i,j,k,2i+πj−12k,…{\displaystyle 1,\;i,\;j,\;k,\;2i+\pi j-{\frac {1}{2}}k,\;\dots }Кватернионы
1,i,j,k,l,m,n,o,2−5l+π3m,…{\displaystyle 1,\;i,\;j,\;k,\;l,\;m,\;n,\;o,\;2-5l+{\frac {\pi }{3}}m,\;\dots }Октонионы
1,e1,e2,…,e15,7e2+25e7−13e15,…{\displaystyle 1,\;e_{1},\;e_{2},\;\dots ,\;e_{15},\;7e_{2}+{\frac {2}{5}}e_{7}-{\frac {1}{3}}e_{15},\;\dots }Седенионы
Другие
числовые системы
См. также

wiki.sc

Что такое иррациональное число

Иррациональное число является действительным числом, которое невозможно представить как рациональную дробь .
Иррациональное число можно представить как бесконечную непериодическую дробь. Существует множество иррациональных чисел, которое обозначается буквой I.
К примеру, к иррациональным числам относятся следующие виды чисел:

Над иррациональными числами можно выполнить 4 основные арифметические операции. При выполнении этих операций можно получить не обязательно иррациональное число. Результат может быть, например, рациональным.

К примеру, при умножении двух иррациональных чисел можно получить рациональное число.
Рассмотрим подобный случай на примере.

Пример.
Найти результат умножения двух иррациональных чисел и .

Решение.
Умножим числа:

   

Ответ. .

Таким образом, произведение двух иррациональных чисел является числом 6, которое относится к целым, или даже натуральным числам.
Это то, что можно коротко рассказать об иррациональных числах.

ru.solverbook.com

Подскажите, пожалуйста, что такое рациональные и иррациональные дроби ?

не дроби, а числа.

Q — рациональные числа. Рациональные числа — это числа, которые можно представить в виде дроби m/n, где m — целое, а n — натуральное число. Z ( Q. Пример : 5 = 5/1 ; 8,377 = 8377/1000 ; 0,3(18) = 0,318181818…= 7/22 : Квадратный корень из 5 — иррациональное число. 0,2378425…. Иррациональным числом — называют бесконечную, десятичную, не переодическую дробь. Множество рациональных и иррациональных чисел. <a rel=»nofollow» href=»http://vixodest.ru/study_mathematic/194-racionalnye-i-irracionalnye-chisla.html» target=»_blank»>http://vixodest.ru/study_mathematic/194-racionalnye-i-irracionalnye-chisla.html</a>

Рациональное число может быть выражено конечным числом знаков ( 9/3=3) Иррациональное число не может быть выражено конечным числом знаков (1/3=0,33333….)

Посмотрите лучше в Википедии иррациональные и рациональные числа. Потому что предыдущие ответы с ошибками — понятие рационального/иррационального числа не связано напрямую с конечными и бесконечными десятичными дробями. Число 1/3 — рациональное, а множество всех вещественных чисел строится немного сложнее, чем просто «бесконечная, десятичная, не переодическая дробь».

touch.otvet.mail.ru

Иррациональное число — Википедия РУ

Античность

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (приблизительно 750—690 года до нашей эры) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены[источник не указан 1321 день].

Первое доказательство существования иррациональных чисел, а точнее существование несоизмеримых отрезков, обычно приписывается пифагорейцу Гиппасу из Метапонта (приблизительно 470 год до нашей эры). Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок[источник не указан 1321 день].

Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его, изучая длины сторон пентаграммы.[3] Поэтому разумно предположить, что это было золотое сечение так как это и есть отношение диагонали к стороне в правильном пятиугольнике.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Феодор Киренский доказал[4] иррациональность корней натуральных чисел до 17 (исключая, естественно, точные квадраты — 1, 4, 9 и 16), но остановился на этом, так как имевшаяся в его инструментарии алгебра не позволяла доказать иррациональность квадратного корня из 17. По поводу того, каким могло быть это доказательство, историками математики было высказано несколько различных предположений. Согласно наиболее правдоподобному[5] предположению Жана Итара[fr], оно было основано на теореме о том, что нечётное квадратное число делится на восемь с остатком один[6].

Позже Евдокс Книдский (410 или 408 г. до н. э. — 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени — сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. Десятая книга «Начал» Евклида посвящена классификации иррациональных величин.

Средние века

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

 Рациональной [величиной] является, например, 10, 12, 3%, 6% и так далее, поскольку эти величины произнесены и выражены количественно. Что не рационально, то иррационально, и невозможно произнести или представить соответствующую величину количественно. Например, квадратные корни чисел таких, как 10, 15, 20 — не являющихся квадратами. 

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни — иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

 результат сложения иррациональной величины и рациональной, результат вычитания рациональной величины из иррациональной, результат вычитания иррациональной величины из рациональной. 

Египетский математик Абу Камил (ок. 850 г. н. э. — ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях — в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. — 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

 Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от неё, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней. 

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV—XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге «Йуктибхаза».

Новое время

В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр (1667—1754) и Леонард Эйлер (1707—1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические и трансцендентные (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса, Гейне, Кантора и Дедекинда. Хотя ещё в 1869 году Мерэ начал рассмотрения, схожие с работами Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемыми) дедекиндовыми сечениями множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами.

Цепные дроби, тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века — в работах Лагранжа. Дирихле также внёс значительный вклад в развитие теории цепных дробей. В 1761 году Ламберт с помощю цепных дробей показал, что π{\displaystyle \pi }  не является рациональным числом, а также что ex{\displaystyle e^{x}}  и tg⁡x{\displaystyle \operatorname {tg} x}  иррациональны при любом ненулевом рациональном x{\displaystyle x} . Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя — Клиффорда, показал, что π2{\displaystyle \pi ^{2}}  иррационально, откуда иррациональность π{\displaystyle \pi }  следует тривиально (рациональное число в квадрате дало бы рациональное).

Существование трансцендентных чисел было доказано Лиувиллем в 1844—1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд Линдеман в 1882 году, основываясь на этом результате, показал трансцендентность π{\displaystyle \pi } . Доказательство Линдеманна было затем упрощено Вейерштрассом в 1885 году, ещё более упрощено Давидом Гильбертом в 1893 году и, наконец, доведено до почти элементарного Адольфом Гурвицем и Паулем Горданом.

www.http-wikipediya.ru

Ответы@Mail.Ru: что такое иррациональные числа?

Это _не_ рациональные — то есть такие, которые нельзя представить в виде обыкновенной дроби. Само собой, это должны быть числа с бесконечным числом знаков после запятой: Например 1/3 = 0,3333333… -это рациональное число, ибо 1 / 3. квадратный корень из 2 = 1,414… -это уже иррациональное — в виде отношения двух целых чисел не представимо. Числа пи и e — тоже иррациональные, но эти уже навываются трансцендентными.

Бесконечная десятичная непереодическая дробь и есть иррациональное число.

Иррациональное число — число, которое нельзя представить в виде отношения двух целых чисел — то есть просто дроби. <br>Необходимость их ведения в математику была вызвана необходимостью измерения длин в геометрии. <br>Иначе, например, не понятно, как работает Теорема Пифагора, когда длины катетов в прямоугольном треугольнике равны по 1см. Чему равна гипотенуза? На множестве дробей такого ответа нет. Пришлось вводить новые числа… <br>Строгое введение иррациональных чисел — достаточно сложно и изучается только на первых курсах математических факультетов.

На пальцах так Числа, которые возникли в результате натурального счета — НАТУРАЛЬНЫЕ Числа, которые возникли путем расширения операции вычитании введения нуля — ЦЕЛЫЕ числа, которые возникают в результате деления целого числа на целое — РАЦИОНАЛЬНЫЕ (то есть они представимы в виде дроби целое/целое) числа, которые не представимы в виде дроби — ИРРАЦИОНАЛЬНЫЕ Иррациональные числа бывают АЛГЕБРАИЧЕСКИМИ (являются корнями многочленов, например, квадратного уравнения, с рациональными коэффициентами) , например корень из двух, и ТРАНСЦЕНДЕНТНЫМИ, которые не являются решениями никакого алгебраического уравнения, пример — число пи. Рациональные и иррациоанльные числа в совокупности образуют множество ДЕЙСТВИТЕЛЬНЫХ (или вещественных) чисел, которые описывают все точки числовой прямой.

Бесконечная десятичная непереодическая дробь и есть иррациональное число.

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *