Импульс тела. Калькулятор онлайн.
0 | ||||
AC | +/- | ÷ | ||
7 | 8 | 9 | × | |
4 | 5 | 6 | — | |
1 | 2 | 3 | + | |
0 | 00 | , | = |
Онлайн калькулятор импульса тела вычислит импульс, если известны масса и скорость, вычислит массу, если известны импульс и скорость, вычислит скорость если известны импульс и масса, а также даст подробное решение.
Скорость v = Нанометр в секундуНанометр в минутуНанометр в часМиллиметр в секундуМиллиметр в минутуМиллиметр в часСантиметр в секундуСантиметр в минутуСантиметр в часМетр в секундуМетр в минутуМетр в часДециметр в секундуДециметр в минутуДециметр в часКилометр в секундуКилометр в минутуКилометр в часДюйм в секундуДюйм в минутуДюйм в часФут в секундуФут в минутуФут в часЯрд в секундуЯрд в минутуЯрд в часМиля в секундуМиля в минутуМиля в часМорская миля в секундуМорская миля в минутуМорская миля в часАстрономическая единица в секундуАстрономическая единица в минутуАстрономическая единица в часСветовой год в секундуСветовой год в минутуСветовой год в часПарсек в секундуПарсек в минутуПарсек в час
Калькулятор вычисления массы тела через импульс и скорость
Импульс тела равен произведению массы тела m на его скорость v, направление импульса совпадает с направлением вектора скорости. Масса тела равна отношению импульса к скорости тела. 3 кг
Единица измерения скорости v Нанометр в секундуНанометр в минутуНанометр в часМиллиметр в секундуМиллиметр в минутуМиллиметр в часСантиметр в секундуСантиметр в минутуСантиметр в часМетр в секундуМетр в минутуМетр в часДециметр в секундуДециметр в минутуДециметр в часКилометр в секундуКилометр в минутуКилометр в часДюйм в секундуДюйм в минутуДюйм в часФут в секундуФут в минутуФут в часЯрд в секундуЯрд в минутуЯрд в часМиля в секундуМиля в минутуМиля в часМорская миля в секундуМорская миля в минутуМорская миля в часАстрономическая единица в секундуАстрономическая единица в минутуАстрономическая единица в часСветовой год в секундуСветовой год в минутуСветовой год в часПарсек в секундуПарсек в минутуПарсек в час
Вам могут также быть полезны следующие сервисы |
Калькуляторы (физика) |
Механика |
Калькулятор вычисления скорости, времени и расстояния |
Калькулятор вычисления ускорения, скорости и перемещения |
Калькулятор вычисления времени движения |
Калькулятор времени |
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. |
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. |
Импульс тела. Калькулятор вычисления импульса, массы и скорости |
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. |
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения |
Оптика |
Калькулятор отражения и преломления света |
Электричество и магнетизм |
Калькулятор Закона Ома |
Калькулятор Закона Кулона |
Калькулятор напряженности E электрического поля |
Калькулятор нахождения точечного электрического заряда Q |
Калькулятор нахождения силы F действующей на заряд q |
Калькулятор вычисления расстояния r от заряда q |
Калькулятор вычисления потенциальной энергии W заряда q |
Калькулятор вычисления потенциала φ электростатического поля |
Калькулятор вычисления электроемкости C проводника и сферы |
Конденсаторы |
Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе |
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе |
Калькулятор вычисления энергии W заряженного конденсатора |
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов |
Калькуляторы по астрономии |
Вес тела на других планетах |
Ускорение свободного падения на планетах Солнечной системы и их спутниках |
Конвертеры величин |
Конвертер единиц длины |
Конвертер единиц скорости |
Конвертер единиц ускорения |
Цифры в текст |
Калькуляторы (Теория чисел) |
Калькулятор выражений |
Калькулятор упрощения выражений |
Калькулятор со скобками |
Калькулятор уравнений |
Калькулятор суммы |
Калькулятор пределов функций |
Калькулятор разложения числа на простые множители |
Калькулятор НОД и НОК |
Калькулятор НОД и НОК по алгоритму Евклида |
Калькулятор НОД и НОК для любого количества чисел |
Калькулятор делителей числа |
Представление многозначных чисел в виде суммы разрядных слагаемых |
Калькулятор деления числа в данном отношении |
Калькулятор процентов |
Калькулятор перевода числа с Е в десятичное |
Калькулятор экспоненциальной записи чисел |
Калькулятор нахождения факториала числа |
Калькулятор нахождения логарифма числа |
Калькулятор квадратных уравнений |
Калькулятор остатка от деления |
Калькулятор корней с решением |
Калькулятор нахождения периода десятичной дроби |
Калькулятор больших чисел |
Калькулятор округления числа |
Калькулятор свойств корней и степеней |
Калькулятор комплексных чисел |
Калькулятор среднего арифметического |
Калькулятор арифметической прогрессии |
Калькулятор геометрической прогрессии |
Калькулятор модуля числа |
Калькулятор абсолютной погрешности приближения |
Калькулятор абсолютной погрешности |
Калькулятор относительной погрешности |
Дроби |
Калькулятор интервальных повторений |
Учим дроби наглядно |
Калькулятор сокращения дробей |
Калькулятор преобразования неправильной дроби в смешанную |
Калькулятор преобразования смешанной дроби в неправильную |
Калькулятор сложения, вычитания, умножения и деления дробей |
Калькулятор возведения дроби в степень |
Калькулятор перевода десятичной дроби в обыкновенную |
Калькулятор перевода обыкновенной дроби в десятичную |
Калькулятор сравнения дробей |
Калькулятор приведения дробей к общему знаменателю |
Калькуляторы (тригонометрия) |
Калькулятор синуса угла |
Калькулятор косинуса угла |
Калькулятор тангенса угла |
Калькулятор котангенса угла |
Калькулятор секанса угла |
Калькулятор косеканса угла |
Калькулятор арксинуса угла |
Калькулятор арккосинуса угла |
Калькулятор арктангенса угла |
Калькулятор арккотангенса угла |
Калькулятор арксеканса угла |
Калькулятор арккосеканса угла |
Калькулятор нахождения наименьшего угла |
Калькулятор определения вида угла |
Калькулятор смежных углов |
Калькуляторы систем счисления |
Калькулятор перевода чисел из арабских в римские и из римских в арабские |
Калькулятор перевода чисел в различные системы счисления |
Калькулятор сложения, вычитания, умножения и деления двоичных чисел |
Системы счисления теория |
N2 | Двоичная система счисления |
N3 | Троичная система счисления |
N4 | Четырехичная система счисления |
N5 | Пятеричная система счисления |
N6 | Шестеричная система счисления |
N7 | Семеричная система счисления |
N8 | Восьмеричная система счисления |
N9 | Девятеричная система счисления |
N11 | Одиннадцатиричная система счисления |
N12 | Двенадцатеричная система счисления |
N13 | Тринадцатеричная система счисления |
N14 | Четырнадцатеричная система счисления |
N15 | Пятнадцатеричная система счисления |
N16 | Шестнадцатеричная система счисления |
N17 | Семнадцатеричная система счисления |
N18 | Восемнадцатеричная система счисления |
N19 | Девятнадцатеричная система счисления |
N20 | Двадцатеричная система счисления |
N21 | Двадцатиодноричная система счисления |
N22 | Двадцатидвухричная система счисления |
N23 | Двадцатитрехричная система счисления |
N24 | Двадцатичетырехричная система счисления |
N25 | Двадцатипятеричная система счисления |
N26 | Двадцатишестеричная система счисления |
N27 | Двадцатисемеричная система счисления |
N28 | Двадцативосьмеричная система счисления |
N29 | Двадцатидевятиричная система счисления |
N30 | Тридцатиричная система счисления |
N31 | Тридцатиодноричная система счисления |
N32 | Тридцатидвухричная система счисления |
N33 | Тридцатитрехричная система счисления |
N34 | Тридцатичетырехричная система счисления |
N35 | Тридцатипятиричная система счисления |
N36 | Тридцатишестиричная система счисления |
Калькуляторы площади геометрических фигур |
Площадь квадрата |
Площадь прямоугольника |
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ |
Калькуляторы (Комбинаторика) |
Калькулятор нахождения числа перестановок из n элементов |
Калькулятор нахождения числа сочетаний из n элементов |
Калькулятор нахождения числа размещений из n элементов |
Калькуляторы линейная алгебра и аналитическая геометрия |
Калькулятор сложения и вычитания матриц |
Калькулятор умножения матриц |
Калькулятор транспонирование матрицы |
Калькулятор нахождения определителя (детерминанта) матрицы |
Калькулятор нахождения обратной матрицы |
Длина отрезка. Онлайн калькулятор расстояния между точками |
Онлайн калькулятор нахождения координат вектора по двум точкам |
Калькулятор нахождения модуля (длины) вектора |
Калькулятор сложения и вычитания векторов |
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами |
Калькулятор скалярного произведения векторов через координаты |
Калькулятор векторного произведения векторов через координаты |
Калькулятор смешанного произведения векторов |
Калькулятор умножения вектора на число |
Калькулятор нахождения угла между векторами |
Калькулятор проверки коллинеарности векторов |
Калькулятор проверки компланарности векторов |
Генератор Pdf с примерами |
Тренажёры решения примеров |
Тренажёр таблицы умножения |
Тренажер счета для дошкольников |
Тренажер счета на внимательность для дошкольников |
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. |
Тренажер решения примеров с разными действиями |
Тренажёры решения столбиком |
Тренажёр сложения столбиком |
Тренажёр вычитания столбиком |
Тренажёр умножения столбиком |
Тренажёр деления столбиком с остатком |
Калькуляторы решения столбиком |
Калькулятор сложения, вычитания, умножения и деления столбиком |
Калькулятор деления столбиком с остатком |
Генераторы |
Генератор примеров по математике |
Генератор случайных чисел |
Генератор паролей |
Использование компьютерных программ при решении прикладных физических задач — NovaInfo 78
- Макарова Н.В.
Лицей-интернат им. М.Онджеля, г. Бугульма
- Сафиулин Р.М.
Елабужский институт Казанский федеральный университет
Опубликовано
Раздел: Физико-математические науки
Просмотров за месяц: 29
Аннотация
В данной статье рассмотрены компьютерные программы, которые помогают учащимся при решении прикладных физических задач. Приведены такие программы как «1С: Репетитор. Физика», «Открытая физика», «Живая физика УМК», «Mathcad» и электронные калькуляторы. Рассмотрены их компоненты и составляющие, функции и возможности, все эти программы помогают учащимся изучать основы физики и решать прикладные физические задачи.
Ключевые слова
КАЛЬКУЛЯТОРЫ, КОМПЬЮТЕРНЫЕ ПРОГРАММЫ, ФИЗИЧЕСКИЕ ЗАДАЧИ
Текст научной работы
С момента внедрения информационных технологий в учебный процесс возросла роль их использования. Физика как учебная дисциплина отлично поддается процессу компьютеризации. Информационные технологии в процессе обучения физики можно использовать для изучения теоретического материала, тренинга, в качестве средства моделирования и визуализации, а также при решении физических задач.
Одной из основных дисциплин в технических вузах является «Физика». Решение задач на занятиях физики способствует формированию и закреплению полученных знаний и умений на практике для того, чтобы использовать их в профессиональной деятельности [2]. Именно прикладные физические задачи отражают техническое содержание и сущность будущей профессиональной деятельности выпускника вуза. Решение такого вида задач позволяет студентам познакомиться с различными принципами действия технических устройств, физическими методами исследования.
Однако в учебном процессе учащиеся сталкиваются со многими трудностями и использование компьютерной техники в решении задач значительно облегчает и решает эти трудности. А также компьютерные технологии в процессе решения задач развивает интерес у учащихся к предмету физики и компьютерной технике.
Помимо того, что использование компьютера в учебном процессе позволяет автоматизировать вычисления и сократить время, которое было бы потрачено на записи этих вычислений, использование компьютера позволяет изучить больший объем теоретического материала за счет экономии времени.
Существует различное множество компьютерных программ, которые могут быть использованы как учащимися, так и преподавателями при решении прикладных физических задач. Такими программами являются «1С: Репетитор. Физика», «Открытая физика», «Живая физика УМК», «Mathcad» и различные электронные калькуляторы.
Программа «1С: Репетитор. Физика» представляет собой мультимедийный учебный комплекс, которые содержит учебный материал за весь школьный курс. В каждом разделе, содержащиеся в данной программе, представлен комплекс тестов и задач. Приведенные задания направлены на проверку полученных знаний по определенной теме и в каждом задании после его решения приводится подробное решение с ответом. В каждой задаче можно менять значения данных и быстро находить ответ, что позволяет сэкономить время. В конце каждого раздела физики находятся контрольные тесты и задачи, которые разделены на три уровня сложности.
«Открытая физика» — это программа, разработанная для школ и студентов технических вузов, включает в себя иллюстративный учебник, лабораторные работы, задачи, тесты, контрольные работы, справочный материал. При решении приведенных задач можно использовать готовые модели, в которые можно вставлять соответствующие значения данных и быстро решать задачи. Учащийся без особого труда справляется с этой работой с помощью соответствующих кнопок.
«Живая физика УМК» — это программа, содержащая виртуальную лабораторию, позволяет моделировать различные механизмы и силовые поля, наблюдать движение объектов и получать результаты экспериментов в виде таблиц, схем, графиков и рисунков. Именно результат полученный в таком виде позволяет учащимся увидеть те материалы, которые в школьном курсе физики были представлены в виде абстрактных понятий и формул. Это позволяет учащимся усвоить основные физические концепции наглядно, а не абстрактно.
Программа «Mathcad» позволяет выполнять и анализировать важнейшие инженерные расчеты. Данная математическая система выступает в роли помощника учащемуся, который облегчает процесс решения задач, связанный с многократным повторением процедур вычисления, решения уравнений, систем и построением графиков [1]. Например, при решении физических задач учащиеся сталкиваются с трудностями в вычислении производной или интеграла, в этом случае данная программа поможет вычислить. Также в программе ведется автоматический пересчет в разных системах измерениях, которые вызывают трудности у учащихся. Помимо этого, программа может быть использована для создания графиков и диаграмм.
При решение физических задач наряду с компьютерными программами используются онлайн-калькуляторы. Они представляют собой автоматические сервисы, которые решают задачи. Использование калькуляторов не представляет трудностей, нужно, прежде всего, выбрать тему, по которой дана задача. Дальше стоит ввести основные значения и неизвестные переменные, остальное сделает программа. Калькулятор представит подробное решение с различными комментариями, в котором учащийся сможет полностью разобраться.
В решении прикладных физических задач учащимся помогают компьютерные программы. Множество задач содержат в себе огромные вычисления, в решении которых, допустив маленькую ошибку, можно получить неправильный ответ. Компьютерные программы позволяют не допускать такие ошибки и позволяют прийти достаточно быстро к верному ответу. Использование таких программ позволяет сократить время на проведение расчетов, и больше времени уделить анализу и выводу.
На сегодняшний день компьютерных программ, помогающие решать прикладные физические задачи, достаточное множество. Многие из них позволяют провести расчет задач; некоторые из них составляют схемы, графики и диаграммы, на которые бы учащиеся уделили достаточно много времени; другие позволяют проводить виртуальные эксперименты и опыты, то есть учащимся наглядно демонстрируются многие физические явления.
Читайте также
Список литературы
- Авласевич Н. Т. Решение задач по физике с использованием программы Mathcad / Н. Т. Авласевич, Ж. В. Царикович // Образовательная среда сегодня: стратегии развития: материалы VIII Междунар. науч.–практ. конф. — Чебоксары: ЦНС «Интерактив плюс», 2016. — № 4. — С. 85-88.
- Мартынов М.С. Решение прикладных задач по физике – важный фактор активизации познавательной деятельности обучающихся — Режим доступа. — URL: http://window.edu.ru/resource/183/24183/files/2003-2-39.pdf
Цитировать
Макарова, Н.В. Использование компьютерных программ при решении прикладных физических задач / Н.В. Макарова, Р.М. Сафиулин. — Текст : электронный // NovaInfo, 2018. — № 78. — С. 5-8. — URL: https://novainfo.ru/article/14658 (дата обращения: 08.05.2023).
Поделиться
Калькулятор смещения| Найти перемещение ┬╜ (v + u) * t
Создатель: Сунил Кумар Гандипадала
Отзыв: Фани Поннапалли
Последнее обновление: 10 апр. 2023 г.
Используйте этот бесплатный калькулятор смещения, чтобы найти значение смещения, используя формулу s = ½ (v + u) * t. Итак, просто введите значения начальной скорости, конечной скорости и времени в указанные разделы ввода и нажмите кнопку расчета, чтобы получить точный результат с пошаговым объяснением.
Пример: 10, 167, 48, 34,5 или 90
Калькулятор смещения: Вычислить значение смещения объекта вручную довольно сложно. Обычно требуется время, чтобы найти значение смещения объекта. Итак, мы дали один из лучших инструментов, который вычисляет результат легко и быстро. В дополнение к этому удобному инструменту «Калькулятор смещения» вы также можете найти полезную информацию, например, что такое смещение и его формулу, в следующих разделах этой страницы. Тем не менее, проверьте решенные примеры, которые помогут вам эффективно изучить концепцию.
Вот простая процедура, которая поможет вам рассчитать перемещение объекта, используя начальную, конечную скорость и временной интервал. Воспользуйтесь пошаговой процедурой, упомянутой ниже, чтобы решить вопросы смещения.
- Прежде всего измерьте начальную скорость, конечную скорость и временной интервал этого конкретного объекта из заданного вопроса.
- Сложите начальную и конечную скорости.
- Разделить значение временного интервала на 2.
- Умножьте сумму скоростей и половину временного интервала, чтобы получить значение смещения.
Смещение означает изменение положения объекта. Это дает кратчайшее расстояние между двумя точками. Формулы перемещения имеют вид:
Если заданы начальная, конечная скорость объекта и интервал времени, то перемещение равно
с = ½ (v + u) * t
Если заданы ускорение, скорость, интервал времени, то перемещение равно
с = ut + ½ at²
Если тело движется с постоянной скоростью, то
перемещение s = v * t
Где s — перемещение
t интервал времени
a ускорение
u начальная скорость
v конечная скорость
Пример
со скоростью 20 м/с и достигает точки В со скоростью 25 м/с за 30 минут. Что такое перемещение объекта?
Решение:
Учитывая, что
Начальная скорость u = 20 м/с
Конечная скорость v = 25 м/с
Временной интервал t = 30 минут
900 02 Преобразование минут временного интервала в секунды.t = 30 * 60 = 1800 секунд
Формула смещения:
с = ½ (v + u) * t
Подставьте данные значения в приведенное выше уравнение.
с = ½ (25 + 20) * 1800
= ½ (45) * 1800
= 40 500
∴ Водоизмещение 40 500 метров.
Хотите закончить свои задания по физике, поняв концепцию, тогда воспользуйтесь нашими бесплатными онлайн-калькуляторами, представленными на Physicscalc.Com
1. Как рассчитать водоизмещение?
Получите необходимые данные из вопроса и подставьте эти значения в эту формулу s = ½ (v + u) * t. Выполните все необходимые математические операции, чтобы легко получить значение смещения.
2. Что такое единица измерения СИ?
Единицей перемещения в системе СИ является метр (м).
3. Как объяснить расстояние и перемещение на примерах?
Возьмем прямую линию, имеющую конечные точки A и B. Если человек, путешествующий из точки A в B, называется перемещением. Расстояние, пройденное человеком, чтобы добраться до пункта назначения, т. е. от точки B до точки A, называется расстоянием.
4. Напишите ключевые моменты о водоизмещении?
Смещение — это чистая длина, которую объект прошел между начальной и конечной точками. Оно может быть равно, меньше или больше расстояния, пройденного этим объектом. Смещение частицы может быть отрицательным, положительным или нулевым.
Калькулятор скорости | Определение | Formula
Создано Матеушем Мухой и Домиником Черниа, доктором философии
Отзыв от Jack Bowater
Последнее обновление: 13 февраля 2023 г.
Содержание:- Что такое скорость? – определение скорости
- Формула средней скорости и единицы измерения скорости
- Как рассчитать скорость – скорость относительно скорости
- Конечная скорость, скорость убегания и релятивистская скорость
- Часто задаваемые вопросы объект. Если вы когда-нибудь задумывались, как найти скорость, здесь вы можете сделать это в тремя разными способами .
- Первый основан на основном определении скорости, в котором используется хорошо известное уравнение скорости.
- Второй метод вычисляет, какое изменение скорости вызвано ускорением за определенный интервал времени.
- Наконец, третья часть калькулятора скорости использует формулу средней скорости, которая может быть полезна, если вам нужно проанализировать путешествия с разными скоростями на разные расстояния.
Мы также подготовили короткую, но информативную статью о самой скорости. Продолжайте читать, чтобы узнать, что такое формула скорости и каковы наиболее распространенные единицы измерения скорости. Знаете ли вы, что существует существенная разница между скоростью и скоростью? Мы написали об этом с точки зрения физика в тексте ниже.
Что такое скорость? – определение скорости
Определение скорости гласит, что это скорость изменения положения объекта как функция времени. Это одно из фундаментальных понятий классической механики, рассматривающее движение тел. Если вы хотите записать это правило в виде математической формулы, уравнение скорости будет следующим:
скорость = расстояние/время
Имейте в виду, что эта формула скорости работает только тогда, когда объект имеет постоянную скорость в постоянном направлении или если вы хотите найти среднюю скорость на определенном расстоянии (в отличие от мгновенной скорости). Вы, наверное, заметили, что мы используем слова скорость и скорость взаимозаменяемо, но вы не можете делать это каждый раз. Чтобы узнать больше об этом, перейдите в раздел скорости и скорости.
Помимо линейной скорости, которой мы посвятили этот калькулятор, существуют и другие виды скорости, такие как вращательная или угловая скорость с соответствующими физическими величинами: кинетическая энергия вращения, угловое ускорение или массовый момент инерции. Когда объект имеет только угловую скорость, он не смещается (расстояние равно нулю), и вы не можете использовать формулу средней скорости.
Формула средней скорости и единицы измерения скорости
Формула средней скорости описывает соотношение между длиной вашего маршрута и временем, затрачиваемым на поездку. Например, если вы проезжаете на машине расстояние 70 миль за один час, ваша средняя скорость равна 70 милям в час. В предыдущем разделе мы ввели базовое уравнение скорости, но, как вы, наверное, уже поняли, в калькуляторе скорости больше уравнений. Давайте перечислим и систематизируем их ниже:
Простое уравнение скорости:
скорость = расстояние/время
Скорость после определенного времени ускорения:
конечная скорость = начальная скорость + ускорение × время
Формула средней скорости — средневзвешенное значение скоростей:
средняя скорость = скорость₁ × время₁ + скорость₂ × время₂ + . ..
Вам следует использовать формулу средней скорости, если вы можете разделить свой маршрут на несколько сегментов. Например, вы едете на машине со скоростью 25 миль в час за 1 час в городе, а затем доехать до 70 миль в час за 3 часа на шоссе. Какая у вас средняя скорость? С помощью калькулятора скорости вы можете определить, что она будет примерно 59 миль в час .
Из приведенных выше уравнений вы также можете представить единицы скорости . Британские имперские единицы: футы в секунду футов/с и мили в час миль в час . В метрической системе СИ единицами измерения являются метры в секунду 9.0018 м/с и километров в час км/ч . Помните, что вы всегда можете легко переключаться между ними в нашем инструменте!
Как рассчитать скорость – скорость против скорости
Прежде чем мы объясним, как рассчитать скорость, мы хотели бы отметить, что есть небольшая разница между скоростью и скоростью. Первое определяется разницей между конечным и начальным положением и направлением движения, а второе требует только пройденного расстояния. Другими словами, скорость — это вектор (с величиной и направлением), а скорость — скаляр (только с величиной).
Пришло время применить формулу средней скорости на практике. При условии, что объект прошел
500 метров
за3 минуты
, для расчета средней скорости необходимо выполнить следующие шаги:Преобразование минут в секунды (чтобы окончательный результат был в метрах в секунду):
3 минуты = 3 × 60 = 180 секунд
Разделить расстояние на время:
скорость = 500 / 180 = 2,77 м/с
.
Давайте попробуем другой пример. Вы хотите участвовать в гонке на своем новеньком автомобиле, который может изменять свою скорость с ускорением примерно
6,95 м/с²
. Конкурс только начался. Какова будет ваша скорость через4 секунды
?- Установить начальную скорость на ноль; вы не двигаетесь в начале гонки.
- Умножьте ускорение на время, чтобы получить изменение скорости:
изменение скорости = 6,95 × 4 = 27,8 м/с
. - Поскольку начальная скорость была равна нулю, конечная скорость равна изменению скорости.
- Вы можете преобразовать единицы измерения в
км/ч
, умножив результат на 3,6:27,8 × 3,6 ≈ 100 км/ч
.
Конечно, вы можете значительно упростить свои расчеты, воспользовавшись калькулятором средней скорости. Все, что вам нужно сделать, это ввести расстояние и время. Одним из преимуществ использования этого калькулятора является то, что вам не нужно конвертировать какие-либо единицы измерения вручную . Наш инструмент сделает все за вас!
Конечная скорость, скорость убегания и релятивистская скорость
Скорость присутствует во многих аспектах физики, и мы создали для нее множество калькуляторов! Первая скорость — это так называемая конечная скорость, которая представляет собой наивысшую скорость, достижимую при свободном падении объекта. Конечная скорость возникает в жидкостях (например, в воздухе или воде) и зависит от плотности жидкости. Знание того, как рассчитать скорость, также имеет особое значение в астрофизике, поскольку результаты должны быть очень точными.
В области высоких энергий есть еще одна важная скорость — релятивистская скорость . Это связано с тем, что ни один объект с отличной от нуля массой не может достичь скорости света. Почему? Когда он приближается к скорости света, его кинетическая энергия становится недостижимой, очень большой или даже бесконечной. Более того, это причина других явлений, таких как релятивистское сложение скоростей, замедление времени и сокращение длины. Кроме того, знаменитая формула Альберта Эйнштейна
E = mc²
основана на концепции релятивистской скорости.Мы надеемся, что убедили вас в том, что скорость играет важную роль в повседневной жизни, а не только в науке, и надеемся, что вам понравился наш калькулятор скорости.
Часто задаваемые вопросы
Какова воздушная скорость порожней ласточки?
Ну, это зависит от того, говорите ли вы о европейской или африканской разновидности. Для европейского вида это будет примерно 11 м/с, или 24 мили в час . Если вы ищете нашего знакомого африканского птичьего полета, то, боюсь, вам не повезло, присяжные еще не вынесены.
Как найти мгновенную скорость?
- Найдите уравнение, описывающее, как расстояние (
x
) изменяется во времени (t
) . - Продифференцируйте формулу по времени.
- Пусть
dx/dt = мгновенная скорость
. - Введите желаемое время в дифференцированную формулу. Результатом является мгновенная скорость в момент времени
t
.
Сколько времени требуется для достижения предельной скорости?
Среднему человеку потребуется примерно 15 секунд , чтобы достичь 99% предельной скорости, когда его живот обращен к Земле. Достичь 100% конечной скорости очень сложно, если вообще возможно, поскольку ускорение падает экспоненциально, когда объект приближается к своей конечной скорости. Это время изменится, если человек изменит положение тела.
Может ли скорость быть отрицательной?
Да, скорость может быть отрицательной . Скорость — это направленная скорость, поэтому, если объект движется в направлении, противоположном направлению, определенному как положительное направление, оно будет отрицательным. Два объекта с одинаковыми, но противоположными скоростями имеют одинаковую скорость, но просто движутся в противоположных направлениях.
Как найти начальную скорость?
Чтобы найти начальную скорость:
Выясните, какие из перемещений (
с
), конечной скорости (v
), ускорения (a
) и времени (t
) вы должны решить для начальной скорости (u).Если у вас есть
v
,a
иt
, используйте:ты = v - в
.Если у вас есть
с
,v
ит
, используйте:и = 2(с/т) — v
.Если у вас есть
s
,v
иa
, используйте:u = √(v² − 2as)
.Если у вас есть
s
,a
иt
, используйте:u = (s/t) − (at/2)
.
Как найти конечную скорость?
Для расчета конечной скорости:
Выясните, какое из смещения (
с
), начальной скорости (u
), ускорения (a
) и времени (t
) вы должны решить для конечной скорости (v
).Если у вас есть
u
,a
иt
, используйте:v = у + ат
Если у вас есть
s
,u
иt
, используйте:v = 2(s/t) − u
.Если у вас есть
s
,a
иt
, используйте:v = (с/т) + (ат/2)
.
Что такое скорость убегания?
Скорость убегания минимальная скорость, необходимая объекту, чтобы избежать гравитационного притяжения другого объекта . Наиболее распространенным примером этого является скорость, необходимая космическому кораблю для полета к далеким планетам, которая составляет примерно 11,2 км/с.
В чем разница между скоростью и ускорением?
Скорость — это скорость и направление , с которыми движется объект, а ускорение — это то, как скорость этого объекта изменяется со временем. Единицы измерения скорости — м/с, а ускорения — м/с 2 .
Что вызывает изменение скорости?
Взаимодействие с другими объектами приводит к изменению скорости . Когда движущийся объект сталкивается с другим объектом на своем пути, он замедляется (если сталкивается с чем-то меньшим, например с частицей воздуха) или останавливается (если сталкивается со стеной).