Свойства синусоида – Тригонометрические функции (свойства, графики)

Тригонометрические кривые. Синусоида. Косинусоида. Тангенсоида. Котангенсоида.

Графики тригонометрических функций.

Все углы А по умолчанию приведены в градусах. Все таблицы значений и формулы синусов, косинусов, тангенсов, котангенсов (здесь). Во всех формулах пределов и разложений в ряд — углы в радианах.

Графики функций y=sinA, y=cosA, y=tgA,построенные для диапазона от 0o до 360o, показаны на рисунках ниже.


График функции y=sinA (синусоида)

 


График функции y=cosA (косинусоида)

График функции y=tgA (тангенсоида)

 

Из графиков видно что:

  1. Графики синуса и косинуса колеблются в пределах между -1 и 1
  2. Кривая косинуса имеет ту же форму, что и кривая синуса, но сдвинута относительно нее на 90
    o
  3. Кривые синуса и косинуса непрерывны и повторяются с периодом 360o , кривая тангенса имеет разрывы и повторяется с периодом 180o .

Углы произвольной величины

На рис. слева показаны перпендикулярные оси ХХ’ и YY’; пересекающиеся в начале координат О. При работе с графиками измерения вправо и вверх от О считаются положительными, влево и вниз от О — отрицательными. Пусть ОА свободно вращается относительно О. При повороте ОА против часовой стрелки измеряемый угол считается положительным, а при повороте по часовой стрелке — отрицательным.


График. Положительное или отрицательное
направление при движении по окружности.

Пусть ОА вращается против часовой стрелки таким образом, что Θ1 — любой угол в первом квадранте, и построим перпендикуляр АВ для получения прямоугольного треугольника ОАВ на рис. слева. Поскольку все три стороны треугольника положительны, тригонометрические функции синус, косинус и тангенс в первом квадранте будут положительны. (Отметим, что длина ОА всегда положительна, поскольку является радиусом круга.)

Пусть ОА вращается дальше таким образом, что Θ2 — любой угол во втором квадранте, и построим АС так, чтобы образовался прямоугольный треугольник ОАС. Тогда sin Θ2=+/+ = +; cos Θ2=+/- = -; tg Θ2=+/- = -. Пусть ОА вращается дальше таким образом, что Θ3 — любой угол в третьем квадранте, и построим АD так, чтобы образовался прямоугольный треугольник ОАD. Тогда sin Θ3= -/+ = -; cos Θ3= -/+ = -; tg Θ3 = -/- =+ .


График. Поcтроение углов в
различных квадрантах.

Пусть ОА вращается дальше таким образом, что Θ4— любой угол в четвертом квадранте, и построим АЕ так, чтобы образовался прямоугольный треугольник ОАЕ. Тогда sin Θ

4= -/+= -; cos Θ4=+/+=+; tg Θ4= -/+= -.

В первом квадранте все тригонометрические функции имеют положительные значения, во втором положителен только синус, в третьем — только тангенс, в четвертом только косинус, что и показано на рис. слева.

График. Положительные и отрицательные
значения синусов, косинусов и тангенсов.


Знание углов произвольной величины необходимо при нахождении, например, всех углов между 0o и 360o , синус которых равен, скажем, 0,3261. Если ввести в калькулятор 0,3261 и нажать кнопку sin-1, получим ответ 19,03o . Однако существует второй угол между 0o и 360o , который калькулятор не покажет. Синус также положителен во втором квадранте. Другой угол показан на рис. ниже как угол Θ, где Θ=180o — 19,03

o = 160,97o . Таким образом, 19,03o и 160,97o — это углы в диапазоне от 0o до 360o , синус которых равен 0,3261.

Будьте внимательны! Калькулятор дает только одно из этих значений. Второе значение следует определить согласно теории углов произвольной величины.
График. Нахождение всех углов по
заданному значению синуса (пример)

Пример 1

Найти все углы в диапазоне от 0o до 360o , синус которых равен -0,7071

Решение:
Углы, синус которых равен -0,7071o находятся в третьем и четвертом квадранте, поскольку синус отрицателен в этих квадрантах (смотри рис. слева).

График. Нахождение всех углов по
заданному значению синуса (пример)


Из следующего рисунка Θ = arcsin 0,7071 = 45
o
. Два угла в диапазоне от 0o до 360o, синус которых равен -0,7071, это 180o +45o =225o и 360o — 45 o = 315o .


Примечание. Калькулятор дает только один ответ.
График. Нахождение всех углов по
заданному значению синуса (пример)

Пример 2 

Найти все углы между 0o и 360o , тангенс которых равен 1, 327.

Решение:
Тангенс положителен в первом и третьем квадрантах — рис. слева.
График. Нахождение всех углов по
заданному значению тангенса (пример)

Из рис ниже Θ = arctg1,327= 53o .
Два угла в диапазоне от 0o до 360o , тангенс которых равен 1,327, это 53o и 180o + 53 o, т.е. 233o .

График. Нахождение всех углов по
заданному значению тангенса (пример)

Построение синусоиды и косинусоиды

Пусть ОR на рис. слева- это вектор единичной длины, свободно вращающийся против часовой стрелки вокруг О. За один оборот получается круг, показанный на рис. и разделенный секторами по 15 o. Каждый радиус имеет горизонтальную и вертикальную составляющую. Например, для 30o вертикальная составляющая — это ТS, а горизонтальная — ОS.

 


График. Построение синусоиды.

Из определения тригонометрических функций
sin30o=TS/TO=TS/1, т.е. TS= sin30o и cos30o=OS/TO=OS/1, т.e. OS=cos30o

 

Вертикальную составляющую TS можно перенести на график в виде T’S’, что равно значению, соответствующему углу 30o на графике зависимости y от угла х. Если все вертикальные составляющие, подобно TS, перенести на график, то получится синусоида, показанная на рис. выше.


Если все горизонтальные составляющие, подобные OS, спроецировать на график зависимости у от угла х, получится косинусоида. Эти проекции легко визуализировать, перерисовывая круг с радиусом OR и началом отсчета углов от вертикали, как показано на рисунке слева.
Из рис. слева видно, что синусоида имеет ту же форму, что и косинусоида, но смещенная на 90o.
График. Построение косинусоиды.

Синусоидальные и косинусоидальные графики


График. y=sinA и y=sin2A (синусоиды).

График. y=sinA и y=sin(1/2)A (синусоиды).

График. y=cosA и y=cos2A (косинусоиды).

График. y=cosA и y=cos(1/2)A (косинусоиды).

Периодические функции и период
Каждый из графиков функций, показанных на четырех рис. выше, повторяется при увеличении угла А, поэтому их называют периодическими функциями.
Функции y=sinA и y=cosA повторяются через каждые 360o (или 2π радиан), поэтому 360o называется периодом этих функций. Функции y=sin2A и y=cos2A повторяются через каждые 180o (или π радиан),поэтому 180o — это период для данных функций.
В общем случае если y=sinpA и y=cospA (где р — константа), то период функции равен 360o/p (или 2π/p радиан ). Следовательно, если y=sin3A, то период этой функции равен 360o/3= 120o, если y=cos4A, то период этой функции равен 360o/4= 90o.

Амплитуда

Амплитудой называется максимальное значение синусоиды. Каждый из графиков 1-4 имеет амплитуду +1 (т.е. они колеблются между +1 и -1). Однако, если y=4sinA, каждая из величин sinA умножается на 4, таким образом, максимальная величина амплитуды — 4. Аналогично для y=5cos2A амплитуда равна 5, а период — 360o/2= 180o.

Пример 3.
Построить y=3sin2A в диапазоне от А= 0o до А=360o.

 Решение:
 Амплитуда =3, период = 360o/2 =180o.
График. Построение y=3sin2A (синусоида).

Пример 4.
Построить график y=4cos2x в диапазоне от х=0o до х=360o

Решение:
Амплитуда = 4. период = 360o/2 =180o.


График. Построение y=4cos2x (косинусоида).

 

Углы запаздывания и опережения
Кривые синуса и косинуса не всегда начинаются в 0

o . Чтобы учесть это обстоятельство, периодическая функция представляется в виде y=sin(A± α), где α — сдвиг фазы относительно y=sinA и y=cosA.

Составив таблицу значений, можно построить график функции y=sin(A-60o), показанный на рис. слева. Если кривая y=sinA начинается в 0o, то кривая y=sin(A-60o) начинается в 60o (т.е. ее нулевое значение на 60o правее ). Таким образом, говорят, что y=sin(A-60o) запаздывает относительно y=sinA на 60o.
График. y=sin(A-60o) (синусоида).

  Составив таблицу значений, можно построить график функции y=cos(A+45o), показанный на рис. ниже.
  Если кривая y=cosA начинается в 0o, то кривая y=cos(A+45o) начинается на 45o левее (т.е. ее нулевая величина   находится на 45o раньше ).
  Таким образом, говорят, что график y=cos(A+45

o) опережает график y=cosA на 45o.
График. y=cos(A+45o) (косинусоида).

В общем виде, график y=sin(A-α) запаздывает относительно y=sinAна угол α.
Косинусоида имеет ту же форму, что и синусоида, но начинается на 90o левее, т.е. опережает ее на 90o. Следовательно, cosA=sin(A+90o).

Пример 5.
Построить график y=5sin(A+30o) в диапазоне от А=0o до А=360o


  Решение:
  Амплитуда = 5, период = 360o/1 = 360o
  5sin(A+30o) опережает 5sinA на 30o т.е. начинается на 30o раньше.
График y=5sin(A+30o) (синусоида).

Пример 6.
Построить график y=7sin(2A-π/3) в диапазоне от А=0o до А=360o.

   Решение:
  Амплитуда = 7, период =2π/2= π радиан
  В общем случае y=sin(pt-α) запаздывает относительно y=sinpt на α/p, следовательно 7sin(2A-π/3) запаздывает  относительно 7sin2A на ( π/3)/2, т.е. на π/6 радиан или на 30o
График. y=7sin2A и y=7sin(2A-п/3) (синусоиды).

Синусоида вида Asin(ωt±α). Фазовый угол. Сдвиг по фазе.

Пусть OR на рис. слева представляет собой вектор, свободно вращающийся против часовой стрелки вокруг О со скоростью ω радиан/с. Вращающийся вектор называется фазовым вектором. Через время t секунд OR повернется на угол ωt радиан (на рис. слева это угол TOR). Если перпендикулярно к OR построить ST, то sinωt=ST/OT, т.e. ST=OTsinωt.
Если все подобные вертикальные составляющие спроецировать на график зависимости у от ωt, получится синусоида с амплитудой OR.
График. Фазовый угол. Сдвиг по фазе.

 

Если фазовый вектор OR делает один оборот (т.е. 2π радиан) за Т секунд, то угловая скорость ω=2π/Т рад/с, откуда
Т=2π/ ω (с), где
Т — это период
Число полных периодов, проходящих за 1 секунду, называется частотой f.
Частота = (количество периодов)/(секунда) = 1/ T = ω/2π Гц, т.е. f= ω/2π Гц
Следовательно, угловая скорость
ω=2πf рад/с.

Если в общем виде синусоидальная функция выглядит, как y=sin(ωt± α), то
А — амплитуда
ω — угловая скорость
2π/ ω — период Т, с
ω/2π — частота f, Гц
α — угол опережения или запаздывания (относительно y=Аsinωt ) в радианах, он называется также фазовым углом.

Пример 7.
Переменный ток задается как i=20sin(90πt+0,26) ампер. Определить амплитуду, период, частоту и фазовый угол (в градусах)

Решение:
i=20sin(90πt+0,26)А, следовательно,
амплитуда равна 20 А
угловая скорость ω=90π, следовательно,
период Т = 2π/ ω = 2π/ 90π = 0,022 с = 22мс
частота f = 1/Т = 1/0,022 = 45,46 Гц
фазовый угол α = 0,26 рад. = (0,26*180/π)o = 14,9o.

Пример 8.
Колебательный механизм имеет максимальное смещение 3 м и частоту 55 Гц. Во время t=0 смещение составляет 100см. Выразить смещение в общем виде Аsin(ωt± α).

Решение
Амплитуда = максимальное смещение = 3м
Угловая скорость ω=2πf = 2π(55) = 110 πрад./с
Следовательно, смещение 3sin(110πt + α) м.
При t=0 смещение = 100см=1м.
Следовательно, 1= 3sin(0 + α), т.е. sinα=1/3=0,33
Следовательно α=arcsin0,33=19o
Итак, смещение равно 3sin(110 πt + 0,33).

Пример 9.
Значение мгновенного напржения в схеме переменного тока в любые t секунд задается в виде v=350sin(40πt-0,542)В. Найти:
а) Амплитуду, период, частоту и фазовый угол (в градусах)
б) значение напряжения при t =0
в) значение напряжения при t =10 мс
г) время, за которое напряжение впервые достигнет значения 200 В.
Решение:
а) Амплитуда равна 350 В, угловая скорость равна ω=40π
Следовательно,
период Т=2π/ ω=2π/40π=0,05 с =50мс
частота f=1/Т=1/0,05=20 Гц
фазовый угол = 0,542 рад (0,542*180/π) = 31oс запаздыванием относительно v=350sin(40πt)
б) Если t =0, то v=350sin(0-0,542)=350sin(-31o)=-180,25 В
в) Если t =10 мс, то v=350sin(40π10/103-0,542)=350sin(0,714)=350sin41o =229,6 В
г) Если v=200 И, то 200=350sin(40πt-0,542) 200/350=sin(40πt-0,542)

График. Колебательный механизм
(пример, синусоида).

v=350sin(40πt-0,542) Следовательно, (40πt-0,542)=arcsin200/350=35o или 0,611 рад.
40πt= 0,611+0,542=1,153.
Следовательно, если v=200В, то время t=1,153/40π=9,179 мс

tehtab.ru

Синусоида график – математическая функция, применяемая в теханализе

Технический анализ – это обработка экономической информации математическими методами. Впрочем, сложные алгебраические расчеты обычно выполняются при помощи компьютерных программ. Но понимать их природу трейдеру все же нужно для того, чтобы правильно оценивать и интерпретировать результат.

Синусоида: график

Любой выпускник средней школы знает, что синусоида график представляет собой волнообразную кривую, формула которой выглядит как у= sin х. Если sin заменить на cos, кривая сместится влево. Такой график часто называют косинусоидой.

Изменение величины, к примеру, цены, по данной формуле называется гармоническим колебанием. Кривая отличается длиной волны, амплитудой и другими параметрами.

На основании этой математической функции разработаны методы, которые используются трейдерами в техническом анализе. К примеру, используя синусоиду, можно моделировать движение цены или сравнивать индикаторы между собой. Ведь кривая цены движется только вверх или вниз и только слева направо.

График и свойства синусоиды

Свойства кривой можно свести к следующим 3 основным пунктам:

  1. Синусоида есть периодическая функция.
  2. Точки пересечения с осью координат Ох принято называть точками перегиба. Функция не заканчивается в точке перегиба, поскольку она бесконечна.

При этом любую кривую можно разложить на синусоиды без остатка.

Как строить график синусоиды

В системе координат график синусоиды строится по точкам, которые получают путем подставления значений в формулу. Итак, как строить график синусоиды на листе бумаги, в текстовом или табличном редакторе :

  1. Строим систему координат.
  2. Выбираем масштаб, который равен 2π – это приблизительно 1,5.
  3. Далее, находим основные точки кривой, по которым можно построить график синусоиды или косинусоиды. Вначале вычисляем, чему равна функция, если аргумент равен нулю, п/2, п, 3п/2. При этом из курса математики мы знаем, что синус – функция периодическая. Ее период равен 2π, т.е. через оный интервал значение повторяется. Таким образом, исследователю будет достаточно этого отрезка для исследования свойств кривой.
  4. В том случае, если нужен более точный график, точек можно взять больше, к примеру, п/6, п/4 и т.д.
  5. Создав достаточное количество точек в системе координат, их последовательно соединяют друг с другом.

При этом трейдер должен знать, что период синусоиды 2π отражает то, за сколько баров происходит полное колебание.

Конечно, участник валютного рынка Форекс обычно не строит математические графики самостоятельно, а использует для оного программное обеспечение.

Загрузка…

fx-currencies.ru

Тригонометрические кривые. Синусоида. Косинусоида. Тангенсоида. Котангенсоида.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Функции. Графики. Построение графиков. Чтение графиков.  / / Тригонометрические кривые. Синусоида. Косинусоида. Тангенсоида. Котангенсоида.

Тригонометрические кривые. Синусоида. Косинусоида. Тангенсоида. Котангенсоида.     Вариант для печати.

Графики тригонометрических функций.

Все углы А по умолчанию приведены в градусах. Все таблицы значений и формулы синусов, косинусов, тангенсов, котангенсов (здесь). Во всех формулах пределов и разложений в ряд — углы в радианах.

Графики функций y=sinA, y=cosA, y=tgA,построенные для диапазона от 0o до 360o, показаны на рисунках ниже.


График функции y=sinA (синусоида)

График функции y=cosA (косинусоида)

График функции y=tgA (тангенсоида)

Из графиков видно что:

  1. Графики синуса и косинуса колеблются в пределах между -1 и 1
  2. Кривая косинуса имеет ту же форму, что и кривая синуса, но сдвинута относительно нее на 90o
  3. Кривые синуса и косинуса непрерывны и повторяются с периодом 360o , кривая тангенса имеет разрывы и повторяется с периодом 180o .

Углы произвольной величины

На рис. слева показаны перпендикулярные оси ХХ’ и YY’; пересекающиеся в начале координат О. При работе с графиками измерения вправо и вверх от О считаются положительными, влево и вниз от О — отрицательными. Пусть ОА свободно вращается относительно О. При повороте ОА против часовой стр

dpva.ru

синусоида — Викисловарь

Материал из Викисловаря

Перейти к навигации Перейти к поиску
См. также синусоид.
В Википедии есть страница «синусоида».

Содержание

  • 1 Русский
    • 1.1 синусоида I
      • 1.1.1 Морфологические и синтаксические свойства
      • 1.1.2 Произношение
      • 1.1.3 Семантические свойства
        • 1.1.3.1 Значение
        • 1.1.3.2 Синонимы
        • 1.1.3.3 Антонимы
        • 1.1.3.4 Гиперонимы
        • 1.1.3.5 Гипонимы
      • 1.1.4 Родственные слова
      • 1.1.5 Этимология
      • 1.1.6 Фразеологизмы и устойчивые сочетания
      • 1.1.7 Перевод
      • 1.1.8 Библиография
    • 1.2 синусоида II

Морфологические и синтаксические свойства[править]

падежед. ч.мн. ч.
Им.синусо́идасинусо́иды
Р.синусо́идысинусо́ид

ru.wiktionary.org

Тригонометрические кривые. Синусоида. Косинусоида. Тангенсоида. Котангенсоида.

Графики тригонометрических функций.

Все углы А по умолчанию приведены в градусах. Все таблицы значений и формулы синусов, косинусов, тангенсов, котангенсов (здесь). Во всех формулах пределов и разложений в ряд — углы в радианах.

Графики функций y=sinA, y=cosA, y=tgA,построенные для диапазона от 0o до 360o, показаны на рисунках ниже.


График функции y=sinA (синусоида)

График функции y=cosA (косинусоида)

График функции y=tgA (тангенсоида)

 

Из графиков видно что:

  1. Графики синуса и косинуса колеблются в пределах между -1 и 1
  2. Кривая косинуса имеет ту же форму, что и кривая синуса, но сдвинута относительно нее на 90o
  3. Кривые синуса и косинуса непрерывны и повторяются с периодом 360o , кривая тангенса имеет разрывы и повторяется с периодом 180o .

Углы произвольной величины

На рис. слева показаны перпендикулярные оси ХХ’ и YY’; пересекающиеся в начале координат О. При работе с графиками измерения вправо и вверх от О считаются положительными, влево и вниз от О — отрицательными. Пусть ОА свободно вращается относительно О. При повороте ОА против часовой стрелки измеряемый угол считается положительным, а при повороте по часовой стрелке — отрицательным.


График. Положительное или отрицательное
направление при движении по окружности.

Пусть ОА вращается против часовой стрелки таким образом, что Θ1 — любой угол в первом квадранте, и построим перпендикуляр АВ для получения прямоугольного треугольника ОАВ на рис. слева. Поскольку все три стороны треугольника положительны, тригонометрические функции синус, косинус и тангенс в первом квадранте будут положительны. (Отметим, что длина ОА всегда положительна, поскольку является радиусом круга.)
Пусть ОА вращается дальше таким образом, что Θ2 — любой угол во втором квадранте, и построим АС так, чтобы образовался прямоугольный треугольник ОАС. Тогда sin Θ2=+/+ = +; cos Θ2=+/- = -; tg Θ2=+/- = -. Пусть ОА вращается дальше таким образом, что Θ3 — любой угол в третьем квадранте, и построим АD так, чтобы образовался прямоугольный треугольник ОАD. Тогда sin Θ3= -/+ = -; cos Θ3= -/+ = -; tg Θ3 = -/- =+ .


График. Поcтроение углов в
различных квадрантах.

Пусть ОА вращается дальше таким образом, что Θ4— любой угол в четвертом квадранте, и построим АЕ так, чтобы образовался прямоугольный треугольник ОАЕ. Тогда sin Θ4= -/+= -; cos Θ4=+/+=+; tg Θ4= -/+= -.

В первом квадранте все тригонометрические функции имеют положительные значения, во втором положителен только синус, в третьем — только тангенс, в четвертом только косинус, что и показано на рис. слева.


График. Положительные и отрицательные
значения синусов, косинусов и тангенсов.


Знание углов произвольной величины необходимо при нахождении, например, всех углов между 0o и 360o , синус которых равен, скажем, 0,3261. Если ввести в калькулятор 0,3261 и нажать кнопку sin-1, получим ответ 19,03o . Однако существует второй угол между 0o и 360o , который калькулятор не покажет. Синус также положителен во втором квадранте. Другой угол показан на рис. ниже как угол Θ, где Θ=180o — 19,03o = 160,97o . Таким образом, 19,03o и 160,97o — это углы в диапазоне от 0o до 360o , синус которых равен 0,3261.

Будьте внимательны! Калькулятор дает только одно из этих значений. Второе значение следует определить согласно теории углов произвольной величины.
График. Нахождение всех углов по
заданному значению синуса (пример)

Пример 1

Найти все углы в диапазоне от 0o до 360o , синус которых равен -0,7071

Решение:
Углы, синус которых равен -0,7071o находятся в третьем и четвертом квадранте, поскольку синус отрицателен в этих квадрантах (смотри рис. слева).

График. Нахождение всех углов по
заданному значению синуса (пример)

Из следующего рисунка Θ = arcsin 0,7071 = 45o. Два угла в диапазоне от 0o до 360o, синус которых равен -0,7071, это 180o +45o =225o и 360o — 45 o = 315o .


Примечание. Калькулятор дает только один ответ.
График. Нахождение всех углов по
заданному значению синуса (пример)

Пример 2 

Найти все углы между 0o и 360o , тангенс которых равен 1, 327.

Решение:
Тангенс положителен в первом и третьем квадрантах — рис. слева.
График. Нахождение всех углов по
заданному значению тангенса (пример)

Из рис ниже Θ = arctg1,327= 53o .
Два угла в диапазоне от 0o до 360o , тангенс которых равен 1,327, это 53o и 180o + 53 o, т.е. 233o .
График. Нахождение всех углов по
заданному значению тангенса (пример)

Построение синусоиды и косинусоиды

Пусть ОR на рис. слева- это вектор единичной длины, свободно вращающийся против часовой стрелки вокруг О. За один оборот получается круг, показанный на рис. и разделенный секторами по 15 o. Каждый радиус имеет горизонтальную и вертикальную составляющую. Например, для 30o вертикальная составляющая — это ТS, а горизонтальная — ОS.
График. Построение синусоиды.

Из определения тригонометрических функций
sin30o=TS/TO=TS/1, т.е. TS= sin30o и cos30o=OS/TO=OS/1, т.e. OS=cos30o

Вертикальную составляющую TS можно перенести на график в виде T’S’, что равно значению, соответствующему углу 30o на графике зависимости y от угла х. Если все вертикальные составляющие, подобно TS, перенести на график, то получится синусоида, показанная на рис. выше.


Если все горизонтальные составляющие, подобные OS, спроецировать на график зависимости у от угла х, получится косинусоида. Эти проекции легко визуализировать, перерисовывая круг с радиусом OR и началом отсчета углов от вертикали, как показано на рисунке слева.
Из рис. слева видно, что синусоида имеет ту же форму, что и косинусоида, но смещенная на 90o.
График. Построение косинусоиды.

Синусоидальные и косинусоидальные графики


График. y=sinA и y=sin2A (синусоиды).

График. y=sinA и y=sin(1/2)A (синусоиды).

График. y=cosA и y=cos2A (косинусоиды).

График. y=cosA и y=cos(1/2)A (косинусоиды).

Периодические функции и период
Каждый из графиков функций, показанных на четырех рис. выше, повторяется при увеличении угла А, поэтому их называют периодическими функциями.
Функции y=sinA и y=cosA повторяются через каждые 360o (или 2π радиан), поэтому 360o называется периодом этих функций. Функции y=sin2A и y=cos2A повторяются через каждые 180o (или π радиан),поэтому 180o — это период для данных функций.
В общем случае если y=sinpA и y=cospA (где р — константа), то период функции равен 360o/p (или 2π/p радиан ). Следовательно, если y=sin3A, то период этой функции равен 360o/3= 120o, если y=cos4A, то период этой функции равен 360o/4= 90o.

Амплитуда
Амплитудой называется максимальное значение синусоиды. Каждый из графиков 1-4 имеет амплитуду +1 (т.е. они колеблются между +1 и -1). Однако, если y=4sinA, каждая из величин sinA умножается на 4, таким образом, максимальная величина амплитуды — 4. Аналогично для y=5cos2A амплитуда равна 5, а период — 360o/2= 180o.

Пример 3.
Построить y=3sin2A в диапазоне от А= 0o до А=360o.

 Решение:
 Амплитуда =3, период = 360o/2 =180o.
График. Построение y=3sin2A (синусоида).

Пример 4.
Построить график y=4cos2x в диапазоне от х=0o до х=360o

Решение:
Амплитуда = 4. период = 360o/2 =180o.


График. Построение y=4cos2x (косинусоида).

Углы запаздывания и опережения
Кривые синуса и косинуса не всегда начинаются в 0o . Чтобы учесть это обстоятельство, периодическая функция представляется в виде y=sin(A± α), где α — сдвиг фазы относительно y=sinA и y=cosA.

Составив таблицу значений, можно построить график функции y=sin(A-60o), показанный на рис. слева. Если кривая y=sinA начинается в 0o, то кривая y=sin(A-60o) начинается в 60o (т.е. ее нулевое значение на 60o правее ). Таким образом, говорят, что y=sin(A-60o) запаздывает относительно y=sinA на 60o.
График. y=sin(A-60o) (синусоида).

  Составив таблицу значений, можно построить график функции y=cos(A+45o), показанный на рис. ниже.
  Если кривая y=cosA начинается в 0o, то кривая y=cos(A+45o) начинается на 45o левее (т.е. ее нулевая величина   находится на 45o раньше ).
  Таким образом, говорят, что график y=cos(A+45o) опережает график y=cosA на 45o.
График. y=cos(A+45o) (косинусоида).

В общем виде, график y=sin(A-α) запаздывает относительно y=sinAна угол α.
Косинусоида имеет ту же форму, что и синусоида, но начинается на 90o левее, т.е. опережает ее на 90o. Следовательно, cosA=sin(A+90o).

Пример 5.
Построить график y=5sin(A+30o) в диапазоне от А=0o до А=360o


  Решение:
  Амплитуда = 5, период = 360o/1 = 360o
  5sin(A+30o) опережает 5sinA на 30o т.е. начинается на 30o раньше.
График y=5sin(A+30o) (синусоида).

Пример 6.
Построить график y=7sin(2A-π/3) в диапазоне от А=0o до А=360o.

   Решение:
  Амплитуда = 7, период =2π/2= π радиан
  В общем случае y=sin(pt-α) запаздывает относительно y=sinpt на α/p, следовательно 7sin(2A-π/3) запаздывает  относительно 7sin2A на ( π/3)/2, т.е. на π/6 радиан или на 30o
График. y=7sin2A и y=7sin(2A-п/3) (синусоиды).

Синусоида вида Asin(ωt±α). Фазовый угол. Сдвиг по фазе.

Пусть OR на рис. слева представляет собой вектор, свободно вращающийся против часовой стрелки вокруг О со скоростью ω радиан/с. Вращающийся вектор называется фазовым вектором. Через время t секунд OR повернется на угол ωt радиан (на рис. слева это угол TOR). Если перпендикулярно к OR построить ST, то sinωt=ST/OT, т.e. ST=OTsinωt.
Если все подобные вертикальные составляющие спроецировать на график зависимости у от ωt, получится синусоида с амплитудой OR.
График. Фазовый угол. Сдвиг по фазе.

Если фазовый вектор OR делает один оборот (т.е. 2π радиан) за Т секунд, то угловая скорость ω=2π/Т рад/с, откуда
Т=2π/ ω (с), где
Т — это период
Число полных периодов, проходящих за 1 секунду, называется частотой f.
Частота = (количество периодов)/(секунда) = 1/ T = ω/2π Гц, т.е. f= ω/2π Гц
Следовательно, угловая скорость
ω=2πf рад/с.

Если в общем виде синусоидальная функция выглядит, как y=sin(ωt± α), то
А — амплитуда
ω — угловая скорость
2π/ ω — период Т, с
ω/2π — частота f, Гц
α — угол опережения или запаздывания (относительно y=Аsinωt ) в радианах, он называется также фазовым углом.

Пример 7.
Переменный ток задается как i=20sin(90πt+0,26) ампер. Определить амплитуду, период, частоту и фазовый угол (в градусах)

Решение:
i=20sin(90πt+0,26)А, следовательно,
амплитуда равна 20 А
угловая скорость ω=90π, следовательно,
период Т = 2π/ ω = 2π/ 90π = 0,022 с = 22мс
частота f = 1/Т = 1/0,022 = 45,46 Гц
фазовый угол α = 0,26 рад. = (0,26*180/π)o = 14,9o.

Пример 8.
Колебательный механизм имеет максимальное смещение 3 м и частоту 55 Гц. Во время t=0 смещение составляет 100см. Выразить смещение в общем виде Аsin(ωt± α).

Решение
Амплитуда = максимальное смещение = 3м
Угловая скорость ω=2πf = 2π(55) = 110 πрад./с
Следовательно, смещение 3sin(110πt + α) м.
При t=0 смещение = 100см=1м.
Следовательно, 1= 3sin(0 + α), т.е. sinα=1/3=0,33
Следовательно α=arcsin0,33=19o
Итак, смещение равно 3sin(110 πt + 0,33).

Пример 9.
Значение мгновенного напржения в схеме переменного тока в любые t секунд задается в виде v=350sin(40πt-0,542)В. Найти:
а) Амплитуду, период, частоту и фазовый угол (в градусах)
б) значение напряжения при t =0
в) значение напряжения при t =10 мс
г) время, за которое напряжение впервые достигнет значения 200 В.
Решение:
а) Амплитуда равна 350 В, угловая скорость равна ω=40π
Следовательно,
период Т=2π/ ω=2π/40π=0,05 с =50мс
частота f=1/Т=1/0,05=20 Гц
фазовый угол = 0,542 рад (0,542*180/π) = 31oс запаздыванием относительно v=350sin(40πt)
б) Если t =0, то v=350sin(0-0,542)=350sin(-31o)=-180,25 В
в) Если t =10 мс, то v=350sin(40π10/103-0,542)=350sin(0,714)=350sin41o =229,6 В
г) Если v=200 И, то 200=350sin(40πt-0,542) 200/350=sin(40πt-0,542)

График. Колебательный механизм
(пример, синусоида).

v=350sin(40πt-0,542) Следовательно, (40πt-0,542)=arcsin200/350=35o или 0,611 рад.
40πt= 0,611+0,542=1,153.
Следовательно, если v=200В, то время t=1,153/40π=9,179 мс

Оценка статьи:

e4-cem.ru

Переменный (синусоидальный) ток и основные характеризующие его величины.

Переменный ток (англ. alternating current — AC) — электрический токкоторый с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Рисунок 1

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с-1)

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

electrikam.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *