Равенства на кругах эйлера – описание, примеры, для дошкольников, для школьников

Содержание

Круги Эйлера онлайн - 4 Июля 2016 - Примеры решений задач

Круги Эйлера, диаграммы Венна

Геометрическое моделирование множеств. Калькулятор.

Для наглядного представления множеств и отношений между ними используется диаграммы Венна (иногда их называют кругами Эйлера или диаграммами Эйлера – Венна).

Универсальное множество изображают в виде прямоугольника, а множества, входящие в универсальное множество,  –  в виде кругов внутри прямоугольника; элементу множества соответствует точка внутри круга.

С помощью диаграмм Венна удобно иллюстрировать операции над множествами.

Калькулятор для построения кругов Эйлера.

Правила вввода основных обозначений операций над множествами:

Операция Обозначение
  математическое в калькуляторе
Дополнение
$\bar{A}$
        A’
Пересечение (A∩B) (A intersection B)
Объединение (А⋃B) (A union B)
Симметрическая разность (A∆B) (symmetric difference of A and B)
Относительное дополнение (A\B) (A\B)

 

Пример. Изобразить множество D с помощью кругов Эйлера  (нарисовать диаграмму Эйлера-Венна):

 

Множество D

Вводим в калькулятор

1

(А∩B’) ∪ C

(A intersection B’) union C

2

(А∩B) ∪C’

(A intersection B’) union C’

3

(А∪B) ∩ C

(A union B’) intersection C

4

(А∪B) ∩C’

(A union B’) intersection C’

5

(А∩B) ∪ C

(A intersection B) union C

6

(А∩B) ∪ (А∩C)

(A intersection B) union (A intersection C)

В таблице показано: как правильно вводить в калькулятор выражения  для операций над множествами.

www.reshim.su

Круги Эйлера на примере решения задачи

При решении многих задач, связанных с множествами, незаменимым оказывается приём, основанный на использовании так называемых «кругов Эйлера». Эти диаграммы впервые появились в работах одного из величайших математиков в истории Леонарда Эйлера, который в течение продолжительного времени жил и работал в России и был членом Петербургской академии наук. Использование кругов Эйлера добавляет наглядности при решении сложных задач, делая многие вещи буквально очевидными. Предлагаю вам в этом убедиться самостоятельно на примере решения следующей задачи.

Пример решения задачи с помощью кругов Эйлера

58 человек ежедневно добираются на работу общественным транспортом: на автобусе, на трамвае или на метро. Каждый пользуется хотя бы одним из видов транспорта. 42 человека из них используют метро, 32 – трамвай, 44 – автобус. 21 человек из них используют метро и трамвай, 31 – метро и автобус, 22 – трамвай и автобус. Сколько среди них человек, которые используют все три вида транспорта, чтобы добраться на работу?

Тут нужно понимать, что если сказано, что «42 человека используют метро», то это вовсе не означает, что кроме метро они не используют никаких других видов транспорта. Кто-нибудь из них может быть и использует. Может быть ещё какой-то один вид транспорта, трамвай или автобус. А может и сразу оба! Вопрос задачи как раз и состоит в том, чтобы посчитать людей, которые используют все три вида транспорта.

С первого взгляда даже непонятно, с чего начинать решение. Но если немного поразмыслить, становится ясно, что действовать нужно по следующему алгоритму. Будем стараться расписать всех людей (58 человек) через известные из условия данные. Нам известно, что автобус используют 44 человека. Прибавим к этому количество людей, которые используют метро. Их всего 42 человек. С помощью кругов Эйлера эту операцию можно изобразить наглядно в следующем виде:

То есть пока что мы имеем дело с выражением 58 = 44 + 42… Знак «…» означает, что выражение ещё не закончено. Проблема в том, что мы посчитали людей на пересечении этих кругов дважды. Соответствующая область на диаграмме выделена тёмно-зелёным цветом. Поэтому один раз их нужно вычесть. Это люди, которые пользуются автобусом и метро. Их, как известно, 31. То есть наше «неоконченное» выражение принимает вид: 58 = 44 + 42 — 31… И на диаграмме при этом пропадает тёмно-зелёный цвет:

Пока всё хорошо. Прибавляем теперь людей, которые ездят на трамвае. Таких людей 32. Выражение принимает вид: 58 = 44 + 42 — 31 + 32… Диаграмма с кругами Эйлера, в свою очередь, становится следующей:


Проблема в том, что опять мы хватанули лишку. Люди, которых мы вновь посчитали дважды, отмечены на диаграмме тёмно-зелёным цветом. Эта область находится на пересечении множества, которое мы получили на предыдущем этапе, и множества людей, пользующихся трамваем.

Нужно вычесть людей, которых мы посчитали дважды. Но как это сделать? Единственное, что мы можем сделать, — это разом вычесть людей, которые передвигаются на трамвае и автобусе (их 22 человека), а также на трамвае и метро (таких людей 21). После этого наше неоконченное выражение для общего количества людей примет вид: 58 = 44 + 42 — 31 + 32 — 22 — 21…, а диаграмма с кругами Эйлера окажется с дыркой в центре, потому что центральную часть мы вычли дважды:

К счастью в незакрашенной области как раз и находятся те люди, число которых нам нужно посчитать. Действительно, эти бедняги используют ежедневно все три вида транспорта для того, чтобы добраться до работы, ведь они находятся на пересечении всех трёх множеств. Обозначим количество этих бедолаг за . Тогда диаграмма примет следующий вид:

А уравнение станет следующим:

   

Расчёты дают . Это и есть ответ к задаче. Столько людей используют все три вида транспорта каждый день, чтобы добраться на работу.

Вот такое вот простое решение. Фактически, в одно уравнение. Просто удивительно, не правда ли?! А теперь представьте, как пришлось бы решать эту задачу без использования кругов Эйлера. Это было бы настоящее мучение. Так что в очередной раз убеждаемся, что любые методы визуализации чрезвычайно полезны при решении задач по математике. Используйте их, это поможет вам в решении сложных задач как на олимпиадах, так и на вступительных экзаменах по математике в лицеи и вузы.

Чтобы проверить, хорошо ли вы поняли решение данной задачи, ответьте на следующие вопросы:

  1. Сколько человек используют только один вид транспорта для того, чтобы добраться до работы?
  2. Сколько человек используют для этого ровно два вида транспорта?

Свои ответы и варианты решения присылайте в комментариях.

Материал подготовил репетитор по математике и физике в Москве, Сергей Валерьевич

yourtutor.info

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ «КРУГОВ ЭЙЛЕРА»

РЕШЕНИЕ  ЗАДАЧ  С  ПОМОЩЬЮ  «КРУГОВ  ЭЙЛЕРА»

Рыбина  Ангелина

Класс  5  «Д»,  МОУ  «СОШ  №  59  с  УИП»,  РФ,  г.  Саратов

Багаева  Ирина  Викторовна

научный  руководитель,  педагог  высшей  категории,  преподаватель  математики,  МОУ  «СОШ  №  59  с  УИП»,  РФ,  г.  Саратов

 

«…  круги  очень  подходят  для  того,  чтобы  облегчить  наши  размышления»

Леонард  Эйлер

 

Нет  ученого,  имя  которого  упоминалось  бы  в  учебной  математической  литературе  столь  же  часто,  как  имя  Эйлера.  Даже  в  средней  школе  логарифмы  и  тригонометрию  изучают  до  сих  пор  в  значительной  степени  «по  Эйлеру».

В  1741  году  Эйлер  пишет  «Письма  о  разных  физических  и  философических  материях,  написанные  к  некоторой  немецкой  принцессе...»,  где  появились  впервые  «круги  Эйлера».  Эйлер  писал  тогда,  что  «круги  очень  подходят  для  того,  чтобы  облегчить  наши  размышления». 

При  решении  целого  ряда  задач  Леонард  Эйлер  использовал  идею  изображения  множеств  с  помощью  кругов  и  они  получили  название  «круги  Эйлера». 

С  помощью  этих  кругов  Эйлер  изобразил  и  множество  всех  действительных  чисел: 

·     N  —  множество  натуральных  чисел, 

·     Z  —  множество  целых  чисел, 

·     Q  —  множество  рациональных  чисел, 

·     R  —  множество  всех  действительных  чисел. 

 

Рисунок  1.  Изображение  множества  действительных  чисел

 

Что  такое  множество?

В  математике  нет  точного  определения  этого  понятия.  Понятие  «множество»  не  определяется,  оно  поясняется  примерами:  множество  яблок  в  корзине;  множество  точек  отрезка  прямой.  Множество  состоит  из  элементов.  В  приведенных  примерах  —  это  яблоки,  буквы,  точки. 

Множества  обозначаются  заглавными  буквами  латинского  алфавита:  А,  В,  С,  ...  K,  M,  N  …  Х,  ...;  элементы  множества  —  строчными  буквами  алфавита:  а,  в,  с,  ...  k,  m,  n  …  х,  у,  ....  А={а;  в;  с;  d}  —  множество  А  состоит  из  элементов  а,  в,  с,  d,  или,  говорят,  что  элемент  а  принадлежит  множеству  А,  записывается:  аА  (знак    читается:  «принадлежит»).  Элемент  5  не  входит  в  множество  А,  говорят,  что  «5  не  принадлежит  А»:  5  А,  или  .  Если  множество  В  не  содержит  ни  одного  элемента,  то  говорят,  что  оно  пустое,  обозначается:  В=.

Под  множеством  можно  понимать  совокупность  каких-либо  объектов,  называемых  элементами  множества  [1,  с.  18].  Примерами  множеств  могут  быть  и  дома  на  нашей  улице,  и  алфавит  —  совокупность  букв,  и  наш  5  «Д»  класс  —  множество  учеников.

Множества  могут  быть:

·     Конечное  (элементы  которого  можно  пересчитать;  например  —  множество  цифр)

·     Бесконечное  (пересчитать  нельзя;  например  —  песчинки  в  пустыне)

·     Пустое  (не  содержащее  ни  одного  элемента;  например  —  множество  зайцев,  которые  учатся  в  нашем  классе).

Множество  K  называется  подмножеством  множества  N,  если  каждый  элемент  множества  K  является  элементом  множества  N.  Обозначается:  KÍN.  Говорят,  что  множество  K  включается  в  множество  N.

Подмножества  можно  проиллюстрировать  кругами  Эйлера. 

 

Рисунок  2.  Изображение  подмножества

 

Действия  с  множествами

В  математике  существуют  несколько  операций  над  множествами.  Мы  разберем  два  из  них:  пересечение  и  объединение.

1.  Пересечение  множеств

Пересечением  множеств  M  и  N  называется  множество,  состоящее  из  элементов,  одновременно  принадлежащих  M  и  N.  Пересечение  множеств  M  и  N  обозначается    [1,  с.  23].

Пример.  Множество  N  =  {  А  Н  Д  Р  Е  Й  }; 

множество  K  =  {  А  Л  Е  К  С  Е  Й  };  множество  M  =  {  Д  М  И  Т  Р  И  Й  }

 

Рисунок  3.  Пример  пересечения  множеств

 

2.  Объединение  множеств

Объединение  множеств  —  это  множество,  содержащее  в  себе  все  элементы  исходных  множеств.  Объединение  множеств 

M  и  N  обозначается  .

Пример  ;  2)  объединение  множества  всех  пород  собак  и  множества  мопсов  есть  множество  всех  собак.

Операции  объединения  и  пересечения  множеств  очень  удобно  показывать  с  помощью  кругов  Эйлера.

По  определению  в  пересечение  двух  множеств  M  и  N  входят  элементы,  принадлежащие  множествам  M  и  N  одновременно

Пример.  Пусть  D  —  множество  из  12  самых  хороших  девочек,  M  —  множество  из  12  самых  умных  мальчиков.  Получили  наш  класс.

 

Рисунок  4.  Пример  объединения  множеств

 

3.  Вложенные  множества. 

Пример.  Имеется  три  множества:  «дети»,  «школьники»,  «учащиеся  начальной  школы».  Мы  видим,  что  эти  3  множества  находятся  одно  внутри  другого.  Про  множество,  находящееся  внутри  другого  множества,  говорят,  что  оно  вложенное.

 

Рисунок  5.  Пример  вложенных  множеств

 

Задачи,  которые  можно  решить  с  помощью  диаграмм  Эйлера

Задача  №  1

На  стол  бросили  две  салфетки  10  см  х  10  см.  Они  покрыли  площадь  стола,  равную  168.  Какова  площадь  перекрытия?

Решение

1)168  –  10  х  10  =  68;

2)10  х  10  –  68  =  32.

Ответ:  32  см

 

Рисунок  6.  Рисунок  к  задаче  №  1

 

Задача  №  2 

В  поход  ходили  80  %  учеников  класса,  а  на  экскурсии  было  60  %,  причем  каждый  был  в  походе  или  на  экскурсии.  Сколько  процентов  класса  были  и  там,  и  там?

Решение

А  —  множество  учеников,  которые  ходили  в  поход

В  —  множество  учеников,  которые  были  на  экскурсии

100  %  –  80  %  =  20  %

60  %  –  20  %  =  40  %

Ответ:  40  %

 

Рисунок  7.  Рисунок  к  задаче  №  2

 

Задача  №  3

В  нашем  классе  24  ученика.  Все  они  хорошо  провели  зимние  каникулы.10  человек  катались  на  лыжах,  16  ездили  на  каток,  а  12  —  лепили  снеговиков.  Сколько  учеников  смогли  покататься  и  на  лыжах,  и  на  коньках,  и  слепить  снеговика?

А  —  множество  ребят,  катающихся  на  лыжах

В  —  множество  ребят,  катающихся  на  коньках

С  —  множество  ребят,  лепивших  снеговиков

Решение

Пусть  х  —  число  ребят, 

которые  успели  за  эти  каникулы  всё!

(12  -  х)  +  (16  -  х)  +  (10  -  х)  +  х  =  24

Ответ:  7  ребят

 

Рисунок  8.  Рисунок  к  задаче  №  3

 

Задача  №  4

9  моих  друзей  любят  бананы,  8  –  апельсины,  а  7  –  сливы,  5  –  бананы  и  апельсины,  3  –  бананы  и  сливы,  4  –  апельсины  и  сливы,  2  –  бананы,  апельсины  и  сливы.  Сколько  у  меня  друзей?

Решение

5  –  2  =  3  3  –  2  =  1  4  –  2  =  2

9  –  6  =  3  8  –  7  =  1  7  –  5  =  2

3  +  1  +  2  +  3  +  2  +  1  +  2  =  14

Ответ:  14  друзей

 

Рисунок  9.  Рисунок  к  задаче  №  4

 

Задача  №  5

В  пионерском  лагере  «Дубки»  в  смене  актива  отдыхали:  30  отличников,  28  победителей  олимпиад  и  42  спортсмена.  10  человек  были  и  отличниками  и  победителями  олимпиад,  5  —  отличниками  и  спортсменами,  8  —  спортсменами  и  победителями  олимпиад,  3  —  и  отличники,  и  спортсмены,  и  победители  олимпиад.

Сколько  ребят  отдыхали  в  лагере? 

А  —  множество  отличников

В  —  множество  победителей  олимпиад 

С  —  множество  спортсменов

Решение

10  –  3  =  7  5  –  3  =  2  8  –  3  =  5

30  –  12  =  18  28  –  15  =  13  42  –  10  =  32

18  +  13  +  32  +  7  +  2  +  5  +  3  =  80

Ответ:  80  ребят

 

Рисунок  10.  Рисунок  к  задаче  №  5

 

3.  Заключение

Диаграммы  Эйлера  —  это  общее  название  целого  ряда  способов  графической  иллюстрации ,  широко  используемых  в  различных  областях  математики:  теория  множеств,  теория  вероятностей,  логика,  статистика,  компьютерные  науки,  и  др.  Применение  кругов  Эйлера  позволяет  даже  пятикласснику  легко  решать  задачи,  которые  обычным  путем  решаются  только  в  старших  классах.

 

Список  литературы:

1.Александрова  Р.А.,  Потапов  А.М.  Элементы  теории  множеств  и  математической  логики.  Практикум  /  Калининград.  1997.  —  66  с. 

2.Депман  И.Я.,  Виленкин  Н.Я.  За  страницами  учебника  математики.  Пособие  для  учащихся  5—6  кл.  М.:  Просвещение,  1999.  с.  189—191,  231.

3.Задачи  для  внеклассной  работы  по  математике  в  V—VI  классах:  Пособие  для  учителей  /  Сост.  В.Ю.  Сафонова.  Под  ред.  Д.Б.  Фукса,  А.Л.  Гавронского.  М.:  МИРОС,  1993.  —  с.  42. 

4.Занимательная  математика.  5—11  классы.  Как  сделать  уроки  нескучными  /  Авт.  сост.  Т.Д.  Гаврилова.  Волгоград:  Учитель,  2005.  —  с.  32—38. 

5.Смыкалова  Е.В.  Дополнительные  главы  по  математике  для  учащихся  5  класса.  СПб:  СМИО  Пресс,  2009.  —  с.  14—20. 

6.Энциклопедия  для  детей.  Т.  11.  Математика  Глав.ред.  М.Д.  Аксёнова.  М.:  Аванта  +,  2001.  —  с.  537—542.

sibac.info

Множества и классы понятий, основные операции над нами. Круги Эйлера.

Чтобы как-то описать, о чем все же идет речь, говорят, что множество – это совокупность некоторых объектов, которые называются элементами множества. Однако такое описание не мо- жет считаться определением, так как совокупность – это просто другое на- звание множества. Множество, которому не при- надлежит ни один элемент, называется пустым.
Универсальным нзывают все остальные множества и обозначают U.
Операции над множествами:
1) Множество A называется дополнением множества A, если A состоит из
элементов, которые не принадлежат A: A =△ {x : x ∈/ A}
2)Множество A ∪ B называется объединением множеств A и B, если оно состоит из элементов, которые принадлежат или множеству A, или множеству
B(операция«или»)
3)Множество A ∩ B называется пересечением множеств A и B, если оно состоит из элементов, которые принадлежат и множеству A, и множеству B
(операция «и»)
4) Множество A − B = A B =△ A ∩ B называется разностью множеств A и B, оно состоит из элементов, которые принадлежат множеству A, но не
принадлежат множеству B

Круги Эйлера— геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления

Прямое (декартово) произведение множеств. Комбинаторные структуры.

Прямое (декартово) произведение множеств А и В называется множество, состоящее из всех упорядоченных пар, первый компонент принадлежит А, а второй принадлежит В.

, соответственно

Понятие отношения. Обратное отношение. Графическое представление бинарных отношений.

Бинарным отношением из множества А в множество В называется всякое подмножество прямого произведения А на В; если А=В, то говорят о бинарном отношении на множестве А. Обозначение:

Множество точек плоскости, координаты которых (x,y), образуют упорядоченные пары некоторого бинарного отношения называется графиком данного бинарного отношения.

Бинарные отношения – это множества, их можно объединять, пересекать, дополнять и т. д.

Бинарное отношение указывает на наличие определенной связи между некоторыми парами объектов.

Отношением, обратным к отношению , называют подмножество прямого произведения , такое, что .

 

Отношение эквивалентности. Свойства отношений. Разбиение множеств на классы.

Отношение рна множестве М называется отношением эквивалентности, если обладает отношениями:

1.Рефлексивности

2. Симметричности

3.Транзитивности

Отношения могут обладать рядом свойств, которые определяются через условия, которым должны удовлетворять их элементы

Пусть рна множестве А, тогда р называется:

 

· рефлексивным, если

· симметричным, если

· транзитивным, если

 

Отношение порядка. Свойства отношений.

Отношением р на множестве М называется отношением строгого порядка:

1.Иррефлексивность

2.Асиметричность

3.Транзитивность

Отношения могут обладать рядом свойств, которые определяются через условия, которым должны удовлетворять их элементы

Пусть рна множестве А, тогда р называется:

1) иррефлексивным, если

2) транзитивным, если

3)ассимметричным, если

Отношением р на множестве М называется отношением нестрогого порядка:

1.Рефлексивность

2.Антисимметричность

3.Транзитивность

Пусть рна множестве А, тогда р называется:

1) рефлексивным, если

2)антисимметричным, если

3)транзитивным, если

Отображения и их основные свойства. Виды отображений.

Мн-во F(x) первых компонент мн-ва F (мн-во всех прообразов) называется областью определения отображения N.

Мн-во F(y) вторых компонент мн-ва F (мн-во всех образов) называется областью значений отображения N.

Виды:

1) F(x)=x – всюду определённое;

2) F(y)=y – называется отображением х на у.

3) Если каждый элемент х из мн-ва х имеет не более 1 образа в у, то отображение N называется функциональным (однозначным) отображением или функцией.

4) Отображение N в минус первой степени является обратным отображению N.

5) Отображение N называется взаимно однозначным, если N является всюду определённым функциональным отображением х на у, а N в минус первой степени – всюду определённым отображением у на х.




infopedia.su

Множества. Операции над множествами. Круги Эйлера (презентация)

На языке мудрости ЗНАТЬ – это значит УМЕТЬ , а ПОНИМАТЬ – это значит ДЕЙСТВОВАТЬ .

Тема урока:

Множества.

Операции над множествами.

Круги Эйлера.

Цель урока:

  • обобщить и систематизировать знания студентов по теме: «Множества. Операции над множествами. Круги Эйлера.»

МНОЖЕСТВО

НАХОДИТЬ ОБЪЕДИНЕНИЕ МНОЖЕСТВ

ЭЛЕМЕНТ МНОЖЕСТВА

ВИДЫ МНОЖЕСТВ

НАХОДИТЬ ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ

ОТНОШЕНИЯ МЕЖДУ

МНОЖЕСТВАМИ

ИЗОБРАЖАТЬ С ПОМОЩЬЮ КРУГОВ ЭЙЛЕРА-ВЕННА

ОБЪЕДИНЕНИЕ МНОЖЕСТВ

ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ

РЕШАТЬ ЗАДАЧИ С ИСПОЛЬЗОВАНИЕМ ИМЕЮЩИХСЯ ЗНАНИЙ

«Множество есть многое, мыслимое нами как единое»

основатель теории множеств

Георг Кантор (1845 -1918 гг.) – немецкий математик

Понятие теории множеств

Понятие множества является одним из наиболее общих и наиболее важных математических понятий. Оно было введено в математику немецким ученым Георгом Кантором (1845-1918).Следуя Кантору, понятие "множество" можно определить так:

  • Множество-совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Множество – совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Множества принято обозначать прописными буквами латинского алфавита: А, В, С, D ,…, Z

Объекты , из которых образовано множество, называются элементами множества.

Элементы множества принято обозначать строчными буквами латинского алфавита: а, b, c ,…, z .

в

z

d

а

с

е

множество людей на Солнце

множество прямых углов

равностороннего треугольника

множество точек пересечения

двух параллельных прямых

Пустое множество-множество,

не содержащее ни одного элемента.

НАБОР КАРАНДАШЕЙ

КОЛЛЕКЦИЯ МАРОК

СТАЯ ПТИЦ

СТАДО КОРОВ

ЧАЙНЫЙ СЕРВИЗ

БУКЕТ ЦВЕТОВ

множество

элемент

Трапеция, параллелограмм, ромб, квадрат, прямоугольник

Шар, прямоугольный параллелепипед, призма, пирамида, октаэдр

Натуральные числа

1, 4, 9, 16, 25, 36, 49, 64, 81, 100 ..

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Двузначные четные числа

Множество четырехугольников

Пространственные тела

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11…

Квадраты чисел

Цифры десятичной системы счисления

10, 12, 14, 16 … 96, 98

Обозначения числовых множеств

N – множество натуральных чисел;

Z – множество целых чисел;

Q – множество рациональных чисел;

R – множество действительных чисел.

Стандартные обозначения

ВИДЫ МНОЖЕСТВ

Запишите множества букв слов

КОНИ И КИНО

{ К, О, Н, И }

{ К, И, Н, О }

Равные множества

ВИДЫ МНОЖЕСТВ

А = {2; 3; 5; 7; 11; 13};

{х | 5

Конечные множества

ВИДЫ МНОЖЕСТВ

{1; 4; 9; 16; 25; …};

{10; 20; 30; 40; 50; …};

Бесконечные множества

Среди перечисленных ниже множеств укажите конечные и бесконечные множества:

а) множество чисел, кратных 13;

б) множество делителей числа 15;

в) множество деревьев в лесу;

г) множество натуральных чисел;

д) множество рек Ростовской области;

е) множество корней уравнения х + 3 = 11;

ж) множество решений неравенства х + 1

Задайте множество цифр, с помощью которых записывается число:

а) 3254; б) 8797; в) 11000; г) 555555.

Охарактеризуйте множество А:

а) А = {1, 3, 5, 7, 9};

б) А = {- 2, - 1, 0, 1, 2};

в) А = {11, 22, 33, 44, 55, 66, 77, 88, 99}.

Даны множества:

М = {5, 4, 6};

Р = {4, 5, 6};

Т = {5, 6, 7};

S = {4, 6}.

Какое из утверждений неверно?

а) М = Р б) Р ≠ S в) М ≠ Т г) Р = Т

М

Р

T

S

Отношения между множествами

ОБЪЕДИНЕНИЕ МНОЖЕСТВ

ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ

Даны множества:

А = {2; 3; 8};

В = {2; 3; 8; 11};

С = {5; 11}.

Найдите: 1) АUВ; 2) АUС; 3) СUВ.

Даны множества:

А = { a , b , c , d };

B = { c , d , e , f };

C = { c , e , g , k }.

Найдите: (АUВ)UС.

Даны множества:

А – множество всех натуральных чисел, кратных 10;

В = {1; 2; 3;…, 41}.

Найдите А∩В.

Решение задачи

с помощью кругов Эйлера

K

Леона́рд Э́йлер ( 1707-1783 гг.)  — швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук.

k

В классе 30 человек, каждый из которых поёт или танцует. Известно, что поют 17 человек, а танцевать умеют 19 человек. Сколько человек поёт и танцует одновременно?

Всего 30

6

13

11

поют 17

танцуют 19

17+19=36, всего 30

36-30= 6

Решение

Пусть А - это множество учеников, умеющих петь. Количество элементов в нём по условию равно n = 17. Пусть В - множество учеников, умеющих танцевать. Количество элементов в нём - m = 19. Множество совпадает со всем классом, т.к. каждый ученик в классе поёт или танцует. - это множество тех учеников класса, которые поют и танцуют одновременно. Пусть их количество равно k .

Согласно формуле доказанной выше

n + m- k = 17+ 19- k = 30 k = 6.

Ответ: 6 учеников в классе поют и танцуют одновременно.

Каждый учащийся в классе изучает английский или французский язык. Английский язык изучают 25 учащихся, французский — 27 учащихся, а два языка — 18 учащихся. Сколько учащихся в классе?

18

Немецкий 27

Английский 25

Только немецкий

27 – 18 = 9

Только английский

25 – 18 = 7

7

9

7 + 9 + 18 = 34

Ответ: в классе 34 ученика

Расположите 4 элемента в двух множествах так, чтобы в каждом из них было

по 3 элемента

Множества А и В содержат соответственно 5 и 6 элементов, а множество А ∩ В – 2 элемента. Сколько элементов в множестве А U В?

Объединение содержит 9 элементов

Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое вместе. 75 семей выписывают газету, а 27 семей выписывают журнал и лишь 13 семей выписывают и журнал, и газету. Сколько семей живет в нашем доме?

Всего: 14 + 13 + 62 =89

На школьной спартакиаде каждый из 25 учеников 9-го класса выполнил норматив или по бегу, или по прыжкам в высоту. Оба норматива выполнили 7 человек, а 11 учеников выполнили норматив по бегу, но не выполнили норматив по прыжкам в высоту. Сколько учеников выполнили норматив: а) по бегу; б) по прыжкам в высоту; в) по прыжкам при условии, что не выполнен норматив по бегу?

Из 52 школьников 23 собирают значки, 35 собирают марки, а 16 – и значки, и марки. Остальные не увлекаются коллекционированием. Сколько школьников не увлекаются коллекционированием?

Каждый из учеников 9-го класса в зимние каникулы ровно два раза был в театре, посмотрев спектакли А, В или С. При этом спектакли А, В, С видели соответственно 25, 12 и 23 ученика. Сколько учеников в классе?

В воскресенье 19 учеников нашего класса побывали в планетарии, 10 – в цирке и 6 – на стадионе. Планетарий и цирк посетили 5 учеников; планетарий и стадион - 3; цирк и стадион - 1. Сколько учеников в нашем классе, если никто не успел посетить все три места, а три ученика не посетили ни одного места?

САМООЦЕНКА

10 – хорошо знаю весь фактический материал, и

участвовал в организации группы;

9 – хорошо  знаю свой вопрос, и участвовал в работе на

уроке;

8 – хорошо знаю весь фактический материал;

7 – хорошо  знаю свой вопрос;

6 – знаю свой вопрос;

5 – знаю свой вопрос, но был пассивен;

4 – плохо знаю свой вопрос, но был активен в обсуждении других вопросов;

3 – плохо знаю свой вопрос, и был пассивен;

1,2 – не знаю свой вопрос, и был пассивен.

 

Подведение итогов занятия

- оценка степени реализации поставленных

целей; - оценка работы студентов; - самооценка работы студентов в группах.

Домашнее задание

М.С. Спирина,

«Дискретная математика»

§§1.1.-1.2, с.14-20.

Спасибо за работу на уроке, урок окончен!

videouroki.net

Самая красивая теорема математики: тождество Эйлера / Хабр

Посмотрев лекцию профессора Робина Уилсона о тождестве Эйлера, я наконец смог понять, почему тождество Эйлера является самым красивым уравнением. Чтобы поделиться моим восхищением это темой и укрепить собственные знания, я изложу заметки, сделанные во время лекции. А здесь вы можете купить его прекрасную книгу.

Что может быть более загадочным, чем взаимодействие мнимых чисел с вещественными, в результате дающее ничто? Такой вопрос задал читатель журнала Physics World в 2004 году, чтобы подчеркнуть красоту уравнения Эйлера «e в степени i, умноженного на пи равно минус единице».


Рисунок 1.0: тождество Эйлера — e в степени i, умноженного на пи, плюс единица равно нулю.

Ещё раньше, в 1988 году, математик Дэвид Уэллс, писавший статьи для американского математического журнала The Mathematical Intelligencer, составил список из 24 теорем математики и провёл опрос, попросив читателей своей статьи выбрать самую красивую теорему. И после того, как с большим отрывом в нём выиграло уравнение Эйлера, оно получило званием «самого красивого уравнения в математике».


Рисунок 2.0: обложка журнала The Mathematical Intelligencer
Рисунок 3.0: опрос Дэвида Уэллса из журнала

Леонарда Эйлера называют самым продуктивным математиком за всю историю. Других выдающихся математиков вдохновляли его работы. Один из лучших физиков в мире, Ричард Фейнман, в своих знаменитых лекциях по физике назвал уравнение Эйлера «самой примечательной формулой в математике». Ещё один потрясающий математик, Майкл Атья, назвал эту формулу "…математическим аналогом фразы Гамлета — «быть или не быть» — очень короткой, очень сжатой, и в то же время очень глубокой".

Существует множество интересных фактов об уравнении Эйлера. Например, оно встречалось в некоторых эпизодах «Симпсонов».


Рисунок 4.0: в этой сцене уравнение Эйлера можно заметить на второй книге в самой правой стопке.
Рисунок 5.0: в этой сцене уравнение Эйлера написано на футболке второстепенного персонажа.

Также уравнение Эйлера стало ключевым пунктом в уголовном деле. В 2003 году аспирант Калифорнийского технологического института Билли Коттрелл писал краской на чужих спортивных автомобилях уравнение Эйлера. На суде он сказал: "Я знал теорему Эйлера с пяти лет, и её обязаны знать все".


Рисунок 6.0: купюра, выпущенная в 1983 году в Германии в память о двухсотлетии со смерти Эйлера.
Рисунок 7.0: марка, выпущенная Швейцарией в 1957 году в честь 250-й годовщины Эйлера.
Почему уравнение Эйлера так важно?

Вы имеете полное право задаться вопросом: почему Билли Коттрелл считал, что об уравнении Эйлера обязаны знать все? И был настолько в этом уверен, что начал писать его на чужих машинах? Ответ прост: Эйлер воспользовался тремя фундаментальными константами математики и применил математические операции умножения и возведения в степень, чтобы записать красивую формулу, дающую в результате ноль или минус один.
  • Константа e связана со степенными функциями.
  • Константа i является не вещественным, а мнимым числом, равным квадратному корню из минус единицы.
  • Знаменитая константа π (пи) связана с окружностями.

Впервые тождество Эйлера появилось в 1748 году в его книге Introductio in analysin infinitorum. Позже другие люди увидели, что эта формула связана с тригонометрическими функциями синуса и косинуса, и эта связь удивительна, ведь степенная функция стремится к бесконечности, а тригонометрические функции колеблются в интервале от — 1 до -1.
e в степени i, умноженного на ϕ (phi) = cos ϕ (phi) + sin ϕ (phi)


Рисунок 8.0: экспоненциальная функция y=ex.
Рисунок 8.1: график тождества Эйлера.
Рисунок 8.2: частоты, испускаемые LC-цепью.

Показанные выше уравнения и графы могут показаться абстрактными, но они важны для квантовой физики и вычислений обработки изображений, и при этом зависят от тождества Эйлера.

1: число для счёта


Число 1 (единица) является основой нашей системы исчисления. С неё мы начинаем счёт. Но как мы считаем? Чтобы считать, мы используем цифры 0–9 и систему разрядов, определяющую значение цифры.

Например, число 323 означает 3 сотни, 2 десятка и 3 единицы. Здесь число 3 исполняет две разные роли, которые зависят от его расположения.

323 = (3*100) + (2*10) + (3*1)

Существует и другая система исчисления, называемая двоичной. В этой системе вместо 1 используется основание 2. Она широко применяется в компьютерах и программировании. Например, в двоичной системе:

1001 = (23) + (02) + (01) + (20) = [9 в системе с основанием 10]

Кто создал системы исчисления? Как первые люди считали предметы или животных?

Как возникли наши системы исчисления? Как считали первые цивилизации? Мы точно знаем, что они не пользовались нашей разрядной системой. Например 4000 лет назад древние египтяне использовали систему исчисления с разными символами. Однако они комбинировали символы, создавая новый символ, обозначающий числа.


Рисунок 11: показанные здесь иероглифы образуют число 4622; это одно из чисел, вырезанных на стене в храме в Карнаке (Египет).
Рисунок 12: иероглифы — это изображения, обозначающие слова, а в данном случае — числа.

В то же время, но в другом месте ещё один социум обнаружил способ подсчёта, но в нём тоже использовались символы. Кроме того, основанием их системы исчисления было 60, а не 10. Мы используем их метод счёта для определения времени; поэтому в минуте 60 секунд, а в часе 60 минут.


Рисунок 13: вавилонские числа из шестидесятиричной системы счисления (с основанием 60).

Тысячу лет спустя древние римляне изобрели римские числа. Для обозначения чисел они использовали буквы. Римская нотация не считается разрядной системой, потому что для многих значений нашей системы счисления в ней использовались разные буквы. Именно по этой причине для счёта они использовали абакус.


Рисунок 14: романский абакус в шестнадцатеричной (с основанием 16) системе счисления
Рисунок 15: таблица преобразования из арабских в римские числа

Древние греки тоже не использовали разрядную систему счисления. Греческие математики обозначали числа буквами. У них были специальные буквы для чисел от 100 до 900. Многие люди в то время считали греческие числа запутанными.


Рисунок 15: таблица букв древних греков.

В то же самое время китайские математики начали использовать для расчётов небольшие бамбуковые палочки. Этот китайский способ счёта называют первой десятичной разрядной системой.


Рисунок 16: китайский способ счёта с числами-палочками. Использовался как минимум с 400 года до нашей эры. Квадратная счётная доска использовалась примерно до 1500 года, когда её заменил абакус.

Однако самая уникальная система счёта использовалась индейцами майя. Их система счисления имела основание 20. Для обозначения чисел от 1 до 19 они использовали точки и линии. Чем же отличалась их система счисления? Для каждого числа они использовали изображения голов и отдельный символ нуля 0.


Рисунок 17: Система счисления майя с основанием 20, в которой числа обозначались головами
Рисунок 18: ещё один способ записи чисел майя.

0: число для обозначения ничего


Некоторые цивилизации использовали пробелы, чтобы, например, отличать число 101 от 11. Спустя какое-то время начало появляться особое число — ноль. К примеру, в пещере в индийском городе Гвалиор археологи обнаружили на стене число 270, в котором был ноль. Самое первое зафиксированное использование нуля можно увидеть в Бодлианской библиотеке.
Рисунок 19: вырезанный на стене храма в Гвалиоре круг обозначает ноль. Ему примерно 1500 лет.
Рисунок 20: чёрные точки в манускрипте Бакхшали обозначают нули; это самый старый письменный пример использования числа, ему примерно 1800 лет.

Примерно 1400 лет назад были записаны правила вычислений с нулём. Например, при сложении отрицательного числа и нуля получается то же отрицательное число. Деление на нуль не допускается, потому что если разделить на ноль, то мы получим число, которое может быть равно любому нужному нам числу, что должно быть запрещено.

Вскоре после этого многими людьми были опубликованы книги по арифметике, распространяющие использование индо-арабской записи чисел. Ниже показана эволюция индо-арабских чисел. В большинстве стран используется индо-арабская система чисел, но арабские страны до сих пор пользуются арабскими числами.


Рисунок 21: на этой схеме показана эволюция чисел, происходящих от чисел брахми и заканчивающаяся числами, которыми мы используем и сегодня.
Рисунок 22: классическая гравюра «Арифметика» из Margarita Philosophica Грегора Рейша, на которой изображено соревнование между Боэцием, улыбающимся после открытия индо-арабских чисел и письменных вычислений, и нахмуренным Пифагором, до сих пор пытающимся пользоваться счётной доской.
Пи (π): самое известное иррациональное число

Пи — самое популярное из известных нам иррациональных чисел. Пи можно найти двумя способами: вычислив соотношение длины окружности к её диаметру, или соотношение площади круга к квадрату его радиуса. Евклид доказал, что эти соотношения постоянны для всех окружностей, даже для луны, пенни, шины и т.д.
π = окружность / диаметр ИЛИ π = площадь круга / радиус²


Рисунок 22: анимированная связь между окружностью и диаметром в отношении пи.

Так как иррациональные числа наподобие пи бесконечны и не имеют повторений, мы никогда не закончим записывать пи. Оно продолжается вечно. Есть люди, запомнившие множество десятичных разрядов пи (нынешний рекорд — 70 000 цифр! Источник: «Книга рекордов Гиннесса» ).


Рисунок 23: данные опроса 941 респондентов для определения процента людей, способных запомнить знаки пи после запятой.
Рисунок 24: На стене станции метро Karlsplatz в Вене записаны сотни разрядов пи.

На данный момент компьютеры смогли вычислить всего 2,7 триллиона разрядов пи. Может казаться, что это много, но на самом деле этот путь бесконечен.

Как я сказал выше, число пи нашёл Евклид. Но как поступали люди до Евклида, когда им нужно было найти площадь круга? Историки обнаружили вавилонскую глиняную табличку, в которой было записано отношение периметра шестиугольника к длине описанной вокруг него окружности. После вычислений полученное число оказалось равным 3.125. Это очень близко к пи.


Рисунок 24: вавилонская глиняная табличка с отношением периметра шестигольника к длине описанной окружности.
Рисунок 25: Numberwarrior

Древние египтяне тоже близко подобрались к значению пи. Историки обнаружили документ, показывающий, как древние египтяне нашли число пи. Когда историки перевели документ, то нашли такую задачу:

Например, чтобы найти площадь поля диаметром 9 хета (1 хет = 52,35 метра), нужно выполнить следующее вычисление:

Вычесть 1/9 диаметра, а именно 1. Остаток равен 8. Умножить его на 8, что даёт нам 64. Следовательно, площадь будет равна 64 setjat (единица измерения площади).

Другими словами, диаметр равен 2r, а 1/9 радиуса равно (1/9 • 2r). Тогда если мы вычтем это из исходного диаметра, то получим 2r — (1/9 • 2r) = 8/9(2r). Тогда площадь круга равна 256/81 r². То есть пи равно почти 3,16. Они обнаружили это значение пи примерно 4000 лет назад.




Рисунок 26: математический папирус Ахмеса.

Однако греческие математики нашли для вычисления пи способ получше. Например, Архимед предпочитал работать с периметрами. Он начал рисовать окружности, описывающие многоугольники разного размера. Когда он чертил шестиугольник, то рисовал окружность с диаметром 1. Затем он видел что каждая сторона шестиугольника равна 1/2, а периметр шестиугольника равен 1/2 x 6 = 3. Затем он увеличивал количество сторон многоугольника, пока он не становился похожим на круг. Работая со 96-сторонним многоугольником и применив тот же способ, он получил 2 десятичных разряда пи после запятой: 3 и 10/71 = 3,14084. Спустя много лет китайский математик Лю Ху использовал 3072-сторонний многоугольник и получил число 3,14159 (5 верных десятичных разряда пи после запятой). После этого ещё один китайский математик Цзу Чунчжи провёл ещё более впечатляющую работу. Он работал со 24000-сторонним многоугольником и получил 3,1415926 — семь верных десятичных разрядов пи после запятой.

Спустя тысячу лет немецкий математик Людольф Цейлен работал со 262-сторонним многоугольником и получил 35 десятичных разрядов пи. Это число, названное Людольфовым, было высечено на его могильном камне.




В 1706 году англичанин Джон Мэчин, долгое время работавший профессором астрономии, использовал формулу сложения, чтобы доказать, что пи равно
Не беспокоясь о том, как откуда взялась эта формула, Мэчин начал постоянно ею пользоваться, а затем записал показанный ниже ряд. Это был самый большой на то время шаг в количестве разрядов пи.
Рисунок 29: Формула Мэчина для пи

Однако первое упоминание пи появилось в 1706 году. Преподаватель математики Уильям Джонс написал книгу и впервые предложил пи для измерения окружностей. Так пи впервые появилась в книгах!




Рисунок 30: Juliabloggers

В 1873 году Уильям Шэнкс воспользовался формулой Джона Мэчина и получил 707 десятичных разрядов пи. Эти цифры написаны в комнате пи парижского Дворца открытий. Однако позже математики выяснили, что верными являются только 527 разрядов.


Рисунок 31: комната пи

С другой стороны, более интересный способ нахождения пи обнаружил Буффон. Его эксперимент основывался на случайном разбрасывании иголок для оценки пи. Он нарисовал на доске несколько параллельных линий на расстоянии D и взял иголки длиной L. Затем он случайным образом начал бросать иголки на доску и записывал долю иголок, пересекавших линию.


Рисунок 32: Science Friday

А после этого другой математик по имени Ладзарини подбросил иголку 3408 раз и получил шесть десятичных разрядов пи с соотношением 355/113. Однако если бы одна иголка не пересекла линию, он получил бы только 2 разряда пи.


Рисунок 32: бросание 1000 иголок для оценки приблизительного значения пи
e: история экспоненциального роста

e — это ещё одно знаменитое иррациональное число. Дробная часть e тоже бесконечна, как и у пи. Мы используем число e для вычисления степенного (экспоненциального) роста. Другими словами, мы используем e, когда видим очень быстрый рост или уменьшение.

Один из величайших, а возможно и лучший математик Леонард Эйлер открыл число e в 1736 году и впервые упомянул это особое число в своей книге Mechanica.



Рисунок 33: источник

Чтобы разобраться в экспоненциальном росте, мы можем использовать историю об изобретателе шахмат. Когда он придумал эту игру, то показал её властителю Севера. Царю понравилась игра и он пообещал, что отдаст автору любую награду. Тогда изобретатель попросил нечто очень простое: 20 зерна на первую клетку шахматной доски, 21 зерна на вторую клетку доски, 22 зерна — на третью, и так далее. Каждый раз количество зерна удваивалось. Царь Севера подумал, что просьбу будет выполнить легко, но он ошибался, потому то на последнюю клетку нужно было бы положить 263 зёрен, что равно 9 223 372 036 854 775 808. Это и есть экспоненциальный рост. Он начался с 1, постоянно удваивался, и через 64 шага вырос в огромное число!

Если бы изобретатель шахмат выбрал линейное уравнение, например 2n, то получил бы 2, 4, 6, 8, … 128… Следовательно, в дальней перспективе экспоненциальный рост часто намного превышает полиномиальный.

Кстати, 9 223 372 036 854 775 808–1 — это максимальное значение 64-битного целого числа со знаком.


Рисунок 34: источник: Wikipedia

Число e открыл Эйлер. Однако Якоб Бернулли тоже работал с числом e, когда вычислял сложный процент, чтобы заработать больше денег. Если вложить 100 долларов под 10% дохода, то как будет расти эта сумма? Во-первых, это зависит от того, как часто банк рассчитывает проценты. Например, если он рассчитывает один раз, то мы получим в конце года 110 долларов. Если мы передумаем и будем брать проценты каждые 6 месяцев, то в этом случае мы получим больше 110 долларов. Дело в ттом, что процент, полученный за первые 6 месяцев, тоже получит свой процент. Общая сумма будет равна 110,25 долларов. Можно догадаться, что мы можем получить больше денег, если будем забирать деньги каждый квартал года. А если мы будем делать временной интервал всё короче, то окончательные суммы будут продолжать расти. Такой бесконечный сложный процент сделает нас богатыми! Однако наш общий доход стремится к ограниченному значению, связанному с e.

Бернулли не называл число 2,71828 именем e. Когда Эйлер работал с 2,71828, он возвёл экспоненциальную функцию e в степень x. Свои открытия он изложил в книге The Analysis of Infinite.

В 1798 году Томас Мальтус использовал экспоненциальную функцию в своём эссе, посвящённом пищевому дефициту будущего. Он создал линейный график, показывающий производство пищи и экспоненциальный график, показывающий население мира. Мальтус сделал вывод, что в дальней перспективе экспоненциальный рост победит, и мир ждёт серьёзный дефицит пищи. Это явление назвали «мальтузианской катастрофой». Ньютон тоже использовал эту модель, чтобы показать, как охлаждается чашка чая.


Рисунок 35: закон Ньютона-Рихмана
Рисунок 36: мальтузианская катастрофа

Мнимость числа: i, квадратный корень -1


Долгое время для решения своих задач математикам было достаточно обычных чисел. Однако в какой-то момент для дальнейшего развития им потребовалось открыть нечто новое и загадочное. Например, итальянский математик Кардано пытался разделить число 10 на 2 части, произведение которых было бы равно 40. Чтобы решить эту задачу, он записал уравнение: x (10-x) = 40. Когда он решил это квадратное уравнение, то получил два решения: 5 плюс √-15 и 5 минус √-15, что в то время не имело никакого смысла. Этот результат был бессмысленным, потому что по определению квадратного корня ему нужно было найти число, квадрат которого был бы отрицательным. Однако и положительное, и отрицательное числа в квадрате имеют положительное значение. Как бы то ни было, он нашёл своё уникальное число. Однако первым математиком, назвавшим √-1 (квадратный корень из минус единицы) мнимым числом i, был Эйлер.

Лейбниц дал такой комментарий о мнимом числе √-1:

Комплексные числа — это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием.

Мы можем складывать, вычитать, умножать и делить мнимые числа. Сложение, вычитание и умножение просты, а деление немного сложнее. Вещественные и мнимые части складываются по отдельности. В случае умножения i2 будет равно -1.

После Эйлера математик Каспар Вессель представил мнимые числа геометрически с создал комплексную плоскость. Сегодня мы представляем каждое комплексное число a + bi как точку с координатами (a,b).



Рисунки 37 и 38: комплексные числа

В викторианскую эпоху многие относились к мнимым числам с подозрением. Однако ирландский математик и астроном Уильям Роуэн Гамильтон покончил с этими сомнениями, определив комплексные числа применительно к кватернионам.

Самое красивое уравнение: тождество Эйлера


Тождество Эйлера связывает экспоненциальную функцию с функциями синуса и косинуса, значения которых колеблются от минус единицы до единицы. Чтобы найти вязь с тригонометрическими функциями, мы можем представить их в виде бесконечного ряда, истинного для всех значений

Рисунок 39: открытие тождества Эйлера


Рисунок 40: тождество Эйлера

Эйлер никогда не записывал это тождество в явном виде, и мы не знаем, кто впервые записал его. Тем не менее, мы связываем его с именем Эйлера в знак почтения перед этим великим первопроходцем математики.

habr.com

Самая красивая теорема математики: тождество Эйлера

Посмотрев лекцию профессора Робина Уилсона о тождестве Эйлера, я наконец смог понять, почему тождество Эйлера является самым красивым уравнением. Чтобы поделиться моим восхищением это темой и укрепить собственные знания, я изложу заметки, сделанные во время лекции. А здесь вы можете купить его прекрасную книгу.

Что может быть более загадочным, чем взаимодействие мнимых чисел с вещественными, в результате дающее ничто? Такой вопрос задал читатель журнала Physics World в 2004 году, чтобы подчеркнуть красоту уравнения Эйлера «e в степени i, умноженного на пи равно минус единице».

Рисунок 1.0: тождество Эйлера — e в степени i, умноженного на пи, плюс единица равно нулю.

Ещё раньше, в 1988 году, математик Дэвид Уэллс, писавший статьи для американского математического журнала The Mathematical Intelligencer, составил список из 24 теорем математики и провёл опрос, попросив читателей своей статьи выбрать самую красивую теорему. И после того, как с большим отрывом в нём выиграло уравнение Эйлера, оно получило званием «самого красивого уравнения в математике».

Рисунок 2.0: обложка журнала The Mathematical Intelligencer

Рисунок 3.0: опрос Дэвида Уэллса из журнала

Леонарда Эйлера называют самым продуктивным математиком за всю историю. Других выдающихся математиков вдохновляли его работы. Один из лучших физиков в мире, Ричард Фейнман, в своих знаменитых лекциях по физике назвал уравнение Эйлера «самой примечательной формулой в математике». Ещё один потрясающий математик, Майкл Атья, назвал эту формулу "…математическим аналогом фразы Гамлета — «быть или не быть» — очень короткой, очень сжатой, и в то же время очень глубокой".

Существует множество интересных фактов об уравнении Эйлера. Например, оно встречалось в некоторых эпизодах «Симпсонов».

Рисунок 4.0: в этой сцене уравнение Эйлера можно заметить на второй книге в самой правой стопке.

Рисунок 5.0: в этой сцене уравнение Эйлера написано на футболке второстепенного персонажа.

Также уравнение Эйлера стало ключевым пунктом в уголовном деле. В 2003 году аспирант Калифорнийского технологического института Билли Коттрелл писал краской на чужих спортивных автомобилях уравнение Эйлера. На суде он сказал: "Я знал теорему Эйлера с пяти лет, и её обязаны знать все".

Рисунок 6.0: купюра, выпущенная в 1983 году в Германии в память о двухсотлетии со смерти Эйлера.

Рисунок 7.0: марка, выпущенная Швейцарией в 1957 году в честь 250-й годовщины Эйлера.

Почему уравнение Эйлера так важно?

Вы имеете полное право задаться вопросом: почему Билли Коттрелл считал, что об уравнении Эйлера обязаны знать все? И был настолько в этом уверен, что начал писать его на чужих машинах? Ответ прост: Эйлер воспользовался тремя фундаментальными константами математики и применил математические операции умножения и возведения в степень, чтобы записать красивую формулу, дающую в результате ноль или минус один.

  • Константа e связана со степенными функциями.
  • Константа i является не вещественным, а мнимым числом, равным квадратному корню из минус единицы.
  • Знаменитая константа π (пи) связана с окружностями.

Впервые тождество Эйлера появилось в 1748 году в его книге Introductio in analysin infinitorum. Позже другие люди увидели, что эта формула связана с тригонометрическими функциями синуса и косинуса, и эта связь удивительна, ведь степенная функция стремится к бесконечности, а тригонометрические функции колеблются в интервале от — 1 до -1.

e в степени i, умноженного на ϕ (phi) = cos ϕ (phi) + sin ϕ (phi)

Рисунок 8.0: экспоненциальная функция y=ex.

Рисунок 8.1: график тождества Эйлера.

Рисунок 8.2: частоты, испускаемые LC-цепью.

Показанные выше уравнения и графы могут показаться абстрактными, но они важны для квантовой физики и вычислений обработки изображений, и при этом зависят от тождества Эйлера.

1: число для счёта

Число 1 (единица) является основой нашей системы исчисления. С неё мы начинаем счёт. Но как мы считаем? Чтобы считать, мы используем цифры 0–9 и систему разрядов, определяющую значение цифры.

Например, число 323 означает 3 сотни, 2 десятка и 3 единицы. Здесь число 3 исполняет две разные роли, которые зависят от его расположения.

323 = (3*100) + (2*10) + (3*1)

Существует и другая система исчисления, называемая двоичной. В этой системе вместо 1 используется основание 2. Она широко применяется в компьютерах и программировании. Например, в двоичной системе:

1001 = (23) + (02) + (01) + (20) = [9 в системе с основанием 10]

Кто создал системы исчисления? Как первые люди считали предметы или животных?

Как возникли наши системы исчисления? Как считали первые цивилизации? Мы точно знаем, что они не пользовались нашей разрядной системой. Например 4000 лет назад древние египтяне использовали систему исчисления с разными символами. Однако они комбинировали символы, создавая новый символ, обозначающий числа.

Рисунок 11: показанные здесь иероглифы образуют число 4622; это одно из чисел, вырезанных на стене в храме в Карнаке (Египет).

Рисунок 12: иероглифы — это изображения, обозначающие слова, а в данном случае — числа.

В то же время, но в другом месте ещё один социум обнаружил способ подсчёта, но в нём тоже использовались символы. Кроме того, основанием их системы исчисления было 60, а не 10. Мы используем их метод счёта для определения времени; поэтому в минуте 60 секунд, а в часе 60 минут.

Рисунок 13: вавилонские числа из шестидесятиричной системы счисления (с основанием 60).

Тысячу лет спустя древние римляне изобрели римские числа. Для обозначения чисел они использовали буквы. Римская нотация не считается разрядной системой, потому что для многих значений нашей системы счисления в ней использовались разные буквы. Именно по этой причине для счёта они использовали абакус.

Рисунок 14: романский абакус в шестнадцатеричной (с основанием 16) системе счисления

Рисунок 15: таблица преобразования из арабских в римские числа

Древние греки тоже не использовали разрядную систему счисления. Греческие математики обозначали числа буквами. У них были специальные буквы для чисел от 100 до 900. Многие люди в то время считали греческие числа запутанными.

Рисунок 15: таблица букв древних греков.

В то же самое время китайские математики начали использовать для расчётов небольшие бамбуковые палочки. Этот китайский способ счёта называют первой десятичной разрядной системой.

Рисунок 16: китайский способ счёта с числами-палочками. Использовался как минимум с 400 года до нашей эры. Квадратная счётная доска использовалась примерно до 1500 года, когда её заменил абакус.

Однако самая уникальная система счёта использовалась индейцами майя. Их система счисления имела основание 20. Для обозначения чисел от 1 до 19 они использовали точки и линии. Чем же отличалась их система счисления? Для каждого числа они использовали изображения голов и отдельный символ нуля 0.

Рисунок 17: Система счисления майя с основанием 20, в которой числа обозначались головами

Рисунок 18: ещё один способ записи чисел майя.

0: число для обозначения ничего

Некоторые цивилизации использовали пробелы, чтобы, например, отличать число 101 от 11. Спустя какое-то время начало появляться особое число — ноль. К примеру, в пещере в индийском городе Гвалиор археологи обнаружили на стене число 270, в котором был ноль. Самое первое зафиксированное использование нуля можно увидеть в Бодлианской библиотеке.

Рисунок 19: вырезанный на стене храма в Гвалиоре круг обозначает ноль. Ему примерно 1500 лет.

Рисунок 20: чёрные точки в манускрипте Бакхшали обозначают нули; это самый старый письменный пример использования числа, ему примерно 1800 лет.

Примерно 1400 лет назад были записаны правила вычислений с нулём. Например, при сложении отрицательного числа и нуля получается то же отрицательное число. Деление на нуль не допускается, потому что если разделить на ноль, то мы получим число, которое может быть равно любому нужному нам числу, что должно быть запрещено.

Вскоре после этого многими людьми были опубликованы книги по арифметике, распространяющие использование индо-арабской записи чисел. Ниже показана эволюция индо-арабских чисел. В большинстве стран используется индо-арабская система чисел, но арабские страны до сих пор пользуются арабскими числами.

Рисунок 21: на этой схеме показана эволюция чисел, происходящих от чисел брахми и заканчивающаяся числами, которыми мы используем и сегодня.

Рисунок 22: классическая гравюра «Арифметика» из Margarita Philosophica Грегора Рейша, на которой изображено соревнование между Боэцием, улыбающимся после открытия индо-арабских чисел и письменных вычислений, и нахмуренным Пифагором, до сих пор пытающимся пользоваться счётной доской.

Пи (π): самое известное иррациональное число

Пи — самое популярное из известных нам иррациональных чисел. Пи можно найти двумя способами: вычислив соотношение длины окружности к её диаметру, или соотношение площади круга к квадрату его радиуса. Евклид доказал, что эти соотношения постоянны для всех окружностей, даже для луны, пенни, шины и т.д.

π = окружность / диаметр ИЛИ π = площадь круга / радиус²

Рисунок 22: анимированная связь между окружностью и диаметром в отношении пи.

Так как иррациональные числа наподобие пи бесконечны и не имеют повторений, мы никогда не закончим записывать пи. Оно продолжается вечно. Есть люди, запомнившие множество десятичных разрядов пи (нынешний рекорд — 70 000 цифр! Источник: «Книга рекордов Гиннесса» ).

Рисунок 23: данные опроса 941 респондентов для определения процента людей, способных запомнить знаки пи после запятой.

Рисунок 24: На стене станции метро Karlsplatz в Вене записаны сотни разрядов пи.

На данный момент компьютеры смогли вычислить всего 2,7 триллиона разрядов пи. Может казаться, что это много, но на самом деле этот путь бесконечен.

Как я сказал выше, число пи нашёл Евклид. Но как поступали люди до Евклида, когда им нужно было найти площадь круга? Историки обнаружили вавилонскую глиняную табличку, в которой было записано отношение периметра шестиугольника к длине описанной вокруг него окружности. После вычислений полученное число оказалось равным 3.125. Это очень близко к пи.

Рисунок 24: вавилонская глиняная табличка с отношением периметра шестигольника к длине описанной окружности.

Рисунок 25: Numberwarrior

Древние египтяне тоже близко подобрались к значению пи. Историки обнаружили документ, показывающий, как древние египтяне нашли число пи. Когда историки перевели документ, то нашли такую задачу:

Например, чтобы найти площадь поля диаметром 9 хета (1 хет = 52,35 метра), нужно выполнить следующее вычисление:

Вычесть 1/9 диаметра, а именно 1. Остаток равен 8. Умножить его на 8, что даёт нам 64. Следовательно, площадь будет равна 64 setjat (единица измерения площади).

Другими словами, диаметр равен 2r, а 1/9 радиуса равно (1/9 • 2r). Тогда если мы вычтем это из исходного диаметра, то получим 2r — (1/9 • 2r) = 8/9(2r). Тогда площадь круга равна 256/81 r². То есть пи равно почти 3,16. Они обнаружили это значение пи примерно 4000 лет назад.

Рисунок 26: математический папирус Ахмеса.

Однако греческие математики нашли для вычисления пи способ получше. Например, Архимед предпочитал работать с периметрами. Он начал рисовать окружности, описывающие многоугольники разного размера. Когда он чертил шестиугольник, то рисовал окружность с диаметром 1. Затем он видел что каждая сторона шестиугольника равна 1/2, а периметр шестиугольника равен 1/2 x 6 = 3. Затем он увеличивал количество сторон многоугольника, пока он не становился похожим на круг. Работая со 96-сторонним многоугольником и применив тот же способ, он получил 2 десятичных разряда пи после запятой: 3 и 10/71 = 3,14084. Спустя много лет китайский математик Лю Ху использовал 3072-сторонний многоугольник и получил число 3,14159 (5 верных десятичных разряда пи после запятой). После этого ещё один китайский математик Цзу Чунчжи провёл ещё более впечатляющую работу. Он работал со 24000-сторонним многоугольником и получил 3,1415926 — семь верных десятичных разрядов пи после запятой.

Спустя тысячу лет немецкий математик Людольф Цейлен работал со 262-сторонним многоугольником и получил 35 десятичных разрядов пи. Это число, названное Людольфовым, было высечено на его могильном камне.

В 1706 году англичанин Джон Мэчин, долгое время работавший профессором астрономии, использовал формулу сложения, чтобы доказать, что пи равно

Не беспокоясь о том, как откуда взялась эта формула, Мэчин начал постоянно ею пользоваться, а затем записал показанный ниже ряд. Это был самый большой на то время шаг в количестве разрядов пи.

Рисунок 29: Формула Мэчина для пи

Однако первое упоминание пи появилось в 1706 году. Преподаватель математики Уильям Джонс написал книгу и впервые предложил пи для измерения окружностей. Так пи впервые появилась в книгах!

Рисунок 30: Juliabloggers

В 1873 году Уильям Шэнкс воспользовался формулой Джона Мэчина и получил 707 десятичных разрядов пи. Эти цифры написаны в комнате пи парижского Дворца открытий. Однако позже математики выяснили, что верными являются только 527 разрядов.

Рисунок 31: комната пи

С другой стороны, более интересный способ нахождения пи обнаружил Буффон. Его эксперимент основывался на случайном разбрасывании иголок для оценки пи. Он нарисовал на доске несколько параллельных линий на расстоянии D и взял иголки длиной L. Затем он случайным образом начал бросать иголки на доску и записывал долю иголок, пересекавших линию.

Рисунок 32: Science Friday

А после этого другой математик по имени Ладзарини подбросил иголку 3408 раз и получил шесть десятичных разрядов пи с соотношением 355/113. Однако если бы одна иголка не пересекла линию, он получил бы только 2 разряда пи.

Рисунок 32: бросание 1000 иголок для оценки приблизительного значения пи

e: история экспоненциального роста

e — это ещё одно знаменитое иррациональное число. Дробная часть e тоже бесконечна, как и у пи. Мы используем число e для вычисления степенного (экспоненциального) роста. Другими словами, мы используем e, когда видим очень быстрый рост или уменьшение.

Один из величайших, а возможно и лучший математик Леонард Эйлер открыл число e в 1736 году и впервые упомянул это особое число в своей книге Mechanica.

Рисунок 33: источник

Чтобы разобраться в экспоненциальном росте, мы можем использовать историю об изобретателе шахмат. Когда он придумал эту игру, то показал её властителю Севера. Царю понравилась игра и он пообещал, что отдаст автору любую награду. Тогда изобретатель попросил нечто очень простое: 20 зерна на первую клетку шахматной доски, 21 зерна на вторую клетку доски, 22 зерна — на третью, и так далее. Каждый раз количество зерна удваивалось. Царь Севера подумал, что просьбу будет выполнить легко, но он ошибался, потому то на последнюю клетку нужно было бы положить 263 зёрен, что равно 9 223 372 036 854 775 808. Это и есть экспоненциальный рост. Он начался с 1, постоянно удваивался, и через 64 шага вырос в огромное число!

Если бы изобретатель шахмат выбрал линейное уравнение, например 2n, то получил бы 2, 4, 6, 8, … 128… Следовательно, в дальней перспективе экспоненциальный рост часто намного превышает полиномиальный.

Кстати, 9 223 372 036 854 775 808–1 — это максимальное значение 64-битного целого числа со знаком.

Рисунок 34: источник: Wikipedia

Число e открыл Эйлер. Однако Якоб Бернулли тоже работал с числом e, когда вычислял сложный процент, чтобы заработать больше денег. Если вложить 100 долларов под 10% дохода, то как будет расти эта сумма? Во-первых, это зависит от того, как часто банк рассчитывает проценты. Например, если он рассчитывает один раз, то мы получим в конце года 110 долларов. Если мы передумаем и будем брать проценты каждые 6 месяцев, то в этом случае мы получим больше 110 долларов. Дело в ттом, что процент, полученный за первые 6 месяцев, тоже получит свой процент. Общая сумма будет равна 110,25 долларов. Можно догадаться, что мы можем получить больше денег, если будем забирать деньги каждый квартал года. А если мы будем делать временной интервал всё короче, то окончательные суммы будут продолжать расти. Такой бесконечный сложный процент сделает нас богатыми! Однако наш общий доход стремится к ограниченному значению, связанному с e.

Бернулли не называл число 2,71828 именем e. Когда Эйлер работал с 2,71828, он возвёл экспоненциальную функцию e в степень x. Свои открытия он изложил в книге The Analysis of Infinite.

В 1798 году Томас Мальтус использовал экспоненциальную функцию в своём эссе, посвящённом пищевому дефициту будущего. Он создал линейный график, показывающий производство пищи и экспоненциальный график, показывающий население мира. Мальтус сделал вывод, что в дальней перспективе экспоненциальный рост победит, и мир ждёт серьёзный дефицит пищи. Это явление назвали «мальтузианской катастрофой». Ньютон тоже использовал эту модель, чтобы показать, как охлаждается чашка чая.

Рисунок 35: закон Ньютона-Рихмана

Рисунок 36: мальтузианская катастрофа

Мнимость числа: i, квадратный корень -1

Долгое время для решения своих задач математикам было достаточно обычных чисел. Однако в какой-то момент для дальнейшего развития им потребовалось открыть нечто новое и загадочное. Например, итальянский математик Кардано пытался разделить число 10 на 2 части, произведение которых было бы равно 40. Чтобы решить эту задачу, он записал уравнение: x (10-x) = 40. Когда он решил это квадратное уравнение, то получил два решения: 5 плюс √-15 и 5 минус √-15, что в то время не имело никакого смысла. Этот результат был бессмысленным, потому что по определению квадратного корня ему нужно было найти число, квадрат которого был бы отрицательным. Однако и положительное, и отрицательное числа в квадрате имеют положительное значение. Как бы то ни было, он нашёл своё уникальное число. Однако первым математиком, назвавшим √-1 (квадратный корень из минус единицы) мнимым числом i, был Эйлер.

Лейбниц дал такой комментарий о мнимом числе √-1:

Комплексные числа — это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием.

Мы можем складывать, вычитать, умножать и делить мнимые числа. Сложение, вычитание и умножение просты, а деление немного сложнее. Вещественные и мнимые части складываются по отдельности. В случае умножения i2 будет равно -1.

После Эйлера математик Каспар Вессель представил мнимые числа геометрически с создал комплексную плоскость. Сегодня мы представляем каждое комплексное число a + bi как точку с координатами (a,b).

Рисунки 37 и 38: комплексные числа

В викторианскую эпоху многие относились к мнимым числам с подозрением. Однако ирландский математик и астроном Уильям Роуэн Гамильтон покончил с этими сомнениями, определив комплексные числа применительно к кватернионам.

Самое красивое уравнение: тождество Эйлера

Тождество Эйлера связывает экспоненциальную функцию с функциями синуса и косинуса, значения которых колеблются от минус единицы до единицы. Чтобы найти вязь с тригонометрическими функциями, мы можем представить их в виде бесконечного ряда, истинного для всех значений

Рисунок 39: открытие тождества Эйлера

Рисунок 40: тождество Эйлера

Эйлер никогда не записывал это тождество в явном виде, и мы не знаем, кто впервые записал его. Тем не менее, мы связываем его с именем Эйлера в знак почтения перед этим великим первопроходцем математики.

Автор: PatientZero

Источник

www.pvsm.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *