Формула в физике l: Формула пути в физике

{2}} d t(3)$$

Местоположение перемещающейся материальной точки в фиксированный момент времени, например t=t1 называют начальным положением. Очень часто полагают t1=0. Длин пути, который прошла материальная точка из начального положения – скалярная функция времени: s=s(t).

Считают, что за промежуток времени $d t \rightarrow 0$ материальная точка проходит путь ds, который называют элементарным. При этом:

$$d s=|d \bar{r}|=v d t$$

где $\bar{r}$ – вектор элементарного перемещения материальной точки, v – модуль скорости ее движения.

Виды движения и формулы длины пути

Длина пути при равномерном движении (v=const) точки равна:

$$s=v\left(t_{2}-t_{1}\right)(5)$$

где t1 – начало отсчета движения, t2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.

{2}}{2}(7)$$

где a – постоянное ускорение, v0 – начальная скорость движения.

Единицы измерения пути

Основной единицей измерения пути в системе СИ является: [s]=м

В СГС: [s]=см

Примеры решения задач

Пример

Задание. Траектория движения материальной точки изображена на рис. 1. Каков путь, пройденный точкой, чему равно перемещение, если точка двигалась 1-2-3-4.

Решение. Перемещение – кратчайшее расстояние между точками 1 и 4. Следовательно, перемещение точки равно:

$$6 — 2 = 4 (m)$$

Путь – длина траектории. Рассматривая график на рис.1 получаем, что путь материальной точки равен:

$$8 + 4 + 8 = 20 (m)$$

Ответ. Путь равен 20 м, перемещение равно 4 м.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. {2} \rho \frac{d l}{S}(1)$$

называют сопротивлением участка цепи между сечениями 1 и 2. В выражении (1) имеем $\rho$ – удельное сопротивление проводника, S – площадь поперечного сечения проводника, dl — элемент длины проводника.

Если проводник является однородным ($\rho$=const) и имеет форму цилиндра (S=const), то формула (1) может быть представлена как:

$$R=\rho \frac{l}{S}(2)$$

где l – длина участка рассматриваемого проводника.

Надо отметить, что удельное сопротивление проводника ($\rho$) – это сопротивление проводника единичной длины с поперечным сечением равным единице. Или иначе говорят, что удельное сопротивление вещества – это сопротивление куба с ребром 1 м изготовленного из рассматриваемого вещества, которое выражено в Ом, при токе, который параллелен ребру куба. Величина обратная удельному сопротивлению:

$$\sigma=\frac{1}{\rho}(3)$$

называется удельной проводимостью. {B}=\frac{\rho}{4 \pi} \cdot \frac{B-A}{B \cdot A}$$

Ответ. $R=\frac{\rho}{4 \pi} \cdot \frac{B-A}{B \cdot A}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Какое количество витков проволоки (n) (удельное сопротивление ее равно $\rho$=100 мк Ом•м, диаметр d=1 см) требуется накрутить на фарфоровый цилиндр, имеющий радиус A=1 см, для того чтобы получить сопротивление R=8 Ом?

Решение. Основой для решения задачи будет формула для сопротивления вида:

$$R=\rho \frac{l}{S}(2.1)$$

Длину одного витка проволоки можно вычислить как:

$$l_{1}=2 \pi \cdot A(2.2)$$

Следовательно, длина всей проволоки (l) равна:

$$l=n \cdot 2 \pi \cdot A(2. {-2}}=100$$

Ответ. n=100

Читать дальше: Формула внутренней энергии.

часто используемых уравнений – Гиперучебник по физике

[закрыть]

Механика

Уравнения движения
V = V 0 + AT
S = S 0 + v = S 0 + v v v v v v v v v v v v v v v v v v v v v v v . в 2
v 2  =  v 0 2  + 2 a ( с 0014 — S 0 )
V = ½ ( V + V 0 )
1119
Работа
1119
Работа
9007
1111118
118
. θ
W  = 
F  ·  d s
power
P  =  W
t
P  =  dW
dt
equations of rotation
ω = ω 0  + α t
θ = θ 0  + ω 0 t  + ½α t 2
ω 2  = ω 0 2  + 2α(θ − θ 0 )
ω = ½(ω + ω 0 )
torque
τ =  rF  sin θ
τ  =  r  ×  F

Thermal Physics

efficiency
η real  = 1 −  Q С
Q H
η ideal  = 1 −  T C
T H
c. o.p.
700012 Q H  −  Q C
COP реальный  =  Q C
COP ideal  =  T C
T H  − T C

Waves & Optics

Электричество и магнитизм

Апеданс
Z = ±0013 R 2  + ( X L  −  X C ) 2 ]
Z  =  R  +  j ( X L  −  X C )
no one’s law
B  ·  d A  = 0  
 
∇ ·  B  =   0
 
ampere’s law
B  ·  d s  = μ 0 ε 0   ∂Φ E  + μ 0 I
t
∇ ×  B  = μ 0 ε 0   E  + μ 0   J
t

Modern Physics

Шродингер Уравнение
I ψ ( R , T ψ ( R , T 666666666666666666666669666666666666666666666666666666666666666666666666666666666666.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта